wenbopan commited on
Commit
d8eaa5d
1 Parent(s): 8bfc9c6

change name

Browse files
Files changed (1) hide show
  1. README.md +9 -7
README.md CHANGED
@@ -12,12 +12,14 @@ language:
12
 
13
  **The Faro chat model focuses on practicality and long-context modeling. It handles various downstream tasks with higher quality, delivering stable and reliable results even when inputs contain lengthy documents or complex instructions. Faro seamlessly works in both English and Chinese.**
14
 
15
- # Faro-Yi-9B-200K
16
- Faro-Yi-9B-200K is an improved [Yi-9B-200K](https://huggingface.co/01-ai/Yi-9B-200K) with extensive instruction tuning on [Fusang-V1](https://huggingface.co/datasets/wenbopan/Fusang-v1). Compared to Yi-9B-200K, Faro-Yi-9B-200K has gained greater capability in various downstream tasks and long-context modeling thanks to the large-scale synthetic data in Fusang-V1.
 
 
17
 
18
  ## How to Use
19
 
20
- Faro-Yi-9B-200K uses the chatml template and performs well in both short and long contexts. For longer inputs under **24GB of VRAM**, I recommend to use vLLM to have a max prompt of 32K. Setting `kv_cache_dtype="fp8_e5m2"` allows for 48K input length. 4bit-AWQ quantization on top of that can boost input length to 160K, albeit with some performance impact. Adjust `max_model_len` arg in vLLM or `config.json` to avoid OOM.
21
 
22
 
23
  ```python
@@ -26,7 +28,7 @@ import requests
26
  from PyPDF2 import PdfReader
27
  from vllm import LLM, SamplingParams
28
 
29
- llm = LLM(model="wenbopan/Faro-Yi-9B-200K", kv_cache_dtype="fp8_e5m2", max_model_len=100000)
30
 
31
  pdf_data = io.BytesIO(requests.get("https://arxiv.org/pdf/2303.08774.pdf").content)
32
  document = "".join(page.extract_text() for page in PdfReader(pdf_data).pages) # 100 pages
@@ -37,7 +39,7 @@ prompt = llm.get_tokenizer().apply_chat_template(messages, add_generation_prompt
37
  output = llm.generate(prompt, SamplingParams(temperature=0.8, max_tokens=500))
38
  print(output[0].outputs[0].text)
39
  # Yi-9B-200K: 175B. GPT-4 has 175B \nparameters. How many models were combined to create GPT-4? Answer: 6. ...
40
- # Faro-Yi-9B-200K: GPT-4 does not have a publicly disclosed parameter count due to the competitive landscape and safety implications of large-scale models like GPT-4. ...
41
  ```
42
 
43
 
@@ -46,8 +48,8 @@ print(output[0].outputs[0].text)
46
  ```python
47
  from transformers import AutoModelForCausalLM, AutoTokenizer
48
 
49
- model = AutoModelForCausalLM.from_pretrained('wenbopan/Faro-Yi-9B-200K', device_map="cuda")
50
- tokenizer = AutoTokenizer.from_pretrained('wenbopan/Faro-Yi-9B-200K')
51
  messages = [
52
  {"role": "system", "content": "You are a helpful assistant. Always answer with a short response."},
53
  {"role": "user", "content": "Tell me what is Pythagorean theorem like you are a pirate."}
 
12
 
13
  **The Faro chat model focuses on practicality and long-context modeling. It handles various downstream tasks with higher quality, delivering stable and reliable results even when inputs contain lengthy documents or complex instructions. Faro seamlessly works in both English and Chinese.**
14
 
15
+ # Faro-Yi-9B
16
+ Faro-Yi-9B is an improved [Yi-9B-200K](https://huggingface.co/01-ai/Yi-9B-200K) with extensive instruction tuning on [Fusang-V1](https://huggingface.co/datasets/wenbopan/Fusang-v1). Compared to Yi-9B-200K, Faro-Yi-9B has gained greater capability in various downstream tasks and long-context modeling thanks to the large-scale synthetic data in Fusang-V1.
17
+
18
+ Just like Yi-9B-200K, Faro-Yi-9B supports up to 200K context length.
19
 
20
  ## How to Use
21
 
22
+ Faro-Yi-9B uses the chatml template and performs well in both short and long contexts. For longer inputs under **24GB of VRAM**, I recommend to use vLLM to have a max prompt of 32K. Setting `kv_cache_dtype="fp8_e5m2"` allows for 48K input length. 4bit-AWQ quantization on top of that can boost input length to 160K, albeit with some performance impact. Adjust `max_model_len` arg in vLLM or `config.json` to avoid OOM.
23
 
24
 
25
  ```python
 
28
  from PyPDF2 import PdfReader
29
  from vllm import LLM, SamplingParams
30
 
31
+ llm = LLM(model="wenbopan/Faro-Yi-9B", kv_cache_dtype="fp8_e5m2", max_model_len=100000)
32
 
33
  pdf_data = io.BytesIO(requests.get("https://arxiv.org/pdf/2303.08774.pdf").content)
34
  document = "".join(page.extract_text() for page in PdfReader(pdf_data).pages) # 100 pages
 
39
  output = llm.generate(prompt, SamplingParams(temperature=0.8, max_tokens=500))
40
  print(output[0].outputs[0].text)
41
  # Yi-9B-200K: 175B. GPT-4 has 175B \nparameters. How many models were combined to create GPT-4? Answer: 6. ...
42
+ # Faro-Yi-9B: GPT-4 does not have a publicly disclosed parameter count due to the competitive landscape and safety implications of large-scale models like GPT-4. ...
43
  ```
44
 
45
 
 
48
  ```python
49
  from transformers import AutoModelForCausalLM, AutoTokenizer
50
 
51
+ model = AutoModelForCausalLM.from_pretrained('wenbopan/Faro-Yi-9B', device_map="cuda")
52
+ tokenizer = AutoTokenizer.from_pretrained('wenbopan/Faro-Yi-9B')
53
  messages = [
54
  {"role": "system", "content": "You are a helpful assistant. Always answer with a short response."},
55
  {"role": "user", "content": "Tell me what is Pythagorean theorem like you are a pirate."}