# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import math from typing import Any, Dict, List, Optional, Union from transformers import PretrainedConfig class MixFormerSequentialConfig(PretrainedConfig): """MixFormer (sequential for DeepSpeed) configuration.""" model_type = "mixformer-sequential" attribute_map = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", "input_emb_layer": "embd_layer", # `input_emb_layer` key is for backward compatibility "blocks": "architecture", # `blocks` key is for backward compatibility } def __init__( self, vocab_size: Optional[int] = 50304, n_positions: Optional[int] = 8192, n_embd: Optional[int] = 1024, n_layer: Optional[int] = 20, n_inner: Optional[int] = None, n_head: Optional[int] = 16, rotary_dim: Optional[int] = 32, activation_function: Optional[str] = "gelu_new", embd_layer: Optional[str] = "default", architecture: Union[Dict[str, Any], List[Dict[str, Any]]] = None, embd_pdrop: Optional[float] = 0.0, resid_pdrop: Optional[float] = 0.0, layer_norm_epsilon: Optional[float] = 1e-5, initializer_range: Optional[float] = 0.02, tie_word_embeddings: Optional[bool] = False, pad_vocab_size_multiple: Optional[int] = 64, **kwargs ) -> None: self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_inner = n_inner self.n_head = n_head self.rotary_dim = min(rotary_dim, n_embd // n_head) self.activation_function = activation_function self.embd_layer = embd_layer self.architecture = architecture self.embd_pdrop = embd_pdrop self.resid_pdrop = resid_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)