from transformers.utils import logging from transformers.configuration_utils import PretrainedConfig logger = logging.get_logger(__name__) INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {} class BufferEmbeddingConfig(PretrainedConfig): model_type = "buffer_embedding" _auto_class = "AutoConfig" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self, vocab_size=250880, hidden_size=64, n_layer=2, n_head=8, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, bos_token_id=1, eos_token_id=2, apply_residual_connection_post_layernorm=False, hidden_dropout=0.0, attention_dropout=0.0, pretraining_tp=1, # TP rank used when training with megatron slow_but_exact=False, **kwargs, ): self.vocab_size = vocab_size # Backward compatibility with n_embed kwarg n_embed = kwargs.pop("n_embed", None) self.hidden_size = hidden_size if n_embed is None else n_embed self.n_layer = n_layer self.n_head = n_head self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.pretraining_tp = pretraining_tp self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.slow_but_exact = slow_but_exact super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)