--- library_name: transformers language: - zh license: apache-2.0 base_model: openai/whisper-small tags: - whisper - cantonese - zh-hk - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-small-zh-hk results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: zh-HK split: None args: 'config: zh-HK, split: train' metrics: - name: Wer type: wer value: 200.48085485307215 --- # whisper-small-zh-hk This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2332 - Wer: 200.4809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3422 | 0.5708 | 1000 | 0.3029 | 237.3286 | | 0.1806 | 1.1416 | 2000 | 0.2574 | 181.2467 | | 0.1626 | 1.7123 | 3000 | 0.2383 | 171.2199 | | 0.0892 | 2.2831 | 4000 | 0.2332 | 200.4809 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3