lunar lander default training, 1e6 timesteps
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- lunar v1.zip +3 -0
- lunar v1/_stable_baselines3_version +1 -0
- lunar v1/data +94 -0
- lunar v1/policy.optimizer.pth +3 -0
- lunar v1/policy.pth +3 -0
- lunar v1/pytorch_variables.pth +3 -0
- lunar v1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 266.05 +/- 22.73
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3f9c65b430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3f9c65b4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3f9c65b550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3f9c65b5e0>", "_build": "<function ActorCriticPolicy._build at 0x7f3f9c65b670>", "forward": "<function ActorCriticPolicy.forward at 0x7f3f9c65b700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3f9c65b790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3f9c65b820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3f9c65b8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3f9c65b940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3f9c65b9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3f9c65a8a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652033554.0259454, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNBmL0pDhQ7zt3puqwGoLxRvni7DalfvQAAAAAAAAAAAA4XPmBHsT5dY8i9SP2Gvj7URr1oCU+9AAAAAAAAAAAANOG7PfopuZ4pD7tu7mw8osxcu01sT70AAIA/AACAP9o9s70psF269azCuvamFbnLBQG6bQDhOQAAgD8AAIA/2nKxPYmeQz7once9/DAuvhJEMbzQSV48AAAAAAAAAAAzO2277NHwuSkni7zClJU57FAOO/mtC7kAAIA/AACAPwBMdry43qo4em2Ruit8DDxpKG87os4xOgAAAAAAAIA/DR0EPvFnsT56iOK9MhOnvhwMNj0pWao9AAAAAAAAAADmIgG9CpdyOC2TPDsiA0q8z/3yOzm3jjwAAAAAAAAAAOaDp70U9Ok9ABbbPYRQhr5urpU9jxMQvgAAAAAAAAAAzYbBPLgmibtCX6Y8oqULvgfiHr3DpvO+AACAPwAAgD/A9Vw+T7FIP+PZ3j25ZM2+YxaLPhrcUL4AAAAAAAAAAI1shD2kdAs6eKUDvedqSr21/y68GsczPgAAgD8AAAAAGhsMPttq7D5mTuS9icdxvuSYW7019V89AAAAAAAAAABmhP+928qQPxPwNL57z5W+bBqJvpIeFbwAAAAAAAAAADOFX7y7Wqw9LEqhveHsVL791dy8qbdHvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDkqYaXuGbkCUhpRSlIwBbJRNRwGMAXSUR0CPae0VJtiydX2UKGgGaAloD0MIIlUUr7L8b0CUhpRSlGgVTTIBaBZHQI9rWTX8O091fZQoaAZoCWgPQwjQmbSpeqByQJSGlFKUaBVL/2gWR0CPa1qGDcubdX2UKGgGaAloD0MIs9E5P8UhcUCUhpRSlGgVTUIBaBZHQI9rW5xzaK11fZQoaAZoCWgPQwjTad0Gdf1wQJSGlFKUaBVNMwFoFkdAj2uY6GQCCHV9lChoBmgJaA9DCJ54zhZQT3JAlIaUUpRoFU0xAWgWR0CPbDrjYI0JdX2UKGgGaAloD0MIWI6QgTxFTkCUhpRSlGgVS8hoFkdAj2w7m2b5M3V9lChoBmgJaA9DCKWGNgDbs3FAlIaUUpRoFU01AWgWR0CPbJeCTUy6dX2UKGgGaAloD0MIwFq1awKKcECUhpRSlGgVTS4BaBZHQI9wru0CzTp1fZQoaAZoCWgPQwg8akyIuZFvQJSGlFKUaBVNRQFoFkdAj3DQjMV1wHV9lChoBmgJaA9DCJFEL6PYSG9AlIaUUpRoFU0vAWgWR0CPcXkpZwGXdX2UKGgGaAloD0MIxyk6kgvPcECUhpRSlGgVTRgBaBZHQI9zEpAlfJF1fZQoaAZoCWgPQwjKayV01/xwQJSGlFKUaBVNYwFoFkdAj3NdJjDsMXV9lChoBmgJaA9DCJPlJJT+LXFAlIaUUpRoFU1CAWgWR0CPdUEFGG21dX2UKGgGaAloD0MIAfbRqes4ckCUhpRSlGgVTSsBaBZHQI+QrJOnEVF1fZQoaAZoCWgPQwjnNXaJKnRwQJSGlFKUaBVNQwFoFkdAj5GEDQqqfnV9lChoBmgJaA9DCD6V054S6HBAlIaUUpRoFU0kAWgWR0CPkf2FnIyTdX2UKGgGaAloD0MIvyzt1JwRcUCUhpRSlGgVTSYBaBZHQI+SFjEvTPV1fZQoaAZoCWgPQwiAf0qV6DZyQJSGlFKUaBVNCQFoFkdAj5JyJTER8XV9lChoBmgJaA9DCEELCRjdTHBAlIaUUpRoFU04AWgWR0CPkslchTwVdX2UKGgGaAloD0MIIjXtYhq1bUCUhpRSlGgVTTgBaBZHQI+TCZ6Uqx11fZQoaAZoCWgPQwj61Rwg2HRxQJSGlFKUaBVNLAFoFkdAj5NHymQ8wHV9lChoBmgJaA9DCAZoW826nm1AlIaUUpRoFU1VAWgWR0CPlLUVi4KAdX2UKGgGaAloD0MIhxkaT8SmcECUhpRSlGgVTS0BaBZHQI+YH2Cdz4l1fZQoaAZoCWgPQwjnOSLfpZttQJSGlFKUaBVNKAFoFkdAj5inP/rB03V9lChoBmgJaA9DCBpNLsbAm1hAlIaUUpRoFU3oA2gWR0CPmVAcDKYBdX2UKGgGaAloD0MIy59vC9aZckCUhpRSlGgVTUYBaBZHQI+ZXFYMfA91fZQoaAZoCWgPQwhQUIpWrtVxQJSGlFKUaBVNOAFoFkdAj5rgflp48nV9lChoBmgJaA9DCLYUkPZ/FXBAlIaUUpRoFU1DAWgWR0CPm5EIgNgCdX2UKGgGaAloD0MI9fQR+IPxcECUhpRSlGgVTQQBaBZHQI+cWmP5pJx1fZQoaAZoCWgPQwhiSE4m7qBwQJSGlFKUaBVNGAFoFkdAj5zCIcinpHV9lChoBmgJaA9DCKLvbmWJGG1AlIaUUpRoFU0jAWgWR0CPnaTyJ9ApdX2UKGgGaAloD0MIisvxCsSFckCUhpRSlGgVTSUBaBZHQI+eDwjMV1x1fZQoaAZoCWgPQwhJgnAFVLJwQJSGlFKUaBVNNgFoFkdAj59XM6ij+XV9lChoBmgJaA9DCAbWcfzQ+25AlIaUUpRoFU1UAWgWR0CPoEvcrRShdX2UKGgGaAloD0MINJwyN9/EbkCUhpRSlGgVTUoBaBZHQI+gdbPhQ3x1fZQoaAZoCWgPQwihndMs0MZwQJSGlFKUaBVNigFoFkdAj6CS3kPtlnV9lChoBmgJaA9DCLDL8J8uCHJAlIaUUpRoFU2iAWgWR0CPoNWattALdX2UKGgGaAloD0MIjxt+N93XcUCUhpRSlGgVTT8BaBZHQI+haLqD9O11fZQoaAZoCWgPQwhSmWIOAoFuQJSGlFKUaBVNEAFoFkdAj6MCwSrYG3V9lChoBmgJaA9DCNEfmnnyrG5AlIaUUpRoFU0vAWgWR0CPo69eQdS3dX2UKGgGaAloD0MIpnwIqoY+ckCUhpRSlGgVTRcBaBZHQI+j0fgaWHF1fZQoaAZoCWgPQwgcYOY7+NpwQJSGlFKUaBVNOgFoFkdAj6UFl9SdfHV9lChoBmgJaA9DCFYsflOYu3BAlIaUUpRoFU0OAWgWR0CPpV/ustCidX2UKGgGaAloD0MIUz4EVaPCcECUhpRSlGgVTSEBaBZHQI+lcjmjj711fZQoaAZoCWgPQwhEGD+NuwJxQJSGlFKUaBVNIAFoFkdAj6cYYrJ8v3V9lChoBmgJaA9DCDMZjuczqXFAlIaUUpRoFU0WAWgWR0CPqCNGViWndX2UKGgGaAloD0MIA9GTMim4ckCUhpRSlGgVTVABaBZHQI+or+xW1dB1fZQoaAZoCWgPQwhljXqIBnpxQJSGlFKUaBVNBwFoFkdAj6nhf8dgfHV9lChoBmgJaA9DCOGzdXAwP29AlIaUUpRoFU1QAWgWR0CPqfazu4PPdX2UKGgGaAloD0MIrAFKQ42xcUCUhpRSlGgVTTEBaBZHQI+qcGzKLbZ1fZQoaAZoCWgPQwjk1qTbEqU/QJSGlFKUaBVL5mgWR0CPq5ipeeFtdX2UKGgGaAloD0MIKXtLOV/Ab0CUhpRSlGgVTT8BaBZHQI+r1g4Otnx1fZQoaAZoCWgPQwhIbk26LREfQJSGlFKUaBVL3WgWR0CPrCHxBmf5dX2UKGgGaAloD0MIzZTW39L+cECUhpRSlGgVTToBaBZHQI+s7xgAp8Z1fZQoaAZoCWgPQwiCqWbWkhtwQJSGlFKUaBVNewFoFkdAj65wVbiZOXV9lChoBmgJaA9DCNx/ZDo0XHBAlIaUUpRoFU13AWgWR0CPrpeb/ffodX2UKGgGaAloD0MIsYo3Mo9tcUCUhpRSlGgVTTQBaBZHQI+vQuoP07N1fZQoaAZoCWgPQwjNO07RkXFwQJSGlFKUaBVNLQFoFkdAj7BYfwI+n3V9lChoBmgJaA9DCBuADYgQwUlAlIaUUpRoFU0EAWgWR0CPsPLL6k6+dX2UKGgGaAloD0MIzCiWW5rAcUCUhpRSlGgVTTgBaBZHQI+xGGIsRQJ1fZQoaAZoCWgPQwiLcf4mFKNuQJSGlFKUaBVNPgFoFkdAj7Fd4NZvDXV9lChoBmgJaA9DCAXhCijU9nFAlIaUUpRoFU0SAWgWR0CPsjYFJQLvdX2UKGgGaAloD0MIZw5JLRQ/cECUhpRSlGgVTQ4BaBZHQI+zsaS9ugp1fZQoaAZoCWgPQwi1iv7QzKFOQJSGlFKUaBVNAgFoFkdAj7PPBacI7nV9lChoBmgJaA9DCChEwCGU6HFAlIaUUpRoFU0zAWgWR0CPs+sJY1YRdX2UKGgGaAloD0MIGTxM+2YwbkCUhpRSlGgVTVYBaBZHQI+2fDR+jM51fZQoaAZoCWgPQwg+PiE77+ZwQJSGlFKUaBVNMAFoFkdAj85SOBDohnV9lChoBmgJaA9DCKKzzCIUNWxAlIaUUpRoFU0+AmgWR0CP3m3NLUTddX2UKGgGaAloD0MIg6RPq+izYkCUhpRSlGgVTegDaBZHQJADmDHwPRR1fZQoaAZoCWgPQwh1dFyN7LJRQJSGlFKUaBVN6ANoFkdAkAUoRIz3y3V9lChoBmgJaA9DCJuOAG4Wg1JAlIaUUpRoFU3oA2gWR0CQBwg+yJKrdX2UKGgGaAloD0MI7ncoCvQOW0CUhpRSlGgVTegDaBZHQJAHOE8JUo91fZQoaAZoCWgPQwh80R4vpJFdQJSGlFKUaBVN6ANoFkdAkAga5f+junV9lChoBmgJaA9DCLk2VIxzQGFAlIaUUpRoFU3oA2gWR0CQCWsbedkKdX2UKGgGaAloD0MI0EVDxqNVV0CUhpRSlGgVTegDaBZHQJAKF9roGIN1fZQoaAZoCWgPQwiTq1j8poRMQJSGlFKUaBVN6ANoFkdAkApA2Q4jr3V9lChoBmgJaA9DCBTRr62fF1lAlIaUUpRoFU3oA2gWR0CQCoS1E3KkdX2UKGgGaAloD0MIs9DOaRaSX0CUhpRSlGgVTegDaBZHQJALVfQa73B1fZQoaAZoCWgPQwicoiO5/JFUQJSGlFKUaBVN6ANoFkdAkAyltTDO1XV9lChoBmgJaA9DCFNaf0sAvFVAlIaUUpRoFU3oA2gWR0CQDL+L3sX0dX2UKGgGaAloD0MIO1ESEmmNW0CUhpRSlGgVTegDaBZHQJAM079ycTd1fZQoaAZoCWgPQwjqew3BcYxdQJSGlFKUaBVN6ANoFkdAkA5ulfqoqHV9lChoBmgJaA9DCEH0pExq11lAlIaUUpRoFU3oA2gWR0CQDvB7/n4gdX2UKGgGaAloD0MIBMqmXGGSb0CUhpRSlGgVTTABaBZHQJAewG6f8Mx1fZQoaAZoCWgPQwh2xvfFJQlgQJSGlFKUaBVN6ANoFkdAkCOaNZNfxHV9lChoBmgJaA9DCPrS25+L/1FAlIaUUpRoFU3oA2gWR0CQO0/DtPYWdX2UKGgGaAloD0MIDcLc7uV+WkCUhpRSlGgVTegDaBZHQJA9EVRDTjN1fZQoaAZoCWgPQwh+ObNdoQ1eQJSGlFKUaBVN6ANoFkdAkD9DSXt0FXV9lChoBmgJaA9DCOCGGK95BU9AlIaUUpRoFU3oA2gWR0CQP3vsZ5zHdX2UKGgGaAloD0MI5gRtcvi+XkCUhpRSlGgVTegDaBZHQJBAeoddVvN1fZQoaAZoCWgPQwi9OseA7CdRQJSGlFKUaBVN6ANoFkdAkEHREBsAN3V9lChoBmgJaA9DCKES1zEuwWFAlIaUUpRoFU3oA2gWR0CQQooCuEEldX2UKGgGaAloD0MIznFuE276YECUhpRSlGgVTegDaBZHQJBCtc5bQkZ1fZQoaAZoCWgPQwiA0lCjkClcQJSGlFKUaBVN6ANoFkdAkEP2jXWe6XV9lChoBmgJaA9DCBR6/Ul8AlNAlIaUUpRoFU3oA2gWR0CQRWYUWVNYdX2UKGgGaAloD0MIYwtBDkpOVUCUhpRSlGgVTegDaBZHQJBFf/WDpTx1fZQoaAZoCWgPQwh48umxLTthQJSGlFKUaBVN6ANoFkdAkEWSyD7Ik3V9lChoBmgJaA9DCPJ6MCk+gVBAlIaUUpRoFU3oA2gWR0CQRzz19ORDdX2UKGgGaAloD0MIC5sBLshbW0CUhpRSlGgVTegDaBZHQJBHv0qYqoZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-generic-x86_64-with-glibc2.10 #123~18.04.1-Ubuntu SMP Fri Apr 8 09:48:52 UTC 2022", "Python": "3.8.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
lunar v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e03e86a1dbcb62df7c36578642ca226c7a9b1d833d6c7b0cfabe82790db4418
|
3 |
+
size 144189
|
lunar v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar v1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3f9c65b430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3f9c65b4c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3f9c65b550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3f9c65b5e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3f9c65b670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3f9c65b700>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3f9c65b790>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3f9c65b820>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3f9c65b8b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3f9c65b940>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3f9c65b9d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3f9c65a8a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652033554.0259454,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNBmL0pDhQ7zt3puqwGoLxRvni7DalfvQAAAAAAAAAAAA4XPmBHsT5dY8i9SP2Gvj7URr1oCU+9AAAAAAAAAAAANOG7PfopuZ4pD7tu7mw8osxcu01sT70AAIA/AACAP9o9s70psF269azCuvamFbnLBQG6bQDhOQAAgD8AAIA/2nKxPYmeQz7once9/DAuvhJEMbzQSV48AAAAAAAAAAAzO2277NHwuSkni7zClJU57FAOO/mtC7kAAIA/AACAPwBMdry43qo4em2Ruit8DDxpKG87os4xOgAAAAAAAIA/DR0EPvFnsT56iOK9MhOnvhwMNj0pWao9AAAAAAAAAADmIgG9CpdyOC2TPDsiA0q8z/3yOzm3jjwAAAAAAAAAAOaDp70U9Ok9ABbbPYRQhr5urpU9jxMQvgAAAAAAAAAAzYbBPLgmibtCX6Y8oqULvgfiHr3DpvO+AACAPwAAgD/A9Vw+T7FIP+PZ3j25ZM2+YxaLPhrcUL4AAAAAAAAAAI1shD2kdAs6eKUDvedqSr21/y68GsczPgAAgD8AAAAAGhsMPttq7D5mTuS9icdxvuSYW7019V89AAAAAAAAAABmhP+928qQPxPwNL57z5W+bBqJvpIeFbwAAAAAAAAAADOFX7y7Wqw9LEqhveHsVL791dy8qbdHvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDkqYaXuGbkCUhpRSlIwBbJRNRwGMAXSUR0CPae0VJtiydX2UKGgGaAloD0MIIlUUr7L8b0CUhpRSlGgVTTIBaBZHQI9rWTX8O091fZQoaAZoCWgPQwjQmbSpeqByQJSGlFKUaBVL/2gWR0CPa1qGDcubdX2UKGgGaAloD0MIs9E5P8UhcUCUhpRSlGgVTUIBaBZHQI9rW5xzaK11fZQoaAZoCWgPQwjTad0Gdf1wQJSGlFKUaBVNMwFoFkdAj2uY6GQCCHV9lChoBmgJaA9DCJ54zhZQT3JAlIaUUpRoFU0xAWgWR0CPbDrjYI0JdX2UKGgGaAloD0MIWI6QgTxFTkCUhpRSlGgVS8hoFkdAj2w7m2b5M3V9lChoBmgJaA9DCKWGNgDbs3FAlIaUUpRoFU01AWgWR0CPbJeCTUy6dX2UKGgGaAloD0MIwFq1awKKcECUhpRSlGgVTS4BaBZHQI9wru0CzTp1fZQoaAZoCWgPQwg8akyIuZFvQJSGlFKUaBVNRQFoFkdAj3DQjMV1wHV9lChoBmgJaA9DCJFEL6PYSG9AlIaUUpRoFU0vAWgWR0CPcXkpZwGXdX2UKGgGaAloD0MIxyk6kgvPcECUhpRSlGgVTRgBaBZHQI9zEpAlfJF1fZQoaAZoCWgPQwjKayV01/xwQJSGlFKUaBVNYwFoFkdAj3NdJjDsMXV9lChoBmgJaA9DCJPlJJT+LXFAlIaUUpRoFU1CAWgWR0CPdUEFGG21dX2UKGgGaAloD0MIAfbRqes4ckCUhpRSlGgVTSsBaBZHQI+QrJOnEVF1fZQoaAZoCWgPQwjnNXaJKnRwQJSGlFKUaBVNQwFoFkdAj5GEDQqqfnV9lChoBmgJaA9DCD6V054S6HBAlIaUUpRoFU0kAWgWR0CPkf2FnIyTdX2UKGgGaAloD0MIvyzt1JwRcUCUhpRSlGgVTSYBaBZHQI+SFjEvTPV1fZQoaAZoCWgPQwiAf0qV6DZyQJSGlFKUaBVNCQFoFkdAj5JyJTER8XV9lChoBmgJaA9DCEELCRjdTHBAlIaUUpRoFU04AWgWR0CPkslchTwVdX2UKGgGaAloD0MIIjXtYhq1bUCUhpRSlGgVTTgBaBZHQI+TCZ6Uqx11fZQoaAZoCWgPQwj61Rwg2HRxQJSGlFKUaBVNLAFoFkdAj5NHymQ8wHV9lChoBmgJaA9DCAZoW826nm1AlIaUUpRoFU1VAWgWR0CPlLUVi4KAdX2UKGgGaAloD0MIhxkaT8SmcECUhpRSlGgVTS0BaBZHQI+YH2Cdz4l1fZQoaAZoCWgPQwjnOSLfpZttQJSGlFKUaBVNKAFoFkdAj5inP/rB03V9lChoBmgJaA9DCBpNLsbAm1hAlIaUUpRoFU3oA2gWR0CPmVAcDKYBdX2UKGgGaAloD0MIy59vC9aZckCUhpRSlGgVTUYBaBZHQI+ZXFYMfA91fZQoaAZoCWgPQwhQUIpWrtVxQJSGlFKUaBVNOAFoFkdAj5rgflp48nV9lChoBmgJaA9DCLYUkPZ/FXBAlIaUUpRoFU1DAWgWR0CPm5EIgNgCdX2UKGgGaAloD0MI9fQR+IPxcECUhpRSlGgVTQQBaBZHQI+cWmP5pJx1fZQoaAZoCWgPQwhiSE4m7qBwQJSGlFKUaBVNGAFoFkdAj5zCIcinpHV9lChoBmgJaA9DCKLvbmWJGG1AlIaUUpRoFU0jAWgWR0CPnaTyJ9ApdX2UKGgGaAloD0MIisvxCsSFckCUhpRSlGgVTSUBaBZHQI+eDwjMV1x1fZQoaAZoCWgPQwhJgnAFVLJwQJSGlFKUaBVNNgFoFkdAj59XM6ij+XV9lChoBmgJaA9DCAbWcfzQ+25AlIaUUpRoFU1UAWgWR0CPoEvcrRShdX2UKGgGaAloD0MINJwyN9/EbkCUhpRSlGgVTUoBaBZHQI+gdbPhQ3x1fZQoaAZoCWgPQwihndMs0MZwQJSGlFKUaBVNigFoFkdAj6CS3kPtlnV9lChoBmgJaA9DCLDL8J8uCHJAlIaUUpRoFU2iAWgWR0CPoNWattALdX2UKGgGaAloD0MIjxt+N93XcUCUhpRSlGgVTT8BaBZHQI+haLqD9O11fZQoaAZoCWgPQwhSmWIOAoFuQJSGlFKUaBVNEAFoFkdAj6MCwSrYG3V9lChoBmgJaA9DCNEfmnnyrG5AlIaUUpRoFU0vAWgWR0CPo69eQdS3dX2UKGgGaAloD0MIpnwIqoY+ckCUhpRSlGgVTRcBaBZHQI+j0fgaWHF1fZQoaAZoCWgPQwgcYOY7+NpwQJSGlFKUaBVNOgFoFkdAj6UFl9SdfHV9lChoBmgJaA9DCFYsflOYu3BAlIaUUpRoFU0OAWgWR0CPpV/ustCidX2UKGgGaAloD0MIUz4EVaPCcECUhpRSlGgVTSEBaBZHQI+lcjmjj711fZQoaAZoCWgPQwhEGD+NuwJxQJSGlFKUaBVNIAFoFkdAj6cYYrJ8v3V9lChoBmgJaA9DCDMZjuczqXFAlIaUUpRoFU0WAWgWR0CPqCNGViWndX2UKGgGaAloD0MIA9GTMim4ckCUhpRSlGgVTVABaBZHQI+or+xW1dB1fZQoaAZoCWgPQwhljXqIBnpxQJSGlFKUaBVNBwFoFkdAj6nhf8dgfHV9lChoBmgJaA9DCOGzdXAwP29AlIaUUpRoFU1QAWgWR0CPqfazu4PPdX2UKGgGaAloD0MIrAFKQ42xcUCUhpRSlGgVTTEBaBZHQI+qcGzKLbZ1fZQoaAZoCWgPQwjk1qTbEqU/QJSGlFKUaBVL5mgWR0CPq5ipeeFtdX2UKGgGaAloD0MIKXtLOV/Ab0CUhpRSlGgVTT8BaBZHQI+r1g4Otnx1fZQoaAZoCWgPQwhIbk26LREfQJSGlFKUaBVL3WgWR0CPrCHxBmf5dX2UKGgGaAloD0MIzZTW39L+cECUhpRSlGgVTToBaBZHQI+s7xgAp8Z1fZQoaAZoCWgPQwiCqWbWkhtwQJSGlFKUaBVNewFoFkdAj65wVbiZOXV9lChoBmgJaA9DCNx/ZDo0XHBAlIaUUpRoFU13AWgWR0CPrpeb/ffodX2UKGgGaAloD0MIsYo3Mo9tcUCUhpRSlGgVTTQBaBZHQI+vQuoP07N1fZQoaAZoCWgPQwjNO07RkXFwQJSGlFKUaBVNLQFoFkdAj7BYfwI+n3V9lChoBmgJaA9DCBuADYgQwUlAlIaUUpRoFU0EAWgWR0CPsPLL6k6+dX2UKGgGaAloD0MIzCiWW5rAcUCUhpRSlGgVTTgBaBZHQI+xGGIsRQJ1fZQoaAZoCWgPQwiLcf4mFKNuQJSGlFKUaBVNPgFoFkdAj7Fd4NZvDXV9lChoBmgJaA9DCAXhCijU9nFAlIaUUpRoFU0SAWgWR0CPsjYFJQLvdX2UKGgGaAloD0MIZw5JLRQ/cECUhpRSlGgVTQ4BaBZHQI+zsaS9ugp1fZQoaAZoCWgPQwi1iv7QzKFOQJSGlFKUaBVNAgFoFkdAj7PPBacI7nV9lChoBmgJaA9DCChEwCGU6HFAlIaUUpRoFU0zAWgWR0CPs+sJY1YRdX2UKGgGaAloD0MIGTxM+2YwbkCUhpRSlGgVTVYBaBZHQI+2fDR+jM51fZQoaAZoCWgPQwg+PiE77+ZwQJSGlFKUaBVNMAFoFkdAj85SOBDohnV9lChoBmgJaA9DCKKzzCIUNWxAlIaUUpRoFU0+AmgWR0CP3m3NLUTddX2UKGgGaAloD0MIg6RPq+izYkCUhpRSlGgVTegDaBZHQJADmDHwPRR1fZQoaAZoCWgPQwh1dFyN7LJRQJSGlFKUaBVN6ANoFkdAkAUoRIz3y3V9lChoBmgJaA9DCJuOAG4Wg1JAlIaUUpRoFU3oA2gWR0CQBwg+yJKrdX2UKGgGaAloD0MI7ncoCvQOW0CUhpRSlGgVTegDaBZHQJAHOE8JUo91fZQoaAZoCWgPQwh80R4vpJFdQJSGlFKUaBVN6ANoFkdAkAga5f+junV9lChoBmgJaA9DCLk2VIxzQGFAlIaUUpRoFU3oA2gWR0CQCWsbedkKdX2UKGgGaAloD0MI0EVDxqNVV0CUhpRSlGgVTegDaBZHQJAKF9roGIN1fZQoaAZoCWgPQwiTq1j8poRMQJSGlFKUaBVN6ANoFkdAkApA2Q4jr3V9lChoBmgJaA9DCBTRr62fF1lAlIaUUpRoFU3oA2gWR0CQCoS1E3KkdX2UKGgGaAloD0MIs9DOaRaSX0CUhpRSlGgVTegDaBZHQJALVfQa73B1fZQoaAZoCWgPQwicoiO5/JFUQJSGlFKUaBVN6ANoFkdAkAyltTDO1XV9lChoBmgJaA9DCFNaf0sAvFVAlIaUUpRoFU3oA2gWR0CQDL+L3sX0dX2UKGgGaAloD0MIO1ESEmmNW0CUhpRSlGgVTegDaBZHQJAM079ycTd1fZQoaAZoCWgPQwjqew3BcYxdQJSGlFKUaBVN6ANoFkdAkA5ulfqoqHV9lChoBmgJaA9DCEH0pExq11lAlIaUUpRoFU3oA2gWR0CQDvB7/n4gdX2UKGgGaAloD0MIBMqmXGGSb0CUhpRSlGgVTTABaBZHQJAewG6f8Mx1fZQoaAZoCWgPQwh2xvfFJQlgQJSGlFKUaBVN6ANoFkdAkCOaNZNfxHV9lChoBmgJaA9DCPrS25+L/1FAlIaUUpRoFU3oA2gWR0CQO0/DtPYWdX2UKGgGaAloD0MIDcLc7uV+WkCUhpRSlGgVTegDaBZHQJA9EVRDTjN1fZQoaAZoCWgPQwh+ObNdoQ1eQJSGlFKUaBVN6ANoFkdAkD9DSXt0FXV9lChoBmgJaA9DCOCGGK95BU9AlIaUUpRoFU3oA2gWR0CQP3vsZ5zHdX2UKGgGaAloD0MI5gRtcvi+XkCUhpRSlGgVTegDaBZHQJBAeoddVvN1fZQoaAZoCWgPQwi9OseA7CdRQJSGlFKUaBVN6ANoFkdAkEHREBsAN3V9lChoBmgJaA9DCKES1zEuwWFAlIaUUpRoFU3oA2gWR0CQQooCuEEldX2UKGgGaAloD0MIznFuE276YECUhpRSlGgVTegDaBZHQJBCtc5bQkZ1fZQoaAZoCWgPQwiA0lCjkClcQJSGlFKUaBVN6ANoFkdAkEP2jXWe6XV9lChoBmgJaA9DCBR6/Ul8AlNAlIaUUpRoFU3oA2gWR0CQRWYUWVNYdX2UKGgGaAloD0MIYwtBDkpOVUCUhpRSlGgVTegDaBZHQJBFf/WDpTx1fZQoaAZoCWgPQwh48umxLTthQJSGlFKUaBVN6ANoFkdAkEWSyD7Ik3V9lChoBmgJaA9DCPJ6MCk+gVBAlIaUUpRoFU3oA2gWR0CQRzz19ORDdX2UKGgGaAloD0MIC5sBLshbW0CUhpRSlGgVTegDaBZHQJBHv0qYqoZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ceaa68e506b175a202b6bebc316b3ee4bdeecfd36917c2882fe0ac403308dbb
|
3 |
+
size 84829
|
lunar v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:447d89f81e1bb7b604d410613e8f6e6499a427024adc8d83642b1dbcfef4394d
|
3 |
+
size 43201
|
lunar v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-109-generic-x86_64-with-glibc2.10 #123~18.04.1-Ubuntu SMP Fri Apr 8 09:48:52 UTC 2022
|
2 |
+
Python: 3.8.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.5
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90752d46e605d4c147b0bbf250d875e55f88dc95bf9582bf1e9c092c834315d4
|
3 |
+
size 230627
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 266.04991410711995, "std_reward": 22.73387900590312, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T19:30:06.285500"}
|