File size: 3,091 Bytes
976a807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7691ba4
 
976a807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7691ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
976a807
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
tags:
- generated_from_trainer
model-index:
- name: wavlm-large-timit-punctuation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wavlm-large-timit-punctuation

This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3368
- Wer: 0.2601

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 5.2379        | 1.0   | 500   | 3.1228          | 1.0    |
| 2.5847        | 2.01  | 1000  | 1.1550          | 0.9147 |
| 1.0034        | 3.01  | 1500  | 0.5856          | 0.5180 |
| 0.5868        | 4.02  | 2000  | 0.4238          | 0.4229 |
| 0.3892        | 5.02  | 2500  | 0.3356          | 0.3665 |
| 0.2926        | 6.02  | 3000  | 0.3196          | 0.3360 |
| 0.2294        | 7.03  | 3500  | 0.3046          | 0.3170 |
| 0.1976        | 8.03  | 4000  | 0.3032          | 0.3111 |
| 0.1644        | 9.04  | 4500  | 0.2946          | 0.2954 |
| 0.1574        | 10.04 | 5000  | 0.3211          | 0.2998 |
| 0.1391        | 11.04 | 5500  | 0.2986          | 0.2922 |
| 0.1124        | 12.05 | 6000  | 0.2948          | 0.2837 |
| 0.1003        | 13.05 | 6500  | 0.2928          | 0.2788 |
| 0.1031        | 14.06 | 7000  | 0.3230          | 0.2805 |
| 0.0901        | 15.06 | 7500  | 0.3081          | 0.2749 |
| 0.0842        | 16.06 | 8000  | 0.3075          | 0.2726 |
| 0.0809        | 17.07 | 8500  | 0.3215          | 0.2717 |
| 0.0747        | 18.07 | 9000  | 0.3272          | 0.2721 |
| 0.0735        | 19.08 | 9500  | 0.3242          | 0.2684 |
| 0.0631        | 20.08 | 10000 | 0.3216          | 0.2640 |
| 0.0632        | 21.08 | 10500 | 0.3149          | 0.2646 |
| 0.0625        | 22.09 | 11000 | 0.3196          | 0.2630 |
| 0.0611        | 23.09 | 11500 | 0.3244          | 0.2638 |
| 0.0532        | 24.1  | 12000 | 0.3271          | 0.2641 |
| 0.0503        | 25.1  | 12500 | 0.3368          | 0.2636 |
| 0.0534        | 26.1  | 13000 | 0.3393          | 0.2627 |
| 0.049         | 27.11 | 13500 | 0.3389          | 0.2626 |
| 0.0441        | 28.11 | 14000 | 0.3375          | 0.2605 |
| 0.0522        | 29.12 | 14500 | 0.3368          | 0.2601 |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.8.2+cu111
- Datasets 1.17.0
- Tokenizers 0.11.6