File size: 2,155 Bytes
e7cb922
4ee78c5
 
e7cb922
 
4ee78c5
e7cb922
 
4ee78c5
e7cb922
 
 
4ee78c5
e7cb922
 
 
 
 
4ee78c5
 
e7cb922
 
 
 
 
 
4ee78c5
e7cb922
 
 
 
 
4ee78c5
e7cb922
4ee78c5
e7cb922
4ee78c5
 
e7cb922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language:
- zh
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Tiny Chinese (Taiwanese Mandarin)
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 zh-TW
      type: mozilla-foundation/common_voice_11_0
      config: zh-TW
      split: test
      args: zh-TW
    metrics:
    - name: Wer
      type: wer
      value: 69.35516888433982
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Chinese (Taiwanese Mandarin)

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 zh-TW dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4811
- Wer: 69.3552

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1257        | 6.02  | 1000 | 0.4811          | 69.3552 |
| 0.0122        | 13.02 | 2000 | 0.5494          | 70.6858 |
| 0.0044        | 20.01 | 3000 | 0.5851          | 71.3818 |
| 0.0028        | 27.0  | 4000 | 0.6098          | 72.6919 |
| 0.0022        | 33.02 | 5000 | 0.6159          | 72.7943 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2