File size: 3,821 Bytes
e1ddabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a15c186
 
 
 
 
 
911b2a1
a15c186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911b2a1
a15c186
911b2a1
502525f
911b2a1
a15c186
 
911b2a1
a15c186
911b2a1
a15c186
 
 
 
911b2a1
a15c186
 
 
 
911b2a1
 
a15c186
 
911b2a1
a15c186
911b2a1
 
 
a15c186
 
 
 
 
 
 
 
 
911b2a1
 
a15c186
911b2a1
a15c186
 
 
911b2a1
a15c186
911b2a1
a15c186
 
 
 
911b2a1
a15c186
 
 
 
 
 
 
e1ddabe
 
 
 
f277955
e1ddabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911b2a1
 
 
e1ddabe
911b2a1
f277955
e1ddabe
911b2a1
 
 
e1ddabe
 
 
 
 
f277955
 
 
 
e1ddabe
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
library_name: peft
base_model: peft-internal-testing/tiny-dummy-qwen2
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 00000000-0000-0000-0000-000000000000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: peft-internal-testing/tiny-dummy-qwen2
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- format: custom
  path: argilla/databricks-dolly-15k-curated-en
  type:
    field_input: original-instruction
    field_instruction: original-instruction
    field_output: original-response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: willtensora/00000000-0000-0000-0000-000000000000
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: argilla/databricks-dolly-15k-curated-en
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 00000000-0000-0000-0000-000000000000
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 00000000-0000-0000-0000-000000000000
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# 00000000-0000-0000-0000-000000000000

This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 11.9313

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 11.9315       | 0.0006 | 1    | 11.9313         |
| 11.9319       | 0.0017 | 3    | 11.9313         |
| 11.926        | 0.0034 | 6    | 11.9313         |
| 11.9287       | 0.0050 | 9    | 11.9313         |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1