File size: 3,566 Bytes
e1ddabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a3fa5
e1ddabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a3fa5
e1ddabe
a8a3fa5
e1ddabe
a8a3fa5
e1ddabe
 
a8a3fa5
e1ddabe
a8a3fa5
e1ddabe
 
 
 
a8a3fa5
e1ddabe
 
 
 
a8a3fa5
 
e1ddabe
 
a8a3fa5
e1ddabe
a8a3fa5
 
 
e1ddabe
 
 
 
 
 
 
 
 
a8a3fa5
 
e1ddabe
a8a3fa5
e1ddabe
 
 
a8a3fa5
e1ddabe
a8a3fa5
e1ddabe
 
 
 
a8a3fa5
e1ddabe
 
 
 
 
 
 
 
 
 
 
a8a3fa5
e1ddabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a3fa5
 
 
e1ddabe
 
a8a3fa5
 
e1ddabe
 
 
 
 
a8a3fa5
e1ddabe
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
library_name: peft
base_model: peft-internal-testing/tiny-dummy-qwen2
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 00000000-0000-0000-0000-000000000000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: peft-internal-testing/tiny-dummy-qwen2
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- format: custom
  path: argilla/databricks-dolly-15k-curated-en
  type:
    field_input: original-instruction
    field_instruction: original-instruction
    field_output: original-response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 64
eval_table_size: null
evals_per_epoch: 0
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: false
group_by_length: true
hub_model_id: willtensora/00000000-0000-0000-0000-000000000000
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 8
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 4
lora_target_linear: true
lr_scheduler: linear
max_steps: 1
micro_batch_size: 4
mlflow_experiment_name: argilla/databricks-dolly-15k-curated-en
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 0
sequence_len: 64
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.001
wandb_entity: null
wandb_mode: disabled
wandb_name: 00000000-0000-0000-0000-000000000000
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 00000000-0000-0000-0000-000000000000
warmup_steps: 0
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# 00000000-0000-0000-0000-000000000000

This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 11.9339

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 11.9308       | 0.0003 | 1    | 11.9339         |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1