e5_finetuned / README.md
wl-tookitaki's picture
Model save
e286a35 verified
|
raw
history blame
2.12 kB
metadata
license: mit
base_model: intfloat/multilingual-e5-small
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: e5_finetuned
    results: []

e5_finetuned

This model is a fine-tuned version of intfloat/multilingual-e5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0611
  • Precision: 0.9494
  • Recall: 0.8860
  • F1: 0.9166
  • Accuracy: 0.9799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.0009 2 0.7141 0.125 1.0 0.2222 0.125
0.1046 0.9998 2334 0.0905 0.9564 0.8239 0.8852 0.9733
0.0786 2.0 4669 0.0734 0.9550 0.8540 0.9016 0.9767
0.0761 2.9998 7003 0.0690 0.9358 0.8834 0.9088 0.9778
0.0673 4.0 9338 0.0621 0.9594 0.8750 0.9152 0.9797
0.0709 4.9989 11670 0.0611 0.9494 0.8860 0.9166 0.9799

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1