File size: 6,327 Bytes
05a7a4a 31458d1 c34b258 31458d1 38a13e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
---
datasets:
- Muennighoff/natural-instructions
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- peft
- LoRA
---
# LoRA LLaMA Natural Instructions
![LlaMA Natural Instructions](./llama-natural-instructions-removebg-preview.png)
This model is a fine-tuned version of [llama-13b](https://huggingface.co/decapoda-research/llama-13b-hf) from [Meta](https://huggingface.co/facebook),
on the [Natural Instructions](https://huggingface.co/datasets/Muennighoff/natural-instructions) dataset from [AllenAI](https://huggingface.co/allenai),
using the [LoRA](https://arxiv.org/pdf/2106.09685.pdf) training technique.
⚠️ **This model is for Research purpose only (See the [license](https://huggingface.co/decapoda-research/llama-13b-hf/blob/main/LICENSE))**
## WandB Report
Click on the badge below to see the full report on Weights & Biases.
[![WandB](https://img.shields.io/badge/Weights_&_Biases-FFCC33?style=for-the-badge&logo=WeightsAndBiases&logoColor=black)](https://api.wandb.ai/links/chainyo-mleng/91srpylj)
## Usage
### Installation
```bash
pip install loralib bitsandbytes datasets git+https://github.com/huggingface/peft.git git+https://github.com/huggingface/transformers.git sentencepiece
```
### Format of the input
The input should be a string of text with the following format:
```python
prompt_template = {
"prompt": "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
"response": "### Response:"
}
def generate_prompt(
definition: str,
inputs: str,
targets: Union[None, str] = None,
) -> str:
"""Generate a prompt from instruction and input."""
res = prompt_template["prompt"].format(
instruction=definition, input=inputs
)
if targets:
res = f"{res}{targets}"
return res
def get_response(output: str) -> str:
"""Get the response from the output."""
return output.split(prompt_template["response"])[1].strip()
```
Feel free to use these utility functions to generate the prompt and to extract the response from the model output.
- `definition` is the instruction describing the task. It's generally a single sentence explaining the expected output and
the reasoning steps to follow.
- `inputs` is the input to the task. It can be a single sentence or a paragraph. It's the context used by the model to
generate the response to the task.
- `targets` is the expected output of the task. It's used for training the model. _It's not required for inference._
### Inference
You can load the model using only the adapters or load the full model with the adapters and the weights.
#### The tokenizer
```python
from transformers import LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained("wordcab/llama-natural-instructions-13b")
tokenizer.padding_side = "left"
tokenizer.pad_token_id = (0)
```
#### Load the model with the adapters
```python
from peft import PeftModel
from transformers import LlamaForCausalLM
model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-13b-hf",
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
"wordcab/llama-natural-instructions-13b",
torch_dtype=torch.float16,
device_map={"": 0},
)
```
#### Load the full model
⚠️ Work in progress...
```python
model = LlamaForCausalLM.from_pretrained(
"wordcab/llama-natural-instructions-13b",
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
```
#### Evaluation mode
Don't forget to put the model in evaluation mode. And if you are using PyTorch v2.0 or higher don't forget to call
the compile method.
```python
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
```
#### Generate the response
```python
prompt = generate_prompt(
"In this task, you have to analyze the full sentences and do reasoning and quick maths to find the correct answer.",
f"You are now a superbowl star. You are the quarterback of the team. Your team is down by 3 points. You are in the last 2 minutes of the game. The other team has a score of 28. What is the score of your team?",
)
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=2048)
input_ids = inputs["input_ids"].to(model.device)
generation_config = GenerationConfig(
temperature=0.2,
top_p=0.75,
top_k=40,
num_beams=4,
)
with torch.no_grad():
gen_outputs = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=50,
)
s = gen_outputs.sequences[0]
output = tokenizer.decode(s, skip_special_tokens=True)
response = prompter.get_response(output)
print(response)
>>> 25
```
You can try with other prompts that are not maths related as well! :hugs:
## Beanchmark
We benchmarked our model on the following tasks: [BoolQ](https://huggingface.co/datasets/boolq), [PIQA](https://huggingface.co/datasets/piqa), [WinoGrande](https://huggingface.co/datasets/winogrande), [OpenBookQA](https://huggingface.co/datasets/openbookqa).
| | BoolQ | PIQA | WinoGrande | OpenBookQA | Precision | Inference time (s) |
| --- | --- | --- | --- | --- | --- | --- |
| Original LLaMA 7B | 76.5 | 79.8 | 70.1 | 57.2 | fp32 | 3 seconds |
| Original LLaMA 13B | 78.1 | 80.1 | 73 | 56.4 | fp32 | >5 seconds |
| LoRA LLaMA 7B | 63.9 | 51.3 | 48.9 | 31.4 | 8bit | 0.65 seconds |
| LoRA LLaMA 13B | 70 | 63.93 | 51.6 | 50.4 | 8bit | 1.2 seconds |
__Link to the 7B model:__ [wordcab/llama-natural-instructions-7b](https://huggingface.co/wordcab/llama-natural-instructions-7b)
Overall our LoRA model is less performant than the original model from Meta, if we compare the results from the [original paper](https://arxiv.org/pdf/2302.13971.pdf).
The performance degradation is due to the fact we load the model in 8bit and we use the adapters from the LoRA training.
Thanks to the 8bit quantization, the model is 4 times faster than the original model and the results are still decent.
Some complex tasks like WinoGrande and OpenBookQA are more difficult to solve with the adapters.
## Training Hardware
This model was trained on a GCP instance with 16x NVIDIA A100 40GB GPUs.
|