File size: 1,206 Bytes
32bd338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch
import torch.nn.functional as F
from torch import nn
from transformers import BloomForCausalLM, PreTrainedModel
from .configuration import BufferEmbeddingConfig


class DualModel(PreTrainedModel):
    config_class = BufferEmbeddingConfig
    _auto_class = "AutoModel"
    def __init__(self, config):
        super(DualModel, self).__init__(config)
        self.model = BloomForCausalLM(config)#.from_pretrained('Langboat/bloom-800m-zh')
        self.classifier = nn.Linear(1536, 1536)
        self.hidden = nn.Sequential(nn.Linear(1536, 1536),
                                    nn.Tanh())
    def forward(self,
                input_ids,
                token_type_ids=None,
                position_ids_ids=None,
                attention_mask=None,
                labels=None
               ):
        attention_mask = torch.ne(input_ids, 3)  # size: batch_size, max_len

        y = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
        embedding = (y.hidden_states[-1]*attention_mask.unsqueeze(-1)).sum(1)/attention_mask.sum(1).unsqueeze(-1)
        embedding = self.classifier(self.hidden(embedding))
        return F.normalize(embedding, p=2, dim=-1)