xk-huang commited on
Commit
86a1106
·
1 Parent(s): ffefb5f

[add] model

Browse files
config.json ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "facebook/sam-vit-huge",
4
+ "architectures": [
5
+ "ScaMultitaskV2Model"
6
+ ],
7
+ "cache_dir": "/mnt/blob/weights/.model.cache/",
8
+ "initializer_range": 0.02,
9
+ "mask_caption_decoder_config": {
10
+ "_name_or_path": "",
11
+ "add_cross_attention": false,
12
+ "additional_num_hidden_layers": 12,
13
+ "architectures": null,
14
+ "attention_downsample_rate": 2,
15
+ "bad_words_ids": null,
16
+ "begin_suppress_tokens": null,
17
+ "bos_token_id": null,
18
+ "chunk_size_feed_forward": 0,
19
+ "cross_attention_hidden_size": null,
20
+ "decoder_start_token_id": null,
21
+ "diversity_penalty": 0.0,
22
+ "do_sample": false,
23
+ "early_stopping": false,
24
+ "encoder_no_repeat_ngram_size": 0,
25
+ "eos_token_id": null,
26
+ "exponential_decay_length_penalty": null,
27
+ "finetuning_task": null,
28
+ "forced_bos_token_id": null,
29
+ "forced_eos_token_id": null,
30
+ "hidden_act": "relu",
31
+ "hidden_size": 256,
32
+ "id2label": {
33
+ "0": "LABEL_0",
34
+ "1": "LABEL_1"
35
+ },
36
+ "iou_head_depth": 3,
37
+ "iou_head_hidden_dim": 256,
38
+ "is_decoder": false,
39
+ "is_encoder_decoder": false,
40
+ "label2id": {
41
+ "LABEL_0": 0,
42
+ "LABEL_1": 1
43
+ },
44
+ "layer_norm_eps": 1e-06,
45
+ "length_penalty": 1.0,
46
+ "max_length": 20,
47
+ "min_length": 0,
48
+ "mlp_dim": 2048,
49
+ "model_type": "",
50
+ "no_repeat_ngram_size": 0,
51
+ "num_attention_heads": 8,
52
+ "num_beam_groups": 1,
53
+ "num_beams": 1,
54
+ "num_caption_heads": 1,
55
+ "num_caption_tokens": 8,
56
+ "num_hidden_layers": 2,
57
+ "num_multimask_outputs": 3,
58
+ "num_return_sequences": 1,
59
+ "output_attentions": false,
60
+ "output_hidden_states": false,
61
+ "output_scores": false,
62
+ "pad_token_id": null,
63
+ "prefix": null,
64
+ "problem_type": null,
65
+ "pruned_heads": {},
66
+ "remove_invalid_values": false,
67
+ "repetition_penalty": 1.0,
68
+ "return_dict": true,
69
+ "return_dict_in_generate": false,
70
+ "sep_token_id": null,
71
+ "suppress_tokens": null,
72
+ "task_specific_params": null,
73
+ "temperature": 1.0,
74
+ "tf_legacy_loss": false,
75
+ "tie_encoder_decoder": false,
76
+ "tie_word_embeddings": true,
77
+ "tokenizer_class": null,
78
+ "top_k": 50,
79
+ "top_p": 1.0,
80
+ "torch_dtype": null,
81
+ "torchscript": false,
82
+ "transformers_version": "4.30.2",
83
+ "typical_p": 1.0,
84
+ "use_bfloat16": false
85
+ },
86
+ "model_type": "sca",
87
+ "num_task_tokens": 6,
88
+ "prompt_encoder_config": {
89
+ "_name_or_path": "",
90
+ "add_cross_attention": false,
91
+ "architectures": null,
92
+ "bad_words_ids": null,
93
+ "begin_suppress_tokens": null,
94
+ "bos_token_id": null,
95
+ "chunk_size_feed_forward": 0,
96
+ "cross_attention_hidden_size": null,
97
+ "decoder_start_token_id": null,
98
+ "diversity_penalty": 0.0,
99
+ "do_sample": false,
100
+ "early_stopping": false,
101
+ "encoder_no_repeat_ngram_size": 0,
102
+ "eos_token_id": null,
103
+ "exponential_decay_length_penalty": null,
104
+ "finetuning_task": null,
105
+ "forced_bos_token_id": null,
106
+ "forced_eos_token_id": null,
107
+ "hidden_act": "gelu",
108
+ "hidden_size": 256,
109
+ "id2label": {
110
+ "0": "LABEL_0",
111
+ "1": "LABEL_1"
112
+ },
113
+ "image_embedding_size": 64,
114
+ "image_size": 1024,
115
+ "is_decoder": false,
116
+ "is_encoder_decoder": false,
117
+ "label2id": {
118
+ "LABEL_0": 0,
119
+ "LABEL_1": 1
120
+ },
121
+ "layer_norm_eps": 1e-06,
122
+ "length_penalty": 1.0,
123
+ "mask_input_channels": 16,
124
+ "max_length": 20,
125
+ "min_length": 0,
126
+ "model_type": "",
127
+ "no_repeat_ngram_size": 0,
128
+ "num_beam_groups": 1,
129
+ "num_beams": 1,
130
+ "num_point_embeddings": 4,
131
+ "num_return_sequences": 1,
132
+ "output_attentions": false,
133
+ "output_hidden_states": false,
134
+ "output_scores": false,
135
+ "pad_token_id": null,
136
+ "patch_size": 16,
137
+ "prefix": null,
138
+ "problem_type": null,
139
+ "pruned_heads": {},
140
+ "remove_invalid_values": false,
141
+ "repetition_penalty": 1.0,
142
+ "return_dict": true,
143
+ "return_dict_in_generate": false,
144
+ "sep_token_id": null,
145
+ "suppress_tokens": null,
146
+ "task_specific_params": null,
147
+ "temperature": 1.0,
148
+ "tf_legacy_loss": false,
149
+ "tie_encoder_decoder": false,
150
+ "tie_word_embeddings": true,
151
+ "tokenizer_class": null,
152
+ "top_k": 50,
153
+ "top_p": 1.0,
154
+ "torch_dtype": null,
155
+ "torchscript": false,
156
+ "transformers_version": "4.30.2",
157
+ "typical_p": 1.0,
158
+ "use_bfloat16": false
159
+ },
160
+ "text_config": {
161
+ "_name_or_path": "gpt2-large",
162
+ "activation_function": "gelu_new",
163
+ "add_cross_attention": false,
164
+ "architectures": [
165
+ "GPT2LMHeadModel"
166
+ ],
167
+ "attn_pdrop": 0.1,
168
+ "bad_words_ids": null,
169
+ "begin_suppress_tokens": null,
170
+ "bos_token_id": 50256,
171
+ "chunk_size_feed_forward": 0,
172
+ "cross_attention_hidden_size": null,
173
+ "decoder_start_token_id": null,
174
+ "diversity_penalty": 0.0,
175
+ "do_sample": false,
176
+ "early_stopping": false,
177
+ "embd_pdrop": 0.1,
178
+ "encoder_no_repeat_ngram_size": 0,
179
+ "eos_token_id": 50256,
180
+ "exponential_decay_length_penalty": null,
181
+ "finetuning_task": null,
182
+ "forced_bos_token_id": null,
183
+ "forced_eos_token_id": null,
184
+ "id2label": {
185
+ "0": "LABEL_0",
186
+ "1": "LABEL_1"
187
+ },
188
+ "initializer_range": 0.02,
189
+ "is_decoder": false,
190
+ "is_encoder_decoder": false,
191
+ "label2id": {
192
+ "LABEL_0": 0,
193
+ "LABEL_1": 1
194
+ },
195
+ "layer_norm_epsilon": 1e-05,
196
+ "length_penalty": 1.0,
197
+ "max_length": 20,
198
+ "min_length": 0,
199
+ "model_type": "gpt2",
200
+ "n_ctx": 1024,
201
+ "n_embd": 1280,
202
+ "n_head": 20,
203
+ "n_inner": null,
204
+ "n_layer": 36,
205
+ "n_positions": 1024,
206
+ "no_repeat_ngram_size": 0,
207
+ "num_beam_groups": 1,
208
+ "num_beams": 1,
209
+ "num_return_sequences": 1,
210
+ "output_attentions": false,
211
+ "output_hidden_states": false,
212
+ "output_scores": false,
213
+ "pad_token_id": null,
214
+ "prefix": null,
215
+ "problem_type": null,
216
+ "pruned_heads": {},
217
+ "remove_invalid_values": false,
218
+ "reorder_and_upcast_attn": false,
219
+ "repetition_penalty": 1.0,
220
+ "resid_pdrop": 0.1,
221
+ "return_dict": true,
222
+ "return_dict_in_generate": false,
223
+ "scale_attn_by_inverse_layer_idx": false,
224
+ "scale_attn_weights": true,
225
+ "sep_token_id": null,
226
+ "summary_activation": null,
227
+ "summary_first_dropout": 0.1,
228
+ "summary_proj_to_labels": true,
229
+ "summary_type": "cls_index",
230
+ "summary_use_proj": true,
231
+ "suppress_tokens": null,
232
+ "task_specific_params": {
233
+ "text-generation": {
234
+ "do_sample": true,
235
+ "max_length": 50
236
+ }
237
+ },
238
+ "temperature": 1.0,
239
+ "tf_legacy_loss": false,
240
+ "tie_encoder_decoder": false,
241
+ "tie_word_embeddings": true,
242
+ "tokenizer_class": null,
243
+ "top_k": 50,
244
+ "top_p": 1.0,
245
+ "torch_dtype": null,
246
+ "torchscript": false,
247
+ "transformers_version": "4.30.2",
248
+ "typical_p": 1.0,
249
+ "use_bfloat16": false,
250
+ "use_cache": true,
251
+ "vocab_size": 50257
252
+ },
253
+ "torch_dtype": "float16",
254
+ "transformers_version": null,
255
+ "use_decoder_only_language_model": true,
256
+ "vision_config": {
257
+ "_name_or_path": "",
258
+ "add_cross_attention": false,
259
+ "architectures": null,
260
+ "attention_dropout": 0.0,
261
+ "bad_words_ids": null,
262
+ "begin_suppress_tokens": null,
263
+ "bos_token_id": null,
264
+ "chunk_size_feed_forward": 0,
265
+ "cross_attention_hidden_size": null,
266
+ "decoder_start_token_id": null,
267
+ "diversity_penalty": 0.0,
268
+ "do_sample": false,
269
+ "dropout": 0.0,
270
+ "early_stopping": false,
271
+ "encoder_no_repeat_ngram_size": 0,
272
+ "eos_token_id": null,
273
+ "exponential_decay_length_penalty": null,
274
+ "finetuning_task": null,
275
+ "forced_bos_token_id": null,
276
+ "forced_eos_token_id": null,
277
+ "global_attn_indexes": [
278
+ 7,
279
+ 15,
280
+ 23,
281
+ 31
282
+ ],
283
+ "hidden_act": "gelu",
284
+ "hidden_size": 1280,
285
+ "id2label": {
286
+ "0": "LABEL_0",
287
+ "1": "LABEL_1"
288
+ },
289
+ "image_size": 1024,
290
+ "initializer_factor": 1.0,
291
+ "initializer_range": 1e-10,
292
+ "intermediate_size": 6144,
293
+ "is_decoder": false,
294
+ "is_encoder_decoder": false,
295
+ "label2id": {
296
+ "LABEL_0": 0,
297
+ "LABEL_1": 1
298
+ },
299
+ "layer_norm_eps": 1e-06,
300
+ "length_penalty": 1.0,
301
+ "max_length": 20,
302
+ "min_length": 0,
303
+ "mlp_dim": 5120,
304
+ "mlp_ratio": 4.0,
305
+ "model_type": "",
306
+ "no_repeat_ngram_size": 0,
307
+ "num_attention_heads": 16,
308
+ "num_beam_groups": 1,
309
+ "num_beams": 1,
310
+ "num_channels": 3,
311
+ "num_hidden_layers": 32,
312
+ "num_pos_feats": 128,
313
+ "num_return_sequences": 1,
314
+ "output_attentions": false,
315
+ "output_channels": 256,
316
+ "output_hidden_states": false,
317
+ "output_scores": false,
318
+ "pad_token_id": null,
319
+ "patch_size": 16,
320
+ "prefix": null,
321
+ "problem_type": null,
322
+ "projection_dim": 512,
323
+ "pruned_heads": {},
324
+ "qkv_bias": true,
325
+ "remove_invalid_values": false,
326
+ "repetition_penalty": 1.0,
327
+ "return_dict": true,
328
+ "return_dict_in_generate": false,
329
+ "sep_token_id": null,
330
+ "suppress_tokens": null,
331
+ "task_specific_params": null,
332
+ "temperature": 1.0,
333
+ "tf_legacy_loss": false,
334
+ "tie_encoder_decoder": false,
335
+ "tie_word_embeddings": true,
336
+ "tokenizer_class": null,
337
+ "top_k": 50,
338
+ "top_p": 1.0,
339
+ "torch_dtype": null,
340
+ "torchscript": false,
341
+ "transformers_version": "4.30.2",
342
+ "typical_p": 1.0,
343
+ "use_abs_pos": true,
344
+ "use_bfloat16": false,
345
+ "use_rel_pos": true,
346
+ "window_size": 14
347
+ }
348
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step200000
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42698df7b030f5a734dc22984798482c7ad55a3c843970d16e052b67e678846e
3
+ size 2869532234
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "<|endoftext|>",
5
+ "unk_token": "<|endoftext|>"
6
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<|endoftext|>",
4
+ "clean_up_tokenization_spaces": true,
5
+ "eos_token": "<|endoftext|>",
6
+ "model_max_length": 20,
7
+ "tokenizer_class": "GPT2Tokenizer",
8
+ "unk_token": "<|endoftext|>"
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,2194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 3.5358800888061523,
3
+ "best_model_checkpoint": "/mnt/output/projects/sca-xiaoke-v3/amlt-results/7300886566.81622-380c5407-4540-4a74-b6ec-7def0683f098/checkpoint-185000",
4
+ "epoch": 82.67879288962381,
5
+ "global_step": 200000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "_prepare_inputs_in_ms": 10.839506983757019,
12
+ "compute_loss_in_ms": 1584.6049636602402,
13
+ "epoch": 0.0,
14
+ "learning_rate/full": 0.0,
15
+ "loss": 8.622,
16
+ "step": 1,
17
+ "training_step_in_ms": 2253.9908327162266
18
+ },
19
+ {
20
+ "epoch": 0.0,
21
+ "eval_visual_genome-densecap-local-densecap-test_loss": 8.927019119262695,
22
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.023580759441051608,
23
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 150.659,
24
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 5.31,
25
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.166,
26
+ "step": 1
27
+ },
28
+ {
29
+ "_prepare_inputs_in_ms": 4.052688444062369,
30
+ "compute_loss_in_ms": 266.6276198354092,
31
+ "epoch": 0.41,
32
+ "learning_rate/full": 0.0003999851506717227,
33
+ "loss": 4.9777,
34
+ "step": 1000,
35
+ "training_step_in_ms": 963.7469428184035
36
+ },
37
+ {
38
+ "_prepare_inputs_in_ms": 4.001575957983732,
39
+ "compute_loss_in_ms": 266.9940203540027,
40
+ "epoch": 0.83,
41
+ "learning_rate/full": 0.0003999221107895784,
42
+ "loss": 4.4794,
43
+ "step": 2000,
44
+ "training_step_in_ms": 964.067553780973
45
+ },
46
+ {
47
+ "_prepare_inputs_in_ms": 4.017723824828863,
48
+ "compute_loss_in_ms": 266.8530354350805,
49
+ "epoch": 1.24,
50
+ "learning_rate/full": 0.0003998096443163716,
51
+ "loss": 4.3589,
52
+ "step": 3000,
53
+ "training_step_in_ms": 964.8137692287564
54
+ },
55
+ {
56
+ "_prepare_inputs_in_ms": 3.9884973876178265,
57
+ "compute_loss_in_ms": 266.8117158599198,
58
+ "epoch": 1.65,
59
+ "learning_rate/full": 0.0003996477790571026,
60
+ "loss": 4.2668,
61
+ "step": 4000,
62
+ "training_step_in_ms": 963.3689811453223
63
+ },
64
+ {
65
+ "_prepare_inputs_in_ms": 4.001692395657301,
66
+ "compute_loss_in_ms": 267.8194024413824,
67
+ "epoch": 2.07,
68
+ "learning_rate/full": 0.0003994365550295963,
69
+ "loss": 4.2092,
70
+ "step": 5000,
71
+ "training_step_in_ms": 965.0005767121911
72
+ },
73
+ {
74
+ "epoch": 2.07,
75
+ "eval_visual_genome-densecap-local-densecap-test_loss": 4.066258430480957,
76
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.19624665436714503,
77
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 81.5743,
78
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 9.807,
79
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.306,
80
+ "step": 5000
81
+ },
82
+ {
83
+ "_prepare_inputs_in_ms": 4.123009167066434,
84
+ "compute_loss_in_ms": 267.90184961631894,
85
+ "epoch": 2.48,
86
+ "learning_rate/full": 0.0003991760244546079,
87
+ "loss": 4.1535,
88
+ "step": 6000,
89
+ "training_step_in_ms": 963.1004312746227
90
+ },
91
+ {
92
+ "_prepare_inputs_in_ms": 4.096908804029226,
93
+ "compute_loss_in_ms": 268.2109449021518,
94
+ "epoch": 2.89,
95
+ "learning_rate/full": 0.00039886625174291286,
96
+ "loss": 4.1103,
97
+ "step": 7000,
98
+ "training_step_in_ms": 965.0139690972865
99
+ },
100
+ {
101
+ "_prepare_inputs_in_ms": 4.150357250124216,
102
+ "compute_loss_in_ms": 269.2836431860924,
103
+ "epoch": 3.31,
104
+ "learning_rate/full": 0.0003985073134793826,
105
+ "loss": 4.0761,
106
+ "step": 8000,
107
+ "training_step_in_ms": 969.6529387235641
108
+ },
109
+ {
110
+ "_prepare_inputs_in_ms": 4.171766873449087,
111
+ "compute_loss_in_ms": 268.9554896838963,
112
+ "epoch": 3.72,
113
+ "learning_rate/full": 0.00039809973090042857,
114
+ "loss": 4.0582,
115
+ "step": 9000,
116
+ "training_step_in_ms": 964.8072783201933
117
+ },
118
+ {
119
+ "_prepare_inputs_in_ms": 4.219205696135759,
120
+ "compute_loss_in_ms": 268.6923326961696,
121
+ "epoch": 4.13,
122
+ "learning_rate/full": 0.00039764327017710485,
123
+ "loss": 4.0324,
124
+ "step": 10000,
125
+ "training_step_in_ms": 962.4501793310046
126
+ },
127
+ {
128
+ "epoch": 4.13,
129
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.913562059402466,
130
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.22121572228147113,
131
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 79.9476,
132
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.007,
133
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.313,
134
+ "step": 10000
135
+ },
136
+ {
137
+ "_prepare_inputs_in_ms": 4.152017308444512,
138
+ "compute_loss_in_ms": 268.094536613673,
139
+ "epoch": 4.55,
140
+ "learning_rate/full": 0.0003971380439342646,
141
+ "loss": 4.0153,
142
+ "step": 11000,
143
+ "training_step_in_ms": 964.2485933154821
144
+ },
145
+ {
146
+ "_prepare_inputs_in_ms": 4.1431227289140224,
147
+ "compute_loss_in_ms": 268.42261432111263,
148
+ "epoch": 4.96,
149
+ "learning_rate/full": 0.00039658359808291836,
150
+ "loss": 4.0053,
151
+ "step": 12000,
152
+ "training_step_in_ms": 965.7689935192466
153
+ },
154
+ {
155
+ "_prepare_inputs_in_ms": 4.223931197077036,
156
+ "compute_loss_in_ms": 268.6585740670562,
157
+ "epoch": 5.37,
158
+ "learning_rate/full": 0.00039598117829320827,
159
+ "loss": 3.9802,
160
+ "step": 13000,
161
+ "training_step_in_ms": 960.5111146196723
162
+ },
163
+ {
164
+ "_prepare_inputs_in_ms": 4.1840940825641155,
165
+ "compute_loss_in_ms": 268.2862157560885,
166
+ "epoch": 5.79,
167
+ "learning_rate/full": 0.00039533040308028367,
168
+ "loss": 3.9633,
169
+ "step": 14000,
170
+ "training_step_in_ms": 968.1838200092316
171
+ },
172
+ {
173
+ "_prepare_inputs_in_ms": 4.200506843626499,
174
+ "compute_loss_in_ms": 268.91191502287984,
175
+ "epoch": 6.2,
176
+ "learning_rate/full": 0.0003946307092543998,
177
+ "loss": 3.941,
178
+ "step": 15000,
179
+ "training_step_in_ms": 968.3050900287926
180
+ },
181
+ {
182
+ "epoch": 6.2,
183
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.8218424320220947,
184
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2321593168121597,
185
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.2057,
186
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.229,
187
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.32,
188
+ "step": 15000
189
+ },
190
+ {
191
+ "_prepare_inputs_in_ms": 4.21836834491753,
192
+ "compute_loss_in_ms": 268.7001321054995,
193
+ "epoch": 6.61,
194
+ "learning_rate/full": 0.0003938844405523341,
195
+ "loss": 3.9323,
196
+ "step": 16000,
197
+ "training_step_in_ms": 984.531311199069
198
+ },
199
+ {
200
+ "_prepare_inputs_in_ms": 4.2030105367302895,
201
+ "compute_loss_in_ms": 268.3060254715383,
202
+ "epoch": 7.03,
203
+ "learning_rate/full": 0.00039308879047835453,
204
+ "loss": 3.9216,
205
+ "step": 17000,
206
+ "training_step_in_ms": 961.8699175454676
207
+ },
208
+ {
209
+ "_prepare_inputs_in_ms": 4.2327940091490746,
210
+ "compute_loss_in_ms": 269.27323868498206,
211
+ "epoch": 7.44,
212
+ "learning_rate/full": 0.00039224627037346294,
213
+ "loss": 3.8992,
214
+ "step": 18000,
215
+ "training_step_in_ms": 967.632270719856
216
+ },
217
+ {
218
+ "_prepare_inputs_in_ms": 4.229459121823311,
219
+ "compute_loss_in_ms": 268.5666101500392,
220
+ "epoch": 7.85,
221
+ "learning_rate/full": 0.00039135631637799936,
222
+ "loss": 3.8984,
223
+ "step": 19000,
224
+ "training_step_in_ms": 963.238344412297
225
+ },
226
+ {
227
+ "_prepare_inputs_in_ms": 4.240339521318674,
228
+ "compute_loss_in_ms": 268.11582005023956,
229
+ "epoch": 8.27,
230
+ "learning_rate/full": 0.00039041818639024787,
231
+ "loss": 3.8907,
232
+ "step": 20000,
233
+ "training_step_in_ms": 960.5583217255771
234
+ },
235
+ {
236
+ "epoch": 8.27,
237
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.7651355266571045,
238
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2403944760451539,
239
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 80.0701,
240
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 9.991,
241
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.312,
242
+ "step": 20000
243
+ },
244
+ {
245
+ "_prepare_inputs_in_ms": 4.2025597829644274,
246
+ "compute_loss_in_ms": 267.9062583371997,
247
+ "epoch": 8.68,
248
+ "learning_rate/full": 0.00038943398810118026,
249
+ "loss": 3.8736,
250
+ "step": 21000,
251
+ "training_step_in_ms": 962.8509967587888
252
+ },
253
+ {
254
+ "_prepare_inputs_in_ms": 4.1947984509170055,
255
+ "compute_loss_in_ms": 268.05593667179346,
256
+ "epoch": 9.09,
257
+ "learning_rate/full": 0.00038840304981011036,
258
+ "loss": 3.8689,
259
+ "step": 22000,
260
+ "training_step_in_ms": 965.0497910194099
261
+ },
262
+ {
263
+ "_prepare_inputs_in_ms": 4.219467684626579,
264
+ "compute_loss_in_ms": 268.2473221644759,
265
+ "epoch": 9.51,
266
+ "learning_rate/full": 0.0003873256258856351,
267
+ "loss": 3.8553,
268
+ "step": 23000,
269
+ "training_step_in_ms": 967.3452698886395
270
+ },
271
+ {
272
+ "_prepare_inputs_in_ms": 4.203684389591217,
273
+ "compute_loss_in_ms": 268.0240872502327,
274
+ "epoch": 9.92,
275
+ "learning_rate/full": 0.00038620312995292836,
276
+ "loss": 3.8464,
277
+ "step": 24000,
278
+ "training_step_in_ms": 960.33872378245
279
+ },
280
+ {
281
+ "_prepare_inputs_in_ms": 4.218942817300558,
282
+ "compute_loss_in_ms": 268.9947931431234,
283
+ "epoch": 10.33,
284
+ "learning_rate/full": 0.0003850323958934377,
285
+ "loss": 3.8356,
286
+ "step": 25000,
287
+ "training_step_in_ms": 967.6199573352933
288
+ },
289
+ {
290
+ "epoch": 10.33,
291
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.71928071975708,
292
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.24336343080593542,
293
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 79.8751,
294
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.016,
295
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.313,
296
+ "step": 25000
297
+ },
298
+ {
299
+ "_prepare_inputs_in_ms": 4.202740984718974,
300
+ "compute_loss_in_ms": 268.5807599723339,
301
+ "epoch": 10.75,
302
+ "learning_rate/full": 0.0003838183948306088,
303
+ "loss": 3.8328,
304
+ "step": 26000,
305
+ "training_step_in_ms": 961.2188336364925
306
+ },
307
+ {
308
+ "_prepare_inputs_in_ms": 4.2269067615270615,
309
+ "compute_loss_in_ms": 267.7264535538852,
310
+ "epoch": 11.16,
311
+ "learning_rate/full": 0.00038255656126572534,
312
+ "loss": 3.8214,
313
+ "step": 27000,
314
+ "training_step_in_ms": 960.6881345175207
315
+ },
316
+ {
317
+ "_prepare_inputs_in_ms": 4.240487921983004,
318
+ "compute_loss_in_ms": 268.31112349405885,
319
+ "epoch": 11.58,
320
+ "learning_rate/full": 0.00038125092378570903,
321
+ "loss": 3.8196,
322
+ "step": 28000,
323
+ "training_step_in_ms": 964.0034716315567
324
+ },
325
+ {
326
+ "_prepare_inputs_in_ms": 4.273211572319269,
327
+ "compute_loss_in_ms": 268.9577633589506,
328
+ "epoch": 11.99,
329
+ "learning_rate/full": 0.0003798991913473777,
330
+ "loss": 3.8171,
331
+ "step": 29000,
332
+ "training_step_in_ms": 973.0124748162925
333
+ },
334
+ {
335
+ "_prepare_inputs_in_ms": 4.244079362601042,
336
+ "compute_loss_in_ms": 267.9022591896355,
337
+ "epoch": 12.4,
338
+ "learning_rate/full": 0.0003785058191464291,
339
+ "loss": 3.8013,
340
+ "step": 30000,
341
+ "training_step_in_ms": 962.8623519428074
342
+ },
343
+ {
344
+ "epoch": 12.4,
345
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.687087297439575,
346
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.24789182257436765,
347
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.5068,
348
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.19,
349
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.318,
350
+ "step": 30000
351
+ },
352
+ {
353
+ "_prepare_inputs_in_ms": 4.183955312502094,
354
+ "compute_loss_in_ms": 267.3523456119001,
355
+ "epoch": 12.82,
356
+ "learning_rate/full": 0.00037706702930065926,
357
+ "loss": 3.8065,
358
+ "step": 31000,
359
+ "training_step_in_ms": 957.8949020504951
360
+ },
361
+ {
362
+ "_prepare_inputs_in_ms": 4.198232229799032,
363
+ "compute_loss_in_ms": 267.4514962993562,
364
+ "epoch": 13.23,
365
+ "learning_rate/full": 0.0003755830450857345,
366
+ "loss": 3.7986,
367
+ "step": 32000,
368
+ "training_step_in_ms": 963.8669461458921
369
+ },
370
+ {
371
+ "_prepare_inputs_in_ms": 4.18659433722496,
372
+ "compute_loss_in_ms": 268.10614936053753,
373
+ "epoch": 13.64,
374
+ "learning_rate/full": 0.0003740572005600189,
375
+ "loss": 3.7923,
376
+ "step": 33000,
377
+ "training_step_in_ms": 965.2572022378445
378
+ },
379
+ {
380
+ "_prepare_inputs_in_ms": 4.225778687745333,
381
+ "compute_loss_in_ms": 268.18950264155865,
382
+ "epoch": 14.06,
383
+ "learning_rate/full": 0.00037248681827609586,
384
+ "loss": 3.7947,
385
+ "step": 34000,
386
+ "training_step_in_ms": 960.6446040645242
387
+ },
388
+ {
389
+ "_prepare_inputs_in_ms": 4.189065434038639,
390
+ "compute_loss_in_ms": 267.6565695255995,
391
+ "epoch": 14.47,
392
+ "learning_rate/full": 0.00037087542640234865,
393
+ "loss": 3.7849,
394
+ "step": 35000,
395
+ "training_step_in_ms": 964.44107465446
396
+ },
397
+ {
398
+ "epoch": 14.47,
399
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.6763927936553955,
400
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.246958162767791,
401
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.6323,
402
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.305,
403
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.322,
404
+ "step": 35000
405
+ },
406
+ {
407
+ "_prepare_inputs_in_ms": 4.164576116131573,
408
+ "compute_loss_in_ms": 267.3913585655391,
409
+ "epoch": 14.88,
410
+ "learning_rate/full": 0.0003692218735740006,
411
+ "loss": 3.7838,
412
+ "step": 36000,
413
+ "training_step_in_ms": 965.0988348089159
414
+ },
415
+ {
416
+ "_prepare_inputs_in_ms": 4.195226285606623,
417
+ "compute_loss_in_ms": 268.244338080287,
418
+ "epoch": 15.3,
419
+ "learning_rate/full": 0.00036752484999829976,
420
+ "loss": 3.7779,
421
+ "step": 37000,
422
+ "training_step_in_ms": 966.1850301101804
423
+ },
424
+ {
425
+ "_prepare_inputs_in_ms": 4.189992021769285,
426
+ "compute_loss_in_ms": 267.8583819307387,
427
+ "epoch": 15.71,
428
+ "learning_rate/full": 0.0003657881683678541,
429
+ "loss": 3.7748,
430
+ "step": 38000,
431
+ "training_step_in_ms": 963.9664278812706
432
+ },
433
+ {
434
+ "_prepare_inputs_in_ms": 4.199680101126432,
435
+ "compute_loss_in_ms": 268.06280748173594,
436
+ "epoch": 16.12,
437
+ "learning_rate/full": 0.00036401058098760525,
438
+ "loss": 3.7695,
439
+ "step": 39000,
440
+ "training_step_in_ms": 967.5451415590942
441
+ },
442
+ {
443
+ "_prepare_inputs_in_ms": 4.182811006903648,
444
+ "compute_loss_in_ms": 267.7034317664802,
445
+ "epoch": 16.54,
446
+ "learning_rate/full": 0.00036219252645064074,
447
+ "loss": 3.7688,
448
+ "step": 40000,
449
+ "training_step_in_ms": 967.6426770947874
450
+ },
451
+ {
452
+ "epoch": 16.54,
453
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.658348321914673,
454
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.25104865208221006,
455
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.4516,
456
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.329,
457
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.323,
458
+ "step": 40000
459
+ },
460
+ {
461
+ "_prepare_inputs_in_ms": 4.188235598366435,
462
+ "compute_loss_in_ms": 267.2028581239283,
463
+ "epoch": 16.95,
464
+ "learning_rate/full": 0.0003603344533347134,
465
+ "loss": 3.761,
466
+ "step": 41000,
467
+ "training_step_in_ms": 958.9369925446808
468
+ },
469
+ {
470
+ "_prepare_inputs_in_ms": 4.214274771511555,
471
+ "compute_loss_in_ms": 267.64739087969065,
472
+ "epoch": 17.36,
473
+ "learning_rate/full": 0.00035843490089475537,
474
+ "loss": 3.7527,
475
+ "step": 42000,
476
+ "training_step_in_ms": 966.9140360169113
477
+ },
478
+ {
479
+ "_prepare_inputs_in_ms": 4.22203628346324,
480
+ "compute_loss_in_ms": 268.2027486599982,
481
+ "epoch": 17.78,
482
+ "learning_rate/full": 0.00035650009493379324,
483
+ "loss": 3.7569,
484
+ "step": 43000,
485
+ "training_step_in_ms": 965.1608090028167
486
+ },
487
+ {
488
+ "_prepare_inputs_in_ms": 4.219520688056946,
489
+ "compute_loss_in_ms": 268.0517144687474,
490
+ "epoch": 18.19,
491
+ "learning_rate/full": 0.00035452275921920933,
492
+ "loss": 3.7513,
493
+ "step": 44000,
494
+ "training_step_in_ms": 965.6609862968326
495
+ },
496
+ {
497
+ "_prepare_inputs_in_ms": 4.1790814362466335,
498
+ "compute_loss_in_ms": 267.46442713588476,
499
+ "epoch": 18.6,
500
+ "learning_rate/full": 0.0003525092554160055,
501
+ "loss": 3.7467,
502
+ "step": 45000,
503
+ "training_step_in_ms": 965.7583395838737
504
+ },
505
+ {
506
+ "epoch": 18.6,
507
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.6469690799713135,
508
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.25092950859358,
509
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.5468,
510
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.185,
511
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.318,
512
+ "step": 45000
513
+ },
514
+ {
515
+ "_prepare_inputs_in_ms": 4.220321690890847,
516
+ "compute_loss_in_ms": 267.56717593222857,
517
+ "epoch": 19.02,
518
+ "learning_rate/full": 0.0003504601940692656,
519
+ "loss": 3.7497,
520
+ "step": 46000,
521
+ "training_step_in_ms": 964.2354487106204
522
+ },
523
+ {
524
+ "_prepare_inputs_in_ms": 4.205725617706776,
525
+ "compute_loss_in_ms": 268.48560455814004,
526
+ "epoch": 19.43,
527
+ "learning_rate/full": 0.0003483698657658315,
528
+ "loss": 3.7388,
529
+ "step": 47000,
530
+ "training_step_in_ms": 967.1772802136838
531
+ },
532
+ {
533
+ "_prepare_inputs_in_ms": 4.253620557487011,
534
+ "compute_loss_in_ms": 267.8220782019198,
535
+ "epoch": 19.84,
536
+ "learning_rate/full": 0.0003462450012513184,
537
+ "loss": 3.744,
538
+ "step": 48000,
539
+ "training_step_in_ms": 962.239847779274
540
+ },
541
+ {
542
+ "_prepare_inputs_in_ms": 4.241022698581219,
543
+ "compute_loss_in_ms": 268.39736769348383,
544
+ "epoch": 20.26,
545
+ "learning_rate/full": 0.00034408405297105753,
546
+ "loss": 3.7372,
547
+ "step": 49000,
548
+ "training_step_in_ms": 966.1254425011575
549
+ },
550
+ {
551
+ "_prepare_inputs_in_ms": 4.21300457790494,
552
+ "compute_loss_in_ms": 268.7097208276391,
553
+ "epoch": 20.67,
554
+ "learning_rate/full": 0.0003418853377786221,
555
+ "loss": 3.7334,
556
+ "step": 50000,
557
+ "training_step_in_ms": 968.8591329194605
558
+ },
559
+ {
560
+ "epoch": 20.67,
561
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.632450580596924,
562
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.253658040934189,
563
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.9084,
564
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.268,
565
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.321,
566
+ "step": 50000
567
+ },
568
+ {
569
+ "_prepare_inputs_in_ms": 4.228368219805927,
570
+ "compute_loss_in_ms": 268.4243040457368,
571
+ "epoch": 21.08,
572
+ "learning_rate/full": 0.0003396560466114797,
573
+ "loss": 3.7438,
574
+ "step": 51000,
575
+ "training_step_in_ms": 964.8838895820081
576
+ },
577
+ {
578
+ "_prepare_inputs_in_ms": 4.233973186463118,
579
+ "compute_loss_in_ms": 268.22105176746845,
580
+ "epoch": 21.5,
581
+ "learning_rate/full": 0.0003373900810764743,
582
+ "loss": 3.728,
583
+ "step": 52000,
584
+ "training_step_in_ms": 962.5837270207703
585
+ },
586
+ {
587
+ "_prepare_inputs_in_ms": 4.230040587484837,
588
+ "compute_loss_in_ms": 267.9561189264059,
589
+ "epoch": 21.91,
590
+ "learning_rate/full": 0.0003350878976336386,
591
+ "loss": 3.7287,
592
+ "step": 53000,
593
+ "training_step_in_ms": 964.1780665256083
594
+ },
595
+ {
596
+ "_prepare_inputs_in_ms": 4.2476331405341625,
597
+ "compute_loss_in_ms": 268.6795903816819,
598
+ "epoch": 22.32,
599
+ "learning_rate/full": 0.0003327546685845955,
600
+ "loss": 3.7223,
601
+ "step": 54000,
602
+ "training_step_in_ms": 967.9701336547732
603
+ },
604
+ {
605
+ "_prepare_inputs_in_ms": 4.220093585550785,
606
+ "compute_loss_in_ms": 267.76603213325143,
607
+ "epoch": 22.74,
608
+ "learning_rate/full": 0.00033038868430752995,
609
+ "loss": 3.7261,
610
+ "step": 55000,
611
+ "training_step_in_ms": 962.9226383566856
612
+ },
613
+ {
614
+ "epoch": 22.74,
615
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.6242456436157227,
616
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.25521777862203787,
617
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.5774,
618
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.181,
619
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.318,
620
+ "step": 55000
621
+ },
622
+ {
623
+ "_prepare_inputs_in_ms": 4.227604019205745,
624
+ "compute_loss_in_ms": 267.647510971874,
625
+ "epoch": 23.15,
626
+ "learning_rate/full": 0.00032799052857365924,
627
+ "loss": 3.7232,
628
+ "step": 56000,
629
+ "training_step_in_ms": 963.1331409327686
630
+ },
631
+ {
632
+ "_prepare_inputs_in_ms": 4.1824629083275795,
633
+ "compute_loss_in_ms": 267.5452450104058,
634
+ "epoch": 23.56,
635
+ "learning_rate/full": 0.0003255583453025672,
636
+ "loss": 3.7153,
637
+ "step": 57000,
638
+ "training_step_in_ms": 965.8048706538975
639
+ },
640
+ {
641
+ "_prepare_inputs_in_ms": 4.190924048423767,
642
+ "compute_loss_in_ms": 268.4611966535449,
643
+ "epoch": 23.98,
644
+ "learning_rate/full": 0.0003230975988657048,
645
+ "loss": 3.72,
646
+ "step": 58000,
647
+ "training_step_in_ms": 965.0302759557962
648
+ },
649
+ {
650
+ "_prepare_inputs_in_ms": 4.20093110203743,
651
+ "compute_loss_in_ms": 267.884086355567,
652
+ "epoch": 24.39,
653
+ "learning_rate/full": 0.0003206064799382713,
654
+ "loss": 3.7127,
655
+ "step": 59000,
656
+ "training_step_in_ms": 964.0987507812679
657
+ },
658
+ {
659
+ "_prepare_inputs_in_ms": 4.210771672427654,
660
+ "compute_loss_in_ms": 267.6700286902487,
661
+ "epoch": 24.8,
662
+ "learning_rate/full": 0.00031808560316658635,
663
+ "loss": 3.7115,
664
+ "step": 60000,
665
+ "training_step_in_ms": 965.6994955539703
666
+ },
667
+ {
668
+ "epoch": 24.8,
669
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.61262583732605,
670
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.259026039077661,
671
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.8405,
672
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.277,
673
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.321,
674
+ "step": 60000
675
+ },
676
+ {
677
+ "_prepare_inputs_in_ms": 4.141795973225338,
678
+ "compute_loss_in_ms": 267.2422932982445,
679
+ "epoch": 25.22,
680
+ "learning_rate/full": 0.0003155330235866319,
681
+ "loss": 3.7085,
682
+ "step": 61000,
683
+ "training_step_in_ms": 965.9709356427193
684
+ },
685
+ {
686
+ "_prepare_inputs_in_ms": 4.12061008810997,
687
+ "compute_loss_in_ms": 268.04699283093214,
688
+ "epoch": 25.63,
689
+ "learning_rate/full": 0.000312954476063518,
690
+ "loss": 3.7031,
691
+ "step": 62000,
692
+ "training_step_in_ms": 964.8432326950133
693
+ },
694
+ {
695
+ "_prepare_inputs_in_ms": 4.14773878082633,
696
+ "compute_loss_in_ms": 268.0800936706364,
697
+ "epoch": 26.04,
698
+ "learning_rate/full": 0.00031035068146119334,
699
+ "loss": 3.7053,
700
+ "step": 63000,
701
+ "training_step_in_ms": 964.9066540151834
702
+ },
703
+ {
704
+ "_prepare_inputs_in_ms": 4.157721221446991,
705
+ "compute_loss_in_ms": 267.8991154767573,
706
+ "epoch": 26.46,
707
+ "learning_rate/full": 0.00030771441463138695,
708
+ "loss": 3.6991,
709
+ "step": 64000,
710
+ "training_step_in_ms": 966.7548437044024
711
+ },
712
+ {
713
+ "_prepare_inputs_in_ms": 4.127573002129793,
714
+ "compute_loss_in_ms": 268.0769842043519,
715
+ "epoch": 26.87,
716
+ "learning_rate/full": 0.00030505419362911944,
717
+ "loss": 3.7026,
718
+ "step": 65000,
719
+ "training_step_in_ms": 966.6518254801631
720
+ },
721
+ {
722
+ "epoch": 26.87,
723
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.604250907897949,
724
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2600293381296915,
725
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.2046,
726
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.362,
727
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.324,
728
+ "step": 65000
729
+ },
730
+ {
731
+ "_prepare_inputs_in_ms": 4.138722216210714,
732
+ "compute_loss_in_ms": 268.0730670392513,
733
+ "epoch": 27.28,
734
+ "learning_rate/full": 0.0003023653504808654,
735
+ "loss": 3.6903,
736
+ "step": 66000,
737
+ "training_step_in_ms": 965.3969647027552
738
+ },
739
+ {
740
+ "_prepare_inputs_in_ms": 4.153087247163057,
741
+ "compute_loss_in_ms": 268.1363028138876,
742
+ "epoch": 27.7,
743
+ "learning_rate/full": 0.0002996566527388639,
744
+ "loss": 3.6969,
745
+ "step": 67000,
746
+ "training_step_in_ms": 965.2745163962245
747
+ },
748
+ {
749
+ "_prepare_inputs_in_ms": 4.149796262383461,
750
+ "compute_loss_in_ms": 267.83912086486816,
751
+ "epoch": 28.11,
752
+ "learning_rate/full": 0.0002969179137925403,
753
+ "loss": 3.6937,
754
+ "step": 68000,
755
+ "training_step_in_ms": 968.0436515249312
756
+ },
757
+ {
758
+ "_prepare_inputs_in_ms": 4.1318743117153645,
759
+ "compute_loss_in_ms": 268.5812944062054,
760
+ "epoch": 28.52,
761
+ "learning_rate/full": 0.0002941579883457959,
762
+ "loss": 3.6891,
763
+ "step": 69000,
764
+ "training_step_in_ms": 964.7220857255161
765
+ },
766
+ {
767
+ "_prepare_inputs_in_ms": 4.13500452041626,
768
+ "compute_loss_in_ms": 267.81502260267735,
769
+ "epoch": 28.94,
770
+ "learning_rate/full": 0.0002913748308243434,
771
+ "loss": 3.6864,
772
+ "step": 70000,
773
+ "training_step_in_ms": 964.9831298328936
774
+ },
775
+ {
776
+ "epoch": 28.94,
777
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5996363162994385,
778
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.26106738202465474,
779
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 79.1905,
780
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.102,
781
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.316,
782
+ "step": 70000
783
+ },
784
+ {
785
+ "_prepare_inputs_in_ms": 4.127892008641871,
786
+ "compute_loss_in_ms": 267.3319378942251,
787
+ "epoch": 29.35,
788
+ "learning_rate/full": 0.000288569127930656,
789
+ "loss": 3.6864,
790
+ "step": 71000,
791
+ "training_step_in_ms": 964.4970440678298
792
+ },
793
+ {
794
+ "_prepare_inputs_in_ms": 4.127237547188997,
795
+ "compute_loss_in_ms": 267.12262638285756,
796
+ "epoch": 29.76,
797
+ "learning_rate/full": 0.0002857387308278068,
798
+ "loss": 3.688,
799
+ "step": 72000,
800
+ "training_step_in_ms": 963.8779099695385
801
+ },
802
+ {
803
+ "_prepare_inputs_in_ms": 4.134644038975239,
804
+ "compute_loss_in_ms": 268.62900394946337,
805
+ "epoch": 30.18,
806
+ "learning_rate/full": 0.0002828899985518552,
807
+ "loss": 3.6777,
808
+ "step": 73000,
809
+ "training_step_in_ms": 966.1114624030888
810
+ },
811
+ {
812
+ "_prepare_inputs_in_ms": 4.121612053364515,
813
+ "compute_loss_in_ms": 267.61186150833964,
814
+ "epoch": 30.59,
815
+ "learning_rate/full": 0.00028002081440907064,
816
+ "loss": 3.6805,
817
+ "step": 74000,
818
+ "training_step_in_ms": 966.5145794674754
819
+ },
820
+ {
821
+ "_prepare_inputs_in_ms": 4.143208879977465,
822
+ "compute_loss_in_ms": 268.1201763525605,
823
+ "epoch": 31.0,
824
+ "learning_rate/full": 0.00027713188632770775,
825
+ "loss": 3.6879,
826
+ "step": 75000,
827
+ "training_step_in_ms": 965.0215070433915
828
+ },
829
+ {
830
+ "epoch": 31.0,
831
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5912275314331055,
832
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.26092454356630995,
833
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.6905,
834
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.166,
835
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.318,
836
+ "step": 75000
837
+ },
838
+ {
839
+ "_prepare_inputs_in_ms": 4.137767382511279,
840
+ "compute_loss_in_ms": 267.779229991138,
841
+ "epoch": 31.42,
842
+ "learning_rate/full": 0.00027422684725453034,
843
+ "loss": 3.6725,
844
+ "step": 76000,
845
+ "training_step_in_ms": 963.9590919055045
846
+ },
847
+ {
848
+ "_prepare_inputs_in_ms": 4.138436369597912,
849
+ "compute_loss_in_ms": 268.5314156524837,
850
+ "epoch": 31.83,
851
+ "learning_rate/full": 0.0002712976542440004,
852
+ "loss": 3.6758,
853
+ "step": 77000,
854
+ "training_step_in_ms": 964.5805881880224
855
+ },
856
+ {
857
+ "_prepare_inputs_in_ms": 4.146489001810551,
858
+ "compute_loss_in_ms": 268.08270847052336,
859
+ "epoch": 32.24,
860
+ "learning_rate/full": 0.00026835083436875734,
861
+ "loss": 3.6692,
862
+ "step": 78000,
863
+ "training_step_in_ms": 966.2784307040274
864
+ },
865
+ {
866
+ "_prepare_inputs_in_ms": 4.1479257568717,
867
+ "compute_loss_in_ms": 267.2712250612676,
868
+ "epoch": 32.66,
869
+ "learning_rate/full": 0.0002653930599834242,
870
+ "loss": 3.6736,
871
+ "step": 79000,
872
+ "training_step_in_ms": 968.4041320718825
873
+ },
874
+ {
875
+ "_prepare_inputs_in_ms": 4.126915082335472,
876
+ "compute_loss_in_ms": 268.5138017758727,
877
+ "epoch": 33.07,
878
+ "learning_rate/full": 0.0002624132077738845,
879
+ "loss": 3.6731,
880
+ "step": 80000,
881
+ "training_step_in_ms": 969.1153637133539
882
+ },
883
+ {
884
+ "epoch": 33.07,
885
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5850701332092285,
886
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2637883107097123,
887
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.0939,
888
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.377,
889
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.324,
890
+ "step": 80000
891
+ },
892
+ {
893
+ "_prepare_inputs_in_ms": 4.120095092348937,
894
+ "compute_loss_in_ms": 267.7357228696346,
895
+ "epoch": 33.48,
896
+ "learning_rate/full": 0.0002594179251945605,
897
+ "loss": 3.6671,
898
+ "step": 81000,
899
+ "training_step_in_ms": 963.6873134560883
900
+ },
901
+ {
902
+ "_prepare_inputs_in_ms": 4.124605063349009,
903
+ "compute_loss_in_ms": 267.57319816574454,
904
+ "epoch": 33.9,
905
+ "learning_rate/full": 0.00025641096982950234,
906
+ "loss": 3.6662,
907
+ "step": 82000,
908
+ "training_step_in_ms": 965.3064449094236
909
+ },
910
+ {
911
+ "_prepare_inputs_in_ms": 4.129976071417332,
912
+ "compute_loss_in_ms": 267.9822950810194,
913
+ "epoch": 34.31,
914
+ "learning_rate/full": 0.00025339009590173424,
915
+ "loss": 3.6651,
916
+ "step": 83000,
917
+ "training_step_in_ms": 967.112907551229
918
+ },
919
+ {
920
+ "_prepare_inputs_in_ms": 4.144246697425842,
921
+ "compute_loss_in_ms": 268.09172417223454,
922
+ "epoch": 34.73,
923
+ "learning_rate/full": 0.0002503530053325778,
924
+ "loss": 3.6622,
925
+ "step": 84000,
926
+ "training_step_in_ms": 963.3224161304533
927
+ },
928
+ {
929
+ "_prepare_inputs_in_ms": 4.138608705252409,
930
+ "compute_loss_in_ms": 267.34737430512905,
931
+ "epoch": 35.14,
932
+ "learning_rate/full": 0.0002473065215350535,
933
+ "loss": 3.66,
934
+ "step": 85000,
935
+ "training_step_in_ms": 964.2706917002797
936
+ },
937
+ {
938
+ "epoch": 35.14,
939
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5811269283294678,
940
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2639846881301574,
941
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.4776,
942
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.194,
943
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.319,
944
+ "step": 85000
945
+ },
946
+ {
947
+ "_prepare_inputs_in_ms": 4.154233903419681,
948
+ "compute_loss_in_ms": 267.71352230757475,
949
+ "epoch": 35.55,
950
+ "learning_rate/full": 0.00024424836556120313,
951
+ "loss": 3.6547,
952
+ "step": 86000,
953
+ "training_step_in_ms": 962.3722572363913
954
+ },
955
+ {
956
+ "_prepare_inputs_in_ms": 4.109987150877714,
957
+ "compute_loss_in_ms": 267.4717643670738,
958
+ "epoch": 35.97,
959
+ "learning_rate/full": 0.000241179291965253,
960
+ "loss": 3.662,
961
+ "step": 87000,
962
+ "training_step_in_ms": 962.7631023935974
963
+ },
964
+ {
965
+ "_prepare_inputs_in_ms": 4.130292858928442,
966
+ "compute_loss_in_ms": 268.7110885903239,
967
+ "epoch": 36.38,
968
+ "learning_rate/full": 0.0002381000579951894,
969
+ "loss": 3.6533,
970
+ "step": 88000,
971
+ "training_step_in_ms": 966.5117364116013
972
+ },
973
+ {
974
+ "_prepare_inputs_in_ms": 4.127315446734428,
975
+ "compute_loss_in_ms": 267.80369279161096,
976
+ "epoch": 36.79,
977
+ "learning_rate/full": 0.00023501142340591894,
978
+ "loss": 3.6541,
979
+ "step": 89000,
980
+ "training_step_in_ms": 966.1625612042844
981
+ },
982
+ {
983
+ "_prepare_inputs_in_ms": 4.147790517657995,
984
+ "compute_loss_in_ms": 268.44236666709185,
985
+ "epoch": 37.21,
986
+ "learning_rate/full": 0.00023191415027181022,
987
+ "loss": 3.6505,
988
+ "step": 90000,
989
+ "training_step_in_ms": 969.9625728055835
990
+ },
991
+ {
992
+ "epoch": 37.21,
993
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5739023685455322,
994
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2666824586460844,
995
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.5693,
996
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.182,
997
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.318,
998
+ "step": 90000
999
+ },
1000
+ {
1001
+ "_prepare_inputs_in_ms": 4.1041579188370125,
1002
+ "compute_loss_in_ms": 267.84072072431445,
1003
+ "epoch": 37.62,
1004
+ "learning_rate/full": 0.00022880900279866363,
1005
+ "loss": 3.6517,
1006
+ "step": 91000,
1007
+ "training_step_in_ms": 962.2163318134844
1008
+ },
1009
+ {
1010
+ "_prepare_inputs_in_ms": 4.135395355522633,
1011
+ "compute_loss_in_ms": 267.92124405503273,
1012
+ "epoch": 38.03,
1013
+ "learning_rate/full": 0.0002256936284593779,
1014
+ "loss": 3.6526,
1015
+ "step": 92000,
1016
+ "training_step_in_ms": 965.9340194314718
1017
+ },
1018
+ {
1019
+ "_prepare_inputs_in_ms": 4.124495934695005,
1020
+ "compute_loss_in_ms": 267.63855477049947,
1021
+ "epoch": 38.45,
1022
+ "learning_rate/full": 0.00022257502654664658,
1023
+ "loss": 3.6411,
1024
+ "step": 93000,
1025
+ "training_step_in_ms": 968.471509065479
1026
+ },
1027
+ {
1028
+ "_prepare_inputs_in_ms": 4.13615457713604,
1029
+ "compute_loss_in_ms": 268.6791280247271,
1030
+ "epoch": 38.86,
1031
+ "learning_rate/full": 0.00021945398441148287,
1032
+ "loss": 3.6456,
1033
+ "step": 94000,
1034
+ "training_step_in_ms": 964.7193784303963
1035
+ },
1036
+ {
1037
+ "_prepare_inputs_in_ms": 4.138962186872959,
1038
+ "compute_loss_in_ms": 267.87416788190603,
1039
+ "epoch": 39.27,
1040
+ "learning_rate/full": 0.00021632188341385878,
1041
+ "loss": 3.6474,
1042
+ "step": 95000,
1043
+ "training_step_in_ms": 964.3936127200723
1044
+ },
1045
+ {
1046
+ "epoch": 39.27,
1047
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.570530414581299,
1048
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.26555671498307476,
1049
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.8889,
1050
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.271,
1051
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.321,
1052
+ "step": 95000
1053
+ },
1054
+ {
1055
+ "_prepare_inputs_in_ms": 4.114193618297577,
1056
+ "compute_loss_in_ms": 267.61803087219596,
1057
+ "epoch": 39.69,
1058
+ "learning_rate/full": 0.0002131888850633025,
1059
+ "loss": 3.6443,
1060
+ "step": 96000,
1061
+ "training_step_in_ms": 962.9699364975095
1062
+ },
1063
+ {
1064
+ "_prepare_inputs_in_ms": 4.118229653686285,
1065
+ "compute_loss_in_ms": 267.60003339126706,
1066
+ "epoch": 40.1,
1067
+ "learning_rate/full": 0.00021005263255270636,
1068
+ "loss": 3.6436,
1069
+ "step": 97000,
1070
+ "training_step_in_ms": 967.0044349320233
1071
+ },
1072
+ {
1073
+ "_prepare_inputs_in_ms": 4.14753895252943,
1074
+ "compute_loss_in_ms": 267.94382878765464,
1075
+ "epoch": 40.51,
1076
+ "learning_rate/full": 0.00020691389970544863,
1077
+ "loss": 3.6409,
1078
+ "step": 98000,
1079
+ "training_step_in_ms": 965.2209133654833
1080
+ },
1081
+ {
1082
+ "_prepare_inputs_in_ms": 4.132391892373562,
1083
+ "compute_loss_in_ms": 268.32156636565924,
1084
+ "epoch": 40.93,
1085
+ "learning_rate/full": 0.00020377031677881017,
1086
+ "loss": 3.6386,
1087
+ "step": 99000,
1088
+ "training_step_in_ms": 965.1960897520185
1089
+ },
1090
+ {
1091
+ "_prepare_inputs_in_ms": 4.139371138066053,
1092
+ "compute_loss_in_ms": 268.1989936903119,
1093
+ "epoch": 41.34,
1094
+ "learning_rate/full": 0.00020062894644154732,
1095
+ "loss": 3.628,
1096
+ "step": 100000,
1097
+ "training_step_in_ms": 969.4596163183451
1098
+ },
1099
+ {
1100
+ "epoch": 41.34,
1101
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.565774440765381,
1102
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.26571601552352997,
1103
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.6144,
1104
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.307,
1105
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.322,
1106
+ "step": 100000
1107
+ },
1108
+ {
1109
+ "_prepare_inputs_in_ms": 4.108485870245026,
1110
+ "compute_loss_in_ms": 267.23163178935647,
1111
+ "epoch": 41.75,
1112
+ "learning_rate/full": 0.00019748742092116103,
1113
+ "loss": 3.6364,
1114
+ "step": 101000,
1115
+ "training_step_in_ms": 962.6803079359233
1116
+ },
1117
+ {
1118
+ "_prepare_inputs_in_ms": 4.145125687122345,
1119
+ "compute_loss_in_ms": 267.68679490312934,
1120
+ "epoch": 42.17,
1121
+ "learning_rate/full": 0.00019434651534206603,
1122
+ "loss": 3.6315,
1123
+ "step": 102000,
1124
+ "training_step_in_ms": 964.9059623852372
1125
+ },
1126
+ {
1127
+ "_prepare_inputs_in_ms": 4.14092817902565,
1128
+ "compute_loss_in_ms": 268.40766886249185,
1129
+ "epoch": 42.58,
1130
+ "learning_rate/full": 0.00019120700467571537,
1131
+ "loss": 3.6249,
1132
+ "step": 103000,
1133
+ "training_step_in_ms": 968.5381288193166
1134
+ },
1135
+ {
1136
+ "_prepare_inputs_in_ms": 4.131742633879185,
1137
+ "compute_loss_in_ms": 267.6234121248126,
1138
+ "epoch": 42.99,
1139
+ "learning_rate/full": 0.00018806966354938863,
1140
+ "loss": 3.6302,
1141
+ "step": 104000,
1142
+ "training_step_in_ms": 965.0357882864773
1143
+ },
1144
+ {
1145
+ "_prepare_inputs_in_ms": 4.159636992961168,
1146
+ "compute_loss_in_ms": 268.2043272703886,
1147
+ "epoch": 43.41,
1148
+ "learning_rate/full": 0.0001849352660550636,
1149
+ "loss": 3.6221,
1150
+ "step": 105000,
1151
+ "training_step_in_ms": 966.8701088428497
1152
+ },
1153
+ {
1154
+ "epoch": 43.41,
1155
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.560976266860962,
1156
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2679473083105533,
1157
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.6952,
1158
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.166,
1159
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.318,
1160
+ "step": 105000
1161
+ },
1162
+ {
1163
+ "_prepare_inputs_in_ms": 4.1656713769203275,
1164
+ "compute_loss_in_ms": 267.7097022458911,
1165
+ "epoch": 43.82,
1166
+ "learning_rate/full": 0.00018180458555842107,
1167
+ "loss": 3.6281,
1168
+ "step": 106000,
1169
+ "training_step_in_ms": 960.9392982535064
1170
+ },
1171
+ {
1172
+ "_prepare_inputs_in_ms": 4.1548894718289375,
1173
+ "compute_loss_in_ms": 268.3351138718426,
1174
+ "epoch": 44.23,
1175
+ "learning_rate/full": 0.00017867839450802815,
1176
+ "loss": 3.6257,
1177
+ "step": 107000,
1178
+ "training_step_in_ms": 967.5997758358717
1179
+ },
1180
+ {
1181
+ "_prepare_inputs_in_ms": 4.136493876576424,
1182
+ "compute_loss_in_ms": 267.79356829449534,
1183
+ "epoch": 44.65,
1184
+ "learning_rate/full": 0.0001755574642447484,
1185
+ "loss": 3.6275,
1186
+ "step": 108000,
1187
+ "training_step_in_ms": 964.6688169278204
1188
+ },
1189
+ {
1190
+ "_prepare_inputs_in_ms": 4.146924342960119,
1191
+ "compute_loss_in_ms": 268.7044747136533,
1192
+ "epoch": 45.06,
1193
+ "learning_rate/full": 0.00017244256481142465,
1194
+ "loss": 3.6272,
1195
+ "step": 109000,
1196
+ "training_step_in_ms": 966.0691562928259
1197
+ },
1198
+ {
1199
+ "_prepare_inputs_in_ms": 4.129870388656855,
1200
+ "compute_loss_in_ms": 267.92700193077326,
1201
+ "epoch": 45.47,
1202
+ "learning_rate/full": 0.00016933446476288295,
1203
+ "loss": 3.6231,
1204
+ "step": 110000,
1205
+ "training_step_in_ms": 968.8978024721146
1206
+ },
1207
+ {
1208
+ "epoch": 45.47,
1209
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.557985544204712,
1210
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.26707363597972006,
1211
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.4146,
1212
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.334,
1213
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.323,
1214
+ "step": 110000
1215
+ },
1216
+ {
1217
+ "_prepare_inputs_in_ms": 4.14337538001014,
1218
+ "compute_loss_in_ms": 267.68642891570926,
1219
+ "epoch": 45.89,
1220
+ "learning_rate/full": 0.0001662308313853947,
1221
+ "loss": 3.6179,
1222
+ "step": 111000,
1223
+ "training_step_in_ms": 963.7148243077099
1224
+ },
1225
+ {
1226
+ "_prepare_inputs_in_ms": 4.14999657869339,
1227
+ "compute_loss_in_ms": 267.70868534594774,
1228
+ "epoch": 46.3,
1229
+ "learning_rate/full": 0.000163135546733723,
1230
+ "loss": 3.6124,
1231
+ "step": 112000,
1232
+ "training_step_in_ms": 967.6017691344023
1233
+ },
1234
+ {
1235
+ "_prepare_inputs_in_ms": 4.146619476377964,
1236
+ "compute_loss_in_ms": 268.191356562078,
1237
+ "epoch": 46.71,
1238
+ "learning_rate/full": 0.00016005245741683915,
1239
+ "loss": 3.62,
1240
+ "step": 113000,
1241
+ "training_step_in_ms": 966.300628580153
1242
+ },
1243
+ {
1244
+ "_prepare_inputs_in_ms": 4.153369773179293,
1245
+ "compute_loss_in_ms": 267.8536421582103,
1246
+ "epoch": 47.13,
1247
+ "learning_rate/full": 0.00015697922455833988,
1248
+ "loss": 3.6157,
1249
+ "step": 114000,
1250
+ "training_step_in_ms": 964.6176136285067
1251
+ },
1252
+ {
1253
+ "_prepare_inputs_in_ms": 4.187301464378834,
1254
+ "compute_loss_in_ms": 268.31423101201653,
1255
+ "epoch": 47.54,
1256
+ "learning_rate/full": 0.0001539166064324471,
1257
+ "loss": 3.6143,
1258
+ "step": 115000,
1259
+ "training_step_in_ms": 968.9795580692589
1260
+ },
1261
+ {
1262
+ "epoch": 47.54,
1263
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.556086778640747,
1264
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2680325079129448,
1265
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.6426,
1266
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.173,
1267
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.318,
1268
+ "step": 115000
1269
+ },
1270
+ {
1271
+ "_prepare_inputs_in_ms": 4.146232630421475,
1272
+ "compute_loss_in_ms": 267.5073589235544,
1273
+ "epoch": 47.95,
1274
+ "learning_rate/full": 0.00015086535869435647,
1275
+ "loss": 3.6143,
1276
+ "step": 116000,
1277
+ "training_step_in_ms": 961.0740608982742
1278
+ },
1279
+ {
1280
+ "_prepare_inputs_in_ms": 4.149144068360329,
1281
+ "compute_loss_in_ms": 268.67081797868013,
1282
+ "epoch": 48.37,
1283
+ "learning_rate/full": 0.00014782623419379065,
1284
+ "loss": 3.6076,
1285
+ "step": 117000,
1286
+ "training_step_in_ms": 968.1870553046465
1287
+ },
1288
+ {
1289
+ "_prepare_inputs_in_ms": 4.165053818374872,
1290
+ "compute_loss_in_ms": 267.5217378772795,
1291
+ "epoch": 48.78,
1292
+ "learning_rate/full": 0.00014479998278924466,
1293
+ "loss": 3.6033,
1294
+ "step": 118000,
1295
+ "training_step_in_ms": 964.0207477062941
1296
+ },
1297
+ {
1298
+ "_prepare_inputs_in_ms": 4.148088995367289,
1299
+ "compute_loss_in_ms": 267.9359416142106,
1300
+ "epoch": 49.19,
1301
+ "learning_rate/full": 0.00014178735116296984,
1302
+ "loss": 3.6099,
1303
+ "step": 119000,
1304
+ "training_step_in_ms": 965.35854877159
1305
+ },
1306
+ {
1307
+ "_prepare_inputs_in_ms": 4.147441305220127,
1308
+ "compute_loss_in_ms": 268.18652522563934,
1309
+ "epoch": 49.61,
1310
+ "learning_rate/full": 0.00013878908263674099,
1311
+ "loss": 3.6041,
1312
+ "step": 120000,
1313
+ "training_step_in_ms": 966.7598981000483
1314
+ },
1315
+ {
1316
+ "epoch": 49.61,
1317
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5552496910095215,
1318
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2690825925881079,
1319
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.206,
1320
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.362,
1321
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.324,
1322
+ "step": 120000
1323
+ },
1324
+ {
1325
+ "_prepare_inputs_in_ms": 4.151007533073425,
1326
+ "compute_loss_in_ms": 267.91314566135406,
1327
+ "epoch": 50.02,
1328
+ "learning_rate/full": 0.00013580293864950247,
1329
+ "loss": 3.6068,
1330
+ "step": 121000,
1331
+ "training_step_in_ms": 965.1756884045899
1332
+ },
1333
+ {
1334
+ "_prepare_inputs_in_ms": 4.154482748359442,
1335
+ "compute_loss_in_ms": 268.1262241154909,
1336
+ "epoch": 50.43,
1337
+ "learning_rate/full": 0.00013283562815289706,
1338
+ "loss": 3.5972,
1339
+ "step": 122000,
1340
+ "training_step_in_ms": 965.2079959511757
1341
+ },
1342
+ {
1343
+ "_prepare_inputs_in_ms": 4.1559099070727825,
1344
+ "compute_loss_in_ms": 267.7796282917261,
1345
+ "epoch": 50.85,
1346
+ "learning_rate/full": 0.0001298848894600429,
1347
+ "loss": 3.6031,
1348
+ "step": 123000,
1349
+ "training_step_in_ms": 966.0297281630337
1350
+ },
1351
+ {
1352
+ "_prepare_inputs_in_ms": 4.1683206632733345,
1353
+ "compute_loss_in_ms": 268.80906841158867,
1354
+ "epoch": 51.26,
1355
+ "learning_rate/full": 0.00012694852315582903,
1356
+ "loss": 3.5985,
1357
+ "step": 124000,
1358
+ "training_step_in_ms": 967.5091603025794
1359
+ },
1360
+ {
1361
+ "_prepare_inputs_in_ms": 4.137588050216436,
1362
+ "compute_loss_in_ms": 267.6871258877218,
1363
+ "epoch": 51.67,
1364
+ "learning_rate/full": 0.00012403603541958643,
1365
+ "loss": 3.6029,
1366
+ "step": 125000,
1367
+ "training_step_in_ms": 964.4286920540035
1368
+ },
1369
+ {
1370
+ "epoch": 51.67,
1371
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5499510765075684,
1372
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.268844144332836,
1373
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.7216,
1374
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.293,
1375
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.322,
1376
+ "step": 125000
1377
+ },
1378
+ {
1379
+ "_prepare_inputs_in_ms": 4.127907207826289,
1380
+ "compute_loss_in_ms": 267.8013560883701,
1381
+ "epoch": 52.09,
1382
+ "learning_rate/full": 0.00012113936318920029,
1383
+ "loss": 3.5962,
1384
+ "step": 126000,
1385
+ "training_step_in_ms": 962.9286280833185
1386
+ },
1387
+ {
1388
+ "_prepare_inputs_in_ms": 4.151306886225939,
1389
+ "compute_loss_in_ms": 267.83537547290325,
1390
+ "epoch": 52.5,
1391
+ "learning_rate/full": 0.00011825927853225391,
1392
+ "loss": 3.5974,
1393
+ "step": 127000,
1394
+ "training_step_in_ms": 967.7427954226732
1395
+ },
1396
+ {
1397
+ "_prepare_inputs_in_ms": 4.118186391890049,
1398
+ "compute_loss_in_ms": 268.2419737614691,
1399
+ "epoch": 52.91,
1400
+ "learning_rate/full": 0.00011540225211753402,
1401
+ "loss": 3.5979,
1402
+ "step": 128000,
1403
+ "training_step_in_ms": 963.5640154518187
1404
+ },
1405
+ {
1406
+ "_prepare_inputs_in_ms": 4.146437399089336,
1407
+ "compute_loss_in_ms": 267.88536206260324,
1408
+ "epoch": 53.33,
1409
+ "learning_rate/full": 0.00011256609893124084,
1410
+ "loss": 3.5919,
1411
+ "step": 129000,
1412
+ "training_step_in_ms": 965.4581209644675
1413
+ },
1414
+ {
1415
+ "_prepare_inputs_in_ms": 4.140674088150263,
1416
+ "compute_loss_in_ms": 267.7817959152162,
1417
+ "epoch": 53.74,
1418
+ "learning_rate/full": 0.00010975151875173475,
1419
+ "loss": 3.5954,
1420
+ "step": 130000,
1421
+ "training_step_in_ms": 967.2819016650319
1422
+ },
1423
+ {
1424
+ "epoch": 53.74,
1425
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5497984886169434,
1426
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.27146193885645503,
1427
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.8468,
1428
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.277,
1429
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.321,
1430
+ "step": 130000
1431
+ },
1432
+ {
1433
+ "_prepare_inputs_in_ms": 4.144404723149974,
1434
+ "compute_loss_in_ms": 267.8810519017279,
1435
+ "epoch": 54.15,
1436
+ "learning_rate/full": 0.00010695920603455975,
1437
+ "loss": 3.5914,
1438
+ "step": 131000,
1439
+ "training_step_in_ms": 962.7643201723695
1440
+ },
1441
+ {
1442
+ "_prepare_inputs_in_ms": 4.15174587816,
1443
+ "compute_loss_in_ms": 268.55379743501544,
1444
+ "epoch": 54.57,
1445
+ "learning_rate/full": 0.00010418984974109642,
1446
+ "loss": 3.5916,
1447
+ "step": 132000,
1448
+ "training_step_in_ms": 965.8136657737195
1449
+ },
1450
+ {
1451
+ "_prepare_inputs_in_ms": 4.164624106138945,
1452
+ "compute_loss_in_ms": 268.1068575233221,
1453
+ "epoch": 54.98,
1454
+ "learning_rate/full": 0.00010144413316857143,
1455
+ "loss": 3.5824,
1456
+ "step": 133000,
1457
+ "training_step_in_ms": 961.5831676833332
1458
+ },
1459
+ {
1460
+ "_prepare_inputs_in_ms": 4.1917338743805885,
1461
+ "compute_loss_in_ms": 268.29790291562676,
1462
+ "epoch": 55.39,
1463
+ "learning_rate/full": 9.872273378146393e-05,
1464
+ "loss": 3.5822,
1465
+ "step": 134000,
1466
+ "training_step_in_ms": 967.4604325480759
1467
+ },
1468
+ {
1469
+ "_prepare_inputs_in_ms": 4.154745582491159,
1470
+ "compute_loss_in_ms": 268.35503727942705,
1471
+ "epoch": 55.81,
1472
+ "learning_rate/full": 9.602632304435166e-05,
1473
+ "loss": 3.5837,
1474
+ "step": 135000,
1475
+ "training_step_in_ms": 963.2355434708297
1476
+ },
1477
+ {
1478
+ "epoch": 55.81,
1479
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5466184616088867,
1480
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2701472521164958,
1481
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.7707,
1482
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.287,
1483
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.321,
1484
+ "step": 135000
1485
+ },
1486
+ {
1487
+ "_prepare_inputs_in_ms": 4.1385579000159005,
1488
+ "compute_loss_in_ms": 268.1807456240058,
1489
+ "epoch": 56.22,
1490
+ "learning_rate/full": 9.335556625623667e-05,
1491
+ "loss": 3.5886,
1492
+ "step": 136000,
1493
+ "training_step_in_ms": 964.7279985249043
1494
+ },
1495
+ {
1496
+ "_prepare_inputs_in_ms": 4.140180014073849,
1497
+ "compute_loss_in_ms": 268.0731739960611,
1498
+ "epoch": 56.63,
1499
+ "learning_rate/full": 9.071112238639306e-05,
1500
+ "loss": 3.5841,
1501
+ "step": 137000,
1502
+ "training_step_in_ms": 964.2245756573975
1503
+ },
1504
+ {
1505
+ "_prepare_inputs_in_ms": 4.159709714353085,
1506
+ "compute_loss_in_ms": 268.24955869838595,
1507
+ "epoch": 57.05,
1508
+ "learning_rate/full": 8.809103753928327e-05,
1509
+ "loss": 3.5843,
1510
+ "step": 138000,
1511
+ "training_step_in_ms": 966.5491472817957
1512
+ },
1513
+ {
1514
+ "_prepare_inputs_in_ms": 4.165288005024195,
1515
+ "compute_loss_in_ms": 268.81143694743514,
1516
+ "epoch": 57.46,
1517
+ "learning_rate/full": 8.550119824369325e-05,
1518
+ "loss": 3.5867,
1519
+ "step": 139000,
1520
+ "training_step_in_ms": 964.0126786530018
1521
+ },
1522
+ {
1523
+ "_prepare_inputs_in_ms": 4.144395582377911,
1524
+ "compute_loss_in_ms": 268.206242531538,
1525
+ "epoch": 57.88,
1526
+ "learning_rate/full": 8.29370600270935e-05,
1527
+ "loss": 3.5852,
1528
+ "step": 140000,
1529
+ "training_step_in_ms": 962.685001052916
1530
+ },
1531
+ {
1532
+ "epoch": 57.88,
1533
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5455029010772705,
1534
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2711795494440531,
1535
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.9766,
1536
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.259,
1537
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.321,
1538
+ "step": 140000
1539
+ },
1540
+ {
1541
+ "_prepare_inputs_in_ms": 4.152141958475113,
1542
+ "compute_loss_in_ms": 267.9933222196996,
1543
+ "epoch": 58.29,
1544
+ "learning_rate/full": 8.040438372331344e-05,
1545
+ "loss": 3.5737,
1546
+ "step": 141000,
1547
+ "training_step_in_ms": 965.1287141442299
1548
+ },
1549
+ {
1550
+ "_prepare_inputs_in_ms": 4.142403397709131,
1551
+ "compute_loss_in_ms": 267.5065658353269,
1552
+ "epoch": 58.7,
1553
+ "learning_rate/full": 7.790121584830201e-05,
1554
+ "loss": 3.575,
1555
+ "step": 142000,
1556
+ "training_step_in_ms": 962.7664158046246
1557
+ },
1558
+ {
1559
+ "_prepare_inputs_in_ms": 4.150233589112759,
1560
+ "compute_loss_in_ms": 268.65408623218536,
1561
+ "epoch": 59.12,
1562
+ "learning_rate/full": 7.542817402127658e-05,
1563
+ "loss": 3.5709,
1564
+ "step": 143000,
1565
+ "training_step_in_ms": 964.2099178209901
1566
+ },
1567
+ {
1568
+ "_prepare_inputs_in_ms": 4.130799826234579,
1569
+ "compute_loss_in_ms": 267.8640896603465,
1570
+ "epoch": 59.53,
1571
+ "learning_rate/full": 7.298586842830323e-05,
1572
+ "loss": 3.5775,
1573
+ "step": 144000,
1574
+ "training_step_in_ms": 964.5784216374159
1575
+ },
1576
+ {
1577
+ "_prepare_inputs_in_ms": 4.146471511572599,
1578
+ "compute_loss_in_ms": 268.14434216171503,
1579
+ "epoch": 59.94,
1580
+ "learning_rate/full": 7.057490167174197e-05,
1581
+ "loss": 3.5781,
1582
+ "step": 145000,
1583
+ "training_step_in_ms": 964.2295859828591
1584
+ },
1585
+ {
1586
+ "epoch": 59.94,
1587
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5419652462005615,
1588
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2710637844956296,
1589
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.2475,
1590
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.224,
1591
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.319,
1592
+ "step": 145000
1593
+ },
1594
+ {
1595
+ "_prepare_inputs_in_ms": 4.13495619122575,
1596
+ "compute_loss_in_ms": 267.6772438697517,
1597
+ "epoch": 60.36,
1598
+ "learning_rate/full": 6.819586862156388e-05,
1599
+ "loss": 3.5713,
1600
+ "step": 146000,
1601
+ "training_step_in_ms": 963.0674764961004
1602
+ },
1603
+ {
1604
+ "_prepare_inputs_in_ms": 4.138938769698143,
1605
+ "compute_loss_in_ms": 268.4652929417789,
1606
+ "epoch": 60.77,
1607
+ "learning_rate/full": 6.58493562685758e-05,
1608
+ "loss": 3.5755,
1609
+ "step": 147000,
1610
+ "training_step_in_ms": 965.1382315270603
1611
+ },
1612
+ {
1613
+ "_prepare_inputs_in_ms": 4.149636901915073,
1614
+ "compute_loss_in_ms": 268.6144716888666,
1615
+ "epoch": 61.18,
1616
+ "learning_rate/full": 6.35336446255852e-05,
1617
+ "loss": 3.5689,
1618
+ "step": 148000,
1619
+ "training_step_in_ms": 967.6213804855943
1620
+ },
1621
+ {
1622
+ "_prepare_inputs_in_ms": 4.154591448605061,
1623
+ "compute_loss_in_ms": 268.10440719127655,
1624
+ "epoch": 61.6,
1625
+ "learning_rate/full": 6.125393638794017e-05,
1626
+ "loss": 3.5736,
1627
+ "step": 149000,
1628
+ "training_step_in_ms": 966.7320594601333
1629
+ },
1630
+ {
1631
+ "_prepare_inputs_in_ms": 4.149040505290031,
1632
+ "compute_loss_in_ms": 268.75643199309707,
1633
+ "epoch": 62.01,
1634
+ "learning_rate/full": 5.900623127984053e-05,
1635
+ "loss": 3.57,
1636
+ "step": 150000,
1637
+ "training_step_in_ms": 965.394243825227
1638
+ },
1639
+ {
1640
+ "epoch": 62.01,
1641
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.542189359664917,
1642
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.27182213175584513,
1643
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.2758,
1644
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.22,
1645
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.319,
1646
+ "step": 150000
1647
+ },
1648
+ {
1649
+ "_prepare_inputs_in_ms": 4.197841770038372,
1650
+ "compute_loss_in_ms": 268.5856811106205,
1651
+ "epoch": 62.42,
1652
+ "learning_rate/full": 5.6795579206763614e-05,
1653
+ "loss": 3.5655,
1654
+ "step": 151000,
1655
+ "training_step_in_ms": 963.427967004478
1656
+ },
1657
+ {
1658
+ "_prepare_inputs_in_ms": 4.1404072009027,
1659
+ "compute_loss_in_ms": 267.94744442403316,
1660
+ "epoch": 62.84,
1661
+ "learning_rate/full": 5.462026068170363e-05,
1662
+ "loss": 3.5665,
1663
+ "step": 152000,
1664
+ "training_step_in_ms": 965.5440159775317
1665
+ },
1666
+ {
1667
+ "_prepare_inputs_in_ms": 4.148986879736185,
1668
+ "compute_loss_in_ms": 268.1357101947069,
1669
+ "epoch": 63.25,
1670
+ "learning_rate/full": 5.247868899032384e-05,
1671
+ "loss": 3.5648,
1672
+ "step": 153000,
1673
+ "training_step_in_ms": 965.260343439877
1674
+ },
1675
+ {
1676
+ "_prepare_inputs_in_ms": 4.144355583935976,
1677
+ "compute_loss_in_ms": 268.8695700503886,
1678
+ "epoch": 63.66,
1679
+ "learning_rate/full": 5.0375675588795876e-05,
1680
+ "loss": 3.5699,
1681
+ "step": 154000,
1682
+ "training_step_in_ms": 968.1045257672668
1683
+ },
1684
+ {
1685
+ "_prepare_inputs_in_ms": 4.134350396692753,
1686
+ "compute_loss_in_ms": 267.78631913661957,
1687
+ "epoch": 64.08,
1688
+ "learning_rate/full": 4.830957975043959e-05,
1689
+ "loss": 3.5654,
1690
+ "step": 155000,
1691
+ "training_step_in_ms": 965.367557708174
1692
+ },
1693
+ {
1694
+ "epoch": 64.08,
1695
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5409913063049316,
1696
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.273054083346476,
1697
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.4578,
1698
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.197,
1699
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.319,
1700
+ "step": 155000
1701
+ },
1702
+ {
1703
+ "_prepare_inputs_in_ms": 4.169517766411712,
1704
+ "compute_loss_in_ms": 267.94907980412245,
1705
+ "epoch": 64.49,
1706
+ "learning_rate/full": 4.628091125348743e-05,
1707
+ "loss": 3.562,
1708
+ "step": 156000,
1709
+ "training_step_in_ms": 964.7187770940363
1710
+ },
1711
+ {
1712
+ "_prepare_inputs_in_ms": 4.127725187689066,
1713
+ "compute_loss_in_ms": 267.56007508188486,
1714
+ "epoch": 64.9,
1715
+ "learning_rate/full": 4.429017064153536e-05,
1716
+ "loss": 3.5599,
1717
+ "step": 157000,
1718
+ "training_step_in_ms": 961.402901135385
1719
+ },
1720
+ {
1721
+ "_prepare_inputs_in_ms": 4.122306831181049,
1722
+ "compute_loss_in_ms": 268.3586079515517,
1723
+ "epoch": 65.32,
1724
+ "learning_rate/full": 4.233784910004124e-05,
1725
+ "loss": 3.5666,
1726
+ "step": 158000,
1727
+ "training_step_in_ms": 965.8669985719025
1728
+ },
1729
+ {
1730
+ "_prepare_inputs_in_ms": 4.136414989829063,
1731
+ "compute_loss_in_ms": 267.9736096225679,
1732
+ "epoch": 65.73,
1733
+ "learning_rate/full": 4.0424428335132335e-05,
1734
+ "loss": 3.5573,
1735
+ "step": 159000,
1736
+ "training_step_in_ms": 965.0534134693444
1737
+ },
1738
+ {
1739
+ "_prepare_inputs_in_ms": 4.14548010751605,
1740
+ "compute_loss_in_ms": 268.10164315626025,
1741
+ "epoch": 66.14,
1742
+ "learning_rate/full": 3.855038045475119e-05,
1743
+ "loss": 3.5569,
1744
+ "step": 160000,
1745
+ "training_step_in_ms": 965.0257755257189
1746
+ },
1747
+ {
1748
+ "epoch": 66.14,
1749
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.540762424468994,
1750
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2735980306318844,
1751
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.6347,
1752
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.305,
1753
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.322,
1754
+ "step": 160000
1755
+ },
1756
+ {
1757
+ "_prepare_inputs_in_ms": 4.134731147347427,
1758
+ "compute_loss_in_ms": 268.0676885545254,
1759
+ "epoch": 66.56,
1760
+ "learning_rate/full": 3.671616785217033e-05,
1761
+ "loss": 3.559,
1762
+ "step": 161000,
1763
+ "training_step_in_ms": 961.5968884006143
1764
+ },
1765
+ {
1766
+ "_prepare_inputs_in_ms": 4.13828482478857,
1767
+ "compute_loss_in_ms": 268.11520731821656,
1768
+ "epoch": 66.97,
1769
+ "learning_rate/full": 3.4920467704438286e-05,
1770
+ "loss": 3.5617,
1771
+ "step": 162000,
1772
+ "training_step_in_ms": 963.3356633149087
1773
+ },
1774
+ {
1775
+ "_prepare_inputs_in_ms": 4.1371137127280235,
1776
+ "compute_loss_in_ms": 267.97775723040104,
1777
+ "epoch": 67.38,
1778
+ "learning_rate/full": 3.3169048798042254e-05,
1779
+ "loss": 3.5629,
1780
+ "step": 163000,
1781
+ "training_step_in_ms": 964.7222346775234
1782
+ },
1783
+ {
1784
+ "_prepare_inputs_in_ms": 4.129249203950167,
1785
+ "compute_loss_in_ms": 267.63603001460433,
1786
+ "epoch": 67.8,
1787
+ "learning_rate/full": 3.145532456480391e-05,
1788
+ "loss": 3.5596,
1789
+ "step": 164000,
1790
+ "training_step_in_ms": 964.5063005648553
1791
+ },
1792
+ {
1793
+ "_prepare_inputs_in_ms": 4.151564922183752,
1794
+ "compute_loss_in_ms": 268.839259788394,
1795
+ "epoch": 68.21,
1796
+ "learning_rate/full": 2.9784920606062528e-05,
1797
+ "loss": 3.5602,
1798
+ "step": 165000,
1799
+ "training_step_in_ms": 972.3141440451145
1800
+ },
1801
+ {
1802
+ "epoch": 68.21,
1803
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.539008855819702,
1804
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2725576622048259,
1805
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.4123,
1806
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.202,
1807
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.319,
1808
+ "step": 165000
1809
+ },
1810
+ {
1811
+ "_prepare_inputs_in_ms": 4.126259837208725,
1812
+ "compute_loss_in_ms": 267.8272004313767,
1813
+ "epoch": 68.62,
1814
+ "learning_rate/full": 2.8156514671178745e-05,
1815
+ "loss": 3.5603,
1816
+ "step": 166000,
1817
+ "training_step_in_ms": 964.2809295020998
1818
+ },
1819
+ {
1820
+ "_prepare_inputs_in_ms": 4.134287599474192,
1821
+ "compute_loss_in_ms": 267.94721764326096,
1822
+ "epoch": 69.04,
1823
+ "learning_rate/full": 2.65705085449506e-05,
1824
+ "loss": 3.5591,
1825
+ "step": 167000,
1826
+ "training_step_in_ms": 963.7021813839674
1827
+ },
1828
+ {
1829
+ "_prepare_inputs_in_ms": 4.147611241787672,
1830
+ "compute_loss_in_ms": 268.29229406639934,
1831
+ "epoch": 69.45,
1832
+ "learning_rate/full": 2.5025770357450595e-05,
1833
+ "loss": 3.5561,
1834
+ "step": 168000,
1835
+ "training_step_in_ms": 967.2244190610945
1836
+ },
1837
+ {
1838
+ "_prepare_inputs_in_ms": 4.15412675216794,
1839
+ "compute_loss_in_ms": 268.25271063297987,
1840
+ "epoch": 69.86,
1841
+ "learning_rate/full": 2.352577066262569e-05,
1842
+ "loss": 3.5576,
1843
+ "step": 169000,
1844
+ "training_step_in_ms": 965.3532739318907
1845
+ },
1846
+ {
1847
+ "_prepare_inputs_in_ms": 4.129838448017836,
1848
+ "compute_loss_in_ms": 267.92896181344986,
1849
+ "epoch": 70.28,
1850
+ "learning_rate/full": 2.206931334324922e-05,
1851
+ "loss": 3.5536,
1852
+ "step": 170000,
1853
+ "training_step_in_ms": 965.5082765445113
1854
+ },
1855
+ {
1856
+ "epoch": 70.28,
1857
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5376806259155273,
1858
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2738309179784362,
1859
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 77.9139,
1860
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.268,
1861
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.321,
1862
+ "step": 170000
1863
+ },
1864
+ {
1865
+ "_prepare_inputs_in_ms": 4.163786387298165,
1866
+ "compute_loss_in_ms": 267.95297726243734,
1867
+ "epoch": 70.69,
1868
+ "learning_rate/full": 2.0656757758371282e-05,
1869
+ "loss": 3.5571,
1870
+ "step": 171000,
1871
+ "training_step_in_ms": 960.7510039620101
1872
+ },
1873
+ {
1874
+ "_prepare_inputs_in_ms": 4.137572426348925,
1875
+ "compute_loss_in_ms": 267.8121683038771,
1876
+ "epoch": 71.1,
1877
+ "learning_rate/full": 1.9287105043128472e-05,
1878
+ "loss": 3.555,
1879
+ "step": 172000,
1880
+ "training_step_in_ms": 963.8648240976036
1881
+ },
1882
+ {
1883
+ "_prepare_inputs_in_ms": 4.139789171516895,
1884
+ "compute_loss_in_ms": 268.3458735384047,
1885
+ "epoch": 71.52,
1886
+ "learning_rate/full": 1.796343238799574e-05,
1887
+ "loss": 3.5518,
1888
+ "step": 173000,
1889
+ "training_step_in_ms": 965.790959071368
1890
+ },
1891
+ {
1892
+ "_prepare_inputs_in_ms": 4.144272416830063,
1893
+ "compute_loss_in_ms": 268.10323084518313,
1894
+ "epoch": 71.93,
1895
+ "learning_rate/full": 1.6684674532049582e-05,
1896
+ "loss": 3.5512,
1897
+ "step": 174000,
1898
+ "training_step_in_ms": 961.3717007525265
1899
+ },
1900
+ {
1901
+ "_prepare_inputs_in_ms": 4.1666854321956635,
1902
+ "compute_loss_in_ms": 268.03433157876134,
1903
+ "epoch": 72.34,
1904
+ "learning_rate/full": 1.5451146989656617e-05,
1905
+ "loss": 3.5495,
1906
+ "step": 175000,
1907
+ "training_step_in_ms": 967.3243609592319
1908
+ },
1909
+ {
1910
+ "epoch": 72.34,
1911
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.536776065826416,
1912
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2743759293675203,
1913
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.6158,
1914
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.176,
1915
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.318,
1916
+ "step": 175000
1917
+ },
1918
+ {
1919
+ "_prepare_inputs_in_ms": 4.134207051701662,
1920
+ "compute_loss_in_ms": 267.52714550867677,
1921
+ "epoch": 72.76,
1922
+ "learning_rate/full": 1.4261987845053304e-05,
1923
+ "loss": 3.5555,
1924
+ "step": 176000,
1925
+ "training_step_in_ms": 962.5389591343701
1926
+ },
1927
+ {
1928
+ "_prepare_inputs_in_ms": 4.146069306880236,
1929
+ "compute_loss_in_ms": 268.7413688749075,
1930
+ "epoch": 73.17,
1931
+ "learning_rate/full": 1.3119868774900613e-05,
1932
+ "loss": 3.5512,
1933
+ "step": 177000,
1934
+ "training_step_in_ms": 964.9299626871943
1935
+ },
1936
+ {
1937
+ "_prepare_inputs_in_ms": 4.148835156112909,
1938
+ "compute_loss_in_ms": 268.0495460778475,
1939
+ "epoch": 73.58,
1940
+ "learning_rate/full": 1.2023859580780273e-05,
1941
+ "loss": 3.5529,
1942
+ "step": 178000,
1943
+ "training_step_in_ms": 967.7268707863986
1944
+ },
1945
+ {
1946
+ "_prepare_inputs_in_ms": 4.1666895635426044,
1947
+ "compute_loss_in_ms": 268.2634797357023,
1948
+ "epoch": 74.0,
1949
+ "learning_rate/full": 1.0973203331088377e-05,
1950
+ "loss": 3.5538,
1951
+ "step": 179000,
1952
+ "training_step_in_ms": 965.1008929647505
1953
+ },
1954
+ {
1955
+ "_prepare_inputs_in_ms": 4.153850518167019,
1956
+ "compute_loss_in_ms": 268.7998457066715,
1957
+ "epoch": 74.41,
1958
+ "learning_rate/full": 9.970260528869224e-06,
1959
+ "loss": 3.5524,
1960
+ "step": 180000,
1961
+ "training_step_in_ms": 968.3517145328224
1962
+ },
1963
+ {
1964
+ "epoch": 74.41,
1965
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.536918878555298,
1966
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2735705193198496,
1967
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.7713,
1968
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.156,
1969
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.317,
1970
+ "step": 180000
1971
+ },
1972
+ {
1973
+ "_prepare_inputs_in_ms": 4.127806843054004,
1974
+ "compute_loss_in_ms": 268.1048993989825,
1975
+ "epoch": 74.82,
1976
+ "learning_rate/full": 9.01420472138852e-06,
1977
+ "loss": 3.5468,
1978
+ "step": 181000,
1979
+ "training_step_in_ms": 960.1139997318387
1980
+ },
1981
+ {
1982
+ "_prepare_inputs_in_ms": 4.13564395532012,
1983
+ "compute_loss_in_ms": 267.3685629181564,
1984
+ "epoch": 75.24,
1985
+ "learning_rate/full": 8.105271801111003e-06,
1986
+ "loss": 3.552,
1987
+ "step": 182000,
1988
+ "training_step_in_ms": 964.2471651136875
1989
+ },
1990
+ {
1991
+ "_prepare_inputs_in_ms": 4.140480011701584,
1992
+ "compute_loss_in_ms": 267.48710445687175,
1993
+ "epoch": 75.65,
1994
+ "learning_rate/full": 7.243686033634145e-06,
1995
+ "loss": 3.5473,
1996
+ "step": 183000,
1997
+ "training_step_in_ms": 966.0506127551198
1998
+ },
1999
+ {
2000
+ "_prepare_inputs_in_ms": 4.12862478941679,
2001
+ "compute_loss_in_ms": 268.38187746331096,
2002
+ "epoch": 76.06,
2003
+ "learning_rate/full": 6.429660002353832e-06,
2004
+ "loss": 3.5535,
2005
+ "step": 184000,
2006
+ "training_step_in_ms": 963.8830341026187
2007
+ },
2008
+ {
2009
+ "_prepare_inputs_in_ms": 4.138918172568083,
2010
+ "compute_loss_in_ms": 267.91103532910347,
2011
+ "epoch": 76.48,
2012
+ "learning_rate/full": 5.663394556012769e-06,
2013
+ "loss": 3.5489,
2014
+ "step": 185000,
2015
+ "training_step_in_ms": 969.0565127506852
2016
+ },
2017
+ {
2018
+ "epoch": 76.48,
2019
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5358800888061523,
2020
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2731816800574383,
2021
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.2007,
2022
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.23,
2023
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.32,
2024
+ "step": 185000
2025
+ },
2026
+ {
2027
+ "_prepare_inputs_in_ms": 4.125211863982968,
2028
+ "compute_loss_in_ms": 267.94072189182043,
2029
+ "epoch": 76.89,
2030
+ "learning_rate/full": 4.944383807374142e-06,
2031
+ "loss": 3.5495,
2032
+ "step": 186000,
2033
+ "training_step_in_ms": 963.789376296103
2034
+ },
2035
+ {
2036
+ "_prepare_inputs_in_ms": 4.155690658837557,
2037
+ "compute_loss_in_ms": 267.86934616044164,
2038
+ "epoch": 77.3,
2039
+ "learning_rate/full": 4.273596510048239e-06,
2040
+ "loss": 3.5465,
2041
+ "step": 187000,
2042
+ "training_step_in_ms": 966.8210936710238
2043
+ },
2044
+ {
2045
+ "_prepare_inputs_in_ms": 4.130576055496931,
2046
+ "compute_loss_in_ms": 268.2106507457793,
2047
+ "epoch": 77.72,
2048
+ "learning_rate/full": 3.6517966776118407e-06,
2049
+ "loss": 3.5445,
2050
+ "step": 188000,
2051
+ "training_step_in_ms": 966.5816915780306
2052
+ },
2053
+ {
2054
+ "_prepare_inputs_in_ms": 4.133735220879316,
2055
+ "compute_loss_in_ms": 267.8969533368945,
2056
+ "epoch": 78.13,
2057
+ "learning_rate/full": 3.0789924830065154e-06,
2058
+ "loss": 3.5528,
2059
+ "step": 189000,
2060
+ "training_step_in_ms": 964.6940425820649
2061
+ },
2062
+ {
2063
+ "_prepare_inputs_in_ms": 4.137146957218647,
2064
+ "compute_loss_in_ms": 267.9762873612344,
2065
+ "epoch": 78.54,
2066
+ "learning_rate/full": 2.5536764226682607e-06,
2067
+ "loss": 3.5458,
2068
+ "step": 190000,
2069
+ "training_step_in_ms": 966.734307706356
2070
+ },
2071
+ {
2072
+ "epoch": 78.54,
2073
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5369150638580322,
2074
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.272921503437743,
2075
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 79.0337,
2076
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.122,
2077
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.316,
2078
+ "step": 190000
2079
+ },
2080
+ {
2081
+ "_prepare_inputs_in_ms": 4.113826969774758,
2082
+ "compute_loss_in_ms": 267.3543768711388,
2083
+ "epoch": 78.96,
2084
+ "learning_rate/full": 2.077174866407172e-06,
2085
+ "loss": 3.5455,
2086
+ "step": 191000,
2087
+ "training_step_in_ms": 959.5898663066328
2088
+ },
2089
+ {
2090
+ "_prepare_inputs_in_ms": 4.15868678689003,
2091
+ "compute_loss_in_ms": 268.5514197871089,
2092
+ "epoch": 79.37,
2093
+ "learning_rate/full": 1.650411851111966e-06,
2094
+ "loss": 3.5422,
2095
+ "step": 192000,
2096
+ "training_step_in_ms": 966.848380189389
2097
+ },
2098
+ {
2099
+ "_prepare_inputs_in_ms": 4.152705859392881,
2100
+ "compute_loss_in_ms": 267.7775506339967,
2101
+ "epoch": 79.79,
2102
+ "learning_rate/full": 1.2717824473816864e-06,
2103
+ "loss": 3.5542,
2104
+ "step": 193000,
2105
+ "training_step_in_ms": 966.0438013672829
2106
+ },
2107
+ {
2108
+ "_prepare_inputs_in_ms": 4.149454560130835,
2109
+ "compute_loss_in_ms": 268.18433906137943,
2110
+ "epoch": 80.2,
2111
+ "learning_rate/full": 9.425893981038769e-07,
2112
+ "loss": 3.5513,
2113
+ "step": 194000,
2114
+ "training_step_in_ms": 968.7132156044245
2115
+ },
2116
+ {
2117
+ "_prepare_inputs_in_ms": 4.145272459834814,
2118
+ "compute_loss_in_ms": 269.00753265991807,
2119
+ "epoch": 80.61,
2120
+ "learning_rate/full": 6.625107863321489e-07,
2121
+ "loss": 3.5423,
2122
+ "step": 195000,
2123
+ "training_step_in_ms": 966.2778741791844
2124
+ },
2125
+ {
2126
+ "epoch": 80.61,
2127
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5363166332244873,
2128
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2732828183368321,
2129
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.105,
2130
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.243,
2131
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.32,
2132
+ "step": 195000
2133
+ },
2134
+ {
2135
+ "_prepare_inputs_in_ms": 4.114095866680145,
2136
+ "compute_loss_in_ms": 267.9977478161454,
2137
+ "epoch": 81.03,
2138
+ "learning_rate/full": 4.3161571727299287e-07,
2139
+ "loss": 3.5457,
2140
+ "step": 196000,
2141
+ "training_step_in_ms": 963.1876187734306
2142
+ },
2143
+ {
2144
+ "_prepare_inputs_in_ms": 4.132705166935921,
2145
+ "compute_loss_in_ms": 268.0948423668742,
2146
+ "epoch": 81.44,
2147
+ "learning_rate/full": 2.4980400999989885e-07,
2148
+ "loss": 3.5462,
2149
+ "step": 197000,
2150
+ "training_step_in_ms": 967.0936130546033
2151
+ },
2152
+ {
2153
+ "_prepare_inputs_in_ms": 4.152493238449097,
2154
+ "compute_loss_in_ms": 268.8196250721812,
2155
+ "epoch": 81.85,
2156
+ "learning_rate/full": 1.174841397763915e-07,
2157
+ "loss": 3.5462,
2158
+ "step": 198000,
2159
+ "training_step_in_ms": 964.0161675550044
2160
+ },
2161
+ {
2162
+ "_prepare_inputs_in_ms": 4.15958097204566,
2163
+ "compute_loss_in_ms": 268.9542033970356,
2164
+ "epoch": 82.27,
2165
+ "learning_rate/full": 3.4482289435100457e-08,
2166
+ "loss": 3.5489,
2167
+ "step": 199000,
2168
+ "training_step_in_ms": 964.1794747672975
2169
+ },
2170
+ {
2171
+ "_prepare_inputs_in_ms": 4.161274570971727,
2172
+ "compute_loss_in_ms": 268.2289356328547,
2173
+ "epoch": 82.68,
2174
+ "learning_rate/full": 8.099638465708381e-10,
2175
+ "loss": 3.5503,
2176
+ "step": 200000,
2177
+ "training_step_in_ms": 966.4167955368757
2178
+ },
2179
+ {
2180
+ "epoch": 82.68,
2181
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.5363588333129883,
2182
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.27337310510486335,
2183
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 78.3968,
2184
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 10.204,
2185
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.319,
2186
+ "step": 200000
2187
+ }
2188
+ ],
2189
+ "max_steps": 200000,
2190
+ "num_train_epochs": 83,
2191
+ "total_flos": 1.6535680980503157e+23,
2192
+ "trial_name": null,
2193
+ "trial_params": null
2194
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0618515c8c1141dab007214e96ce45520da8c933c71b54ce4d7360861a6948fb
3
+ size 5240
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)