--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 00000000-0000-0000-0000-000000000000 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - format: custom path: argilla/databricks-dolly-15k-curated-en type: field_input: original-instruction field_instruction: original-instruction field_output: original-response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 64 eval_table_size: null evals_per_epoch: 0 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: true hub_model_id: willtensora/00000000-0000-0000-0000-000000000000 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 8 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 4 lora_target_linear: true lr_scheduler: linear max_steps: 1 micro_batch_size: 4 mlflow_experiment_name: argilla/databricks-dolly-15k-curated-en model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 0 sequence_len: 64 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.001 wandb_entity: null wandb_mode: disabled wandb_name: 00000000-0000-0000-0000-000000000000 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 00000000-0000-0000-0000-000000000000 warmup_steps: 0 weight_decay: 0.0 xformers_attention: null ```

# 00000000-0000-0000-0000-000000000000 This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9315 | 0.0006 | 1 | 11.9313 | | 11.9319 | 0.0017 | 3 | 11.9313 | | 11.926 | 0.0034 | 6 | 11.9313 | | 11.9287 | 0.0050 | 9 | 11.9313 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1