--- license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-base-DIALOCONAN-WIKI-CLS results: [] --- # deberta-base-DIALOCONAN-WIKI-CLS This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3425 - Precision: 0.7075 - Recall: 0.7106 - F1: 0.7090 - Accuracy: 0.9442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3743 | 1.0 | 2500 | 0.4070 | 0.6887 | 0.6918 | 0.6894 | 0.9183 | | 0.2331 | 2.0 | 5000 | 0.3845 | 0.6980 | 0.7000 | 0.6989 | 0.9308 | | 0.1176 | 3.0 | 7500 | 0.3425 | 0.7075 | 0.7106 | 0.7090 | 0.9442 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1