xmcmic commited on
Commit
fbbdfec
1 Parent(s): eccd7f9

Upload 9 files

Browse files
VQA_lora_PMC_LLaMA_PMCCLIP/choice/checkpoint-4000/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9f94005d3f79b89eec6fd15e3a4b3660bd0723d1f309b288357f1e88d33d4ab
3
+ size 13765332257
VQA_lora_PMC_LLaMA_PMCCLIP/choice/checkpoint-4000/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:413c8fcdeb221e3413fba23311ad1feebf4c9ffb53a5ab84c5a88fc97284e716
3
+ size 14647
VQA_lora_PMC_LLaMA_PMCCLIP/choice/checkpoint-4000/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9f295736badc0da2030a03931137da3a15d2b35e71721ff2ef34991ad13f2db
3
+ size 14647
VQA_lora_PMC_LLaMA_PMCCLIP/choice/checkpoint-4000/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f98a431b0752bfd3bf6678ea1a53b0347560957b988fc9bd31d7ee7cb8827204
3
+ size 14647
VQA_lora_PMC_LLaMA_PMCCLIP/choice/checkpoint-4000/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaa202604b781603eab8cf2f3cf26bc10a21115d5c9ee0ac78e44730b3836a6c
3
+ size 14647
VQA_lora_PMC_LLaMA_PMCCLIP/choice/checkpoint-4000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
VQA_lora_PMC_LLaMA_PMCCLIP/choice/checkpoint-4000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:873d50ae33c54005af2769e0ec203bdfb2b6fb6f3ae922a3be896ff76b6b953a
3
+ size 4667
VQA_lora_PMC_LLaMA_PMCCLIP/choice/checkpoint-4000/zero_to_fp32.py ADDED
@@ -0,0 +1,432 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
7
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
8
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
9
+ # application.
10
+ #
11
+ # example: python zero_to_fp32.py . pytorch_model.bin
12
+
13
+ import argparse
14
+ import torch
15
+ import glob
16
+ import math
17
+ import os
18
+ import re
19
+ from collections import OrderedDict
20
+
21
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
22
+ # DeepSpeed data structures it has to be available in the current python environment.
23
+ from deepspeed.utils import logger
24
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
25
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES)
26
+
27
+ debug = 0
28
+
29
+ # load to cpu
30
+ device = torch.device('cpu')
31
+
32
+
33
+ def atoi(text):
34
+ return int(text) if text.isdigit() else text
35
+
36
+
37
+ def natural_keys(text):
38
+ '''
39
+ alist.sort(key=natural_keys) sorts in human order
40
+ http://nedbatchelder.com/blog/200712/human_sorting.html
41
+ (See Toothy's implementation in the comments)
42
+ '''
43
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
44
+
45
+
46
+ def get_model_state_file(checkpoint_dir, zero_stage):
47
+ if not os.path.isdir(checkpoint_dir):
48
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
49
+
50
+ # there should be only one file
51
+ if zero_stage == 2:
52
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
53
+ elif zero_stage == 3:
54
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
55
+
56
+ if not os.path.exists(file):
57
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
58
+
59
+ return file
60
+
61
+
62
+ def get_optim_files(checkpoint_dir):
63
+ # XXX: need to test that this simple glob rule works for multi-node setup too
64
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir, "*_optim_states.pt")), key=natural_keys)
65
+
66
+ if len(optim_files) == 0:
67
+ raise FileNotFoundError(f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
68
+
69
+ return optim_files
70
+
71
+
72
+ def parse_model_state(file):
73
+ state_dict = torch.load(file, map_location=device)
74
+
75
+ if BUFFER_NAMES not in state_dict:
76
+ raise ValueError(f"{file} is not a model state checkpoint")
77
+ buffer_names = state_dict[BUFFER_NAMES]
78
+ if debug:
79
+ print("Found buffers:", buffer_names)
80
+
81
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
82
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
83
+ param_shapes = state_dict[PARAM_SHAPES]
84
+
85
+ ds_version = state_dict.get(DS_VERSION, None)
86
+
87
+ return buffers, param_shapes, ds_version
88
+
89
+
90
+ def parse_optim_states(files, ds_checkpoint_dir):
91
+
92
+ total_files = len(files)
93
+ state_dicts = []
94
+ for f in files:
95
+ state_dicts.append(torch.load(f, map_location=device))
96
+
97
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
98
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
99
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
100
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
101
+
102
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
103
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
104
+ # use the max of the partition_count to get the dp world_size.
105
+
106
+ if type(world_size) is list:
107
+ world_size = max(world_size)
108
+
109
+ if world_size != total_files:
110
+ raise ValueError(
111
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
112
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
113
+ )
114
+
115
+ # the groups are named differently in each stage
116
+ if zero_stage == 2:
117
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
118
+ elif zero_stage == 3:
119
+ fp32_groups_key = FP32_FLAT_GROUPS
120
+ else:
121
+ raise ValueError(f"unknown zero stage {zero_stage}")
122
+
123
+ if zero_stage == 2:
124
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
125
+ elif zero_stage == 3:
126
+ # if there is more than one param group, there will be multiple flattened tensors - one
127
+ # flattened tensor per group - for simplicity merge them into a single tensor
128
+ #
129
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
130
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
131
+
132
+ fp32_flat_groups = [
133
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
134
+ ]
135
+
136
+ return zero_stage, world_size, fp32_flat_groups
137
+
138
+
139
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
140
+ """
141
+ Returns fp32 state_dict reconstructed from ds checkpoint
142
+
143
+ Args:
144
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
145
+
146
+ """
147
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
148
+
149
+ optim_files = get_optim_files(ds_checkpoint_dir)
150
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
151
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
152
+
153
+ model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
154
+ buffers, param_shapes, ds_version = parse_model_state(model_file)
155
+ print(f'Parsing checkpoint created by deepspeed=={ds_version}')
156
+
157
+ if zero_stage == 2:
158
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, param_shapes, fp32_flat_groups, buffers)
159
+ elif zero_stage == 3:
160
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, param_shapes, fp32_flat_groups, buffers)
161
+
162
+
163
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, param_shapes, fp32_flat_groups, buffers):
164
+
165
+ # Reconstruction protocol:
166
+ #
167
+ # XXX: document this
168
+
169
+ if debug:
170
+ for i in range(world_size):
171
+ for j in range(len(fp32_flat_groups[0])):
172
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
173
+
174
+ # XXX: memory usage doubles here (zero2)
175
+ num_param_groups = len(fp32_flat_groups[0])
176
+ merged_single_partition_of_fp32_groups = []
177
+ for i in range(num_param_groups):
178
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
179
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
180
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
181
+ avail_numel = sum(
182
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
183
+
184
+ if debug:
185
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
186
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
187
+ # not asserting if there is a mismatch due to possible padding
188
+ print(f"Have {avail_numel} numels to process.")
189
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
190
+
191
+ state_dict = OrderedDict()
192
+
193
+ # buffers
194
+ state_dict.update(buffers)
195
+ if debug:
196
+ print(f"added {len(buffers)} buffers")
197
+
198
+ # params
199
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
200
+ # out-of-core computing solution
201
+ total_numel = 0
202
+ total_params = 0
203
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
204
+ offset = 0
205
+ avail_numel = full_single_fp32_vector.numel()
206
+ for name, shape in shapes.items():
207
+
208
+ unpartitioned_numel = shape.numel()
209
+ total_numel += unpartitioned_numel
210
+ total_params += 1
211
+
212
+ if debug:
213
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
214
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
215
+ offset += unpartitioned_numel
216
+
217
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
218
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
219
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
220
+ # live optimizer object, so we are checking that the numbers are within the right range
221
+ align_to = 2 * world_size
222
+
223
+ def zero2_align(x):
224
+ return align_to * math.ceil(x / align_to)
225
+
226
+ if debug:
227
+ print(f"original offset={offset}, avail_numel={avail_numel}")
228
+
229
+ offset = zero2_align(offset)
230
+ avail_numel = zero2_align(avail_numel)
231
+
232
+ if debug:
233
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
234
+
235
+ # Sanity check
236
+ if offset != avail_numel:
237
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
238
+
239
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
240
+
241
+ return state_dict
242
+
243
+
244
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
245
+ remainder = unpartitioned_numel % world_size
246
+ padding_numel = (world_size - remainder) if remainder else 0
247
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
248
+ return partitioned_numel, padding_numel
249
+
250
+
251
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, param_shapes, fp32_flat_groups, buffers):
252
+
253
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
254
+ # param, re-consolidating each param, while dealing with padding if any
255
+
256
+ avail_numel = fp32_flat_groups[0].numel() * world_size
257
+ # merge list of dicts, preserving order
258
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
259
+
260
+ if debug:
261
+ for i in range(world_size):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
263
+
264
+ wanted_params = len(param_shapes)
265
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
266
+ # not asserting if there is a mismatch due to possible padding
267
+ print(f"Have {avail_numel} numels to process.")
268
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
269
+
270
+ state_dict = OrderedDict()
271
+
272
+ # buffers
273
+ state_dict.update(buffers)
274
+ if debug:
275
+ print(f"added {len(buffers)} buffers")
276
+
277
+ # params
278
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
279
+ # out-of-core computing solution
280
+ offset = 0
281
+ total_numel = 0
282
+ total_params = 0
283
+ for name, shape in param_shapes.items():
284
+
285
+ unpartitioned_numel = shape.numel()
286
+ total_numel += unpartitioned_numel
287
+ total_params += 1
288
+
289
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
290
+
291
+ if debug:
292
+ print(
293
+ f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
294
+ )
295
+
296
+ # XXX: memory usage doubles here
297
+ state_dict[name] = torch.cat(
298
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
299
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
300
+ offset += partitioned_numel
301
+
302
+ offset *= world_size
303
+
304
+ # Sanity check
305
+ if offset != avail_numel:
306
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
307
+
308
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
309
+
310
+ return state_dict
311
+
312
+
313
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
314
+ """
315
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
316
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
317
+ via a model hub.
318
+
319
+ Args:
320
+ - ``checkpoint_dir``: path to the desired checkpoint folder
321
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
322
+
323
+ Returns:
324
+ - pytorch ``state_dict``
325
+
326
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
327
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
328
+ the checkpoint.
329
+
330
+ A typical usage might be ::
331
+
332
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
333
+ # do the training and checkpoint saving
334
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
335
+ model = model.cpu() # move to cpu
336
+ model.load_state_dict(state_dict)
337
+ # submit to model hub or save the model to share with others
338
+
339
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
340
+ application. i.e. you will need to re-initialize the deepspeed engine, since
341
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
342
+
343
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
344
+
345
+ """
346
+ if tag is None:
347
+ latest_path = os.path.join(checkpoint_dir, 'latest')
348
+ if os.path.isfile(latest_path):
349
+ with open(latest_path, 'r') as fd:
350
+ tag = fd.read().strip()
351
+ else:
352
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
353
+
354
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
355
+
356
+ if not os.path.isdir(ds_checkpoint_dir):
357
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
358
+
359
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
360
+
361
+
362
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
363
+ """
364
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
365
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
366
+
367
+ Args:
368
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
369
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
370
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
371
+ """
372
+
373
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
374
+ print(f"Saving fp32 state dict to {output_file}")
375
+ torch.save(state_dict, output_file)
376
+
377
+
378
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
379
+ """
380
+ 1. Put the provided model to cpu
381
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
382
+ 3. Load it into the provided model
383
+
384
+ Args:
385
+ - ``model``: the model object to update
386
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
387
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
388
+
389
+ Returns:
390
+ - ``model`: modified model
391
+
392
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
393
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
394
+ conveniently placed for you in the checkpoint folder.
395
+
396
+ A typical usage might be ::
397
+
398
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
399
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
400
+ # submit to model hub or save the model to share with others
401
+
402
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
403
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
404
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
405
+
406
+ """
407
+ logger.info(f"Extracting fp32 weights")
408
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
409
+
410
+ logger.info(f"Overwriting model with fp32 weights")
411
+ model = model.cpu()
412
+ model.load_state_dict(state_dict, strict=False)
413
+
414
+ return model
415
+
416
+
417
+ if __name__ == "__main__":
418
+
419
+ parser = argparse.ArgumentParser()
420
+ parser.add_argument("checkpoint_dir",
421
+ type=str,
422
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
423
+ parser.add_argument(
424
+ "output_file",
425
+ type=str,
426
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
427
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
428
+ args = parser.parse_args()
429
+
430
+ debug = args.debug
431
+
432
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
VQA_lora_PMC_LLaMA_PMCCLIP/choice/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff