update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_13_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-common_voice_13_0-eo-10
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_13_0
|
17 |
+
type: common_voice_13_0
|
18 |
+
config: eo
|
19 |
+
split: validation
|
20 |
+
args: eo
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.06575168361283507
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-common_voice_13_0-eo-10
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_13_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0454
|
35 |
+
- Cer: 0.0119
|
36 |
+
- Wer: 0.0658
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 3e-05
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 32
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_steps: 500
|
64 |
+
- num_epochs: 5
|
65 |
+
- mixed_precision_training: Native AMP
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|
70 |
+
|:-------------:|:-----:|:-----:|:------:|:---------------:|:------:|
|
71 |
+
| 2.9894 | 0.22 | 1000 | 1.0 | 2.9257 | 1.0 |
|
72 |
+
| 0.7104 | 0.44 | 2000 | 0.0457 | 0.2129 | 0.2538 |
|
73 |
+
| 0.2853 | 0.67 | 3000 | 0.0274 | 0.1109 | 0.1583 |
|
74 |
+
| 0.2327 | 0.89 | 4000 | 0.0231 | 0.0909 | 0.1320 |
|
75 |
+
| 0.1917 | 1.11 | 5000 | 0.0206 | 0.0775 | 0.1188 |
|
76 |
+
| 0.1803 | 1.33 | 6000 | 0.0184 | 0.0698 | 0.1055 |
|
77 |
+
| 0.1661 | 1.56 | 7000 | 0.0169 | 0.0645 | 0.0961 |
|
78 |
+
| 0.1635 | 1.78 | 8000 | 0.0170 | 0.0639 | 0.0964 |
|
79 |
+
| 0.1555 | 2.0 | 9000 | 0.0156 | 0.0592 | 0.0881 |
|
80 |
+
| 0.1386 | 2.22 | 10000 | 0.0147 | 0.0559 | 0.0821 |
|
81 |
+
| 0.1338 | 2.45 | 11000 | 0.0146 | 0.0548 | 0.0831 |
|
82 |
+
| 0.1307 | 2.67 | 12000 | 0.0137 | 0.0529 | 0.0759 |
|
83 |
+
| 0.1297 | 2.89 | 13000 | 0.0504 | 0.0134 | 0.0745 |
|
84 |
+
| 0.1201 | 3.11 | 14000 | 0.0499 | 0.0131 | 0.0734 |
|
85 |
+
| 0.1152 | 3.34 | 15000 | 0.0484 | 0.0128 | 0.0712 |
|
86 |
+
| 0.1144 | 3.56 | 16000 | 0.0477 | 0.0125 | 0.0695 |
|
87 |
+
| 0.1179 | 3.78 | 17000 | 0.0468 | 0.0122 | 0.0679 |
|
88 |
+
| 0.1112 | 4.0 | 18000 | 0.0468 | 0.0121 | 0.0676 |
|
89 |
+
| 0.1141 | 4.23 | 19000 | 0.0462 | 0.0121 | 0.0668 |
|
90 |
+
| 0.1085 | 4.45 | 20000 | 0.0458 | 0.0119 | 0.0664 |
|
91 |
+
| 0.105 | 4.67 | 21000 | 0.0456 | 0.0119 | 0.0660 |
|
92 |
+
| 0.1072 | 4.89 | 22000 | 0.0454 | 0.0119 | 0.0658 |
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- Transformers 4.29.2
|
98 |
+
- Pytorch 2.0.1+cu117
|
99 |
+
- Datasets 2.12.0
|
100 |
+
- Tokenizers 0.13.3
|