File size: 7,311 Bytes
2abf5e1
3e3e739
6fcbc81
 
 
 
e55bc82
6fcbc81
 
 
2abf5e1
 
6fcbc81
 
2abf5e1
6fcbc81
2abf5e1
3e3e739
6fcbc81
4c59f43
 
 
 
 
 
 
2abf5e1
6fcbc81
2abf5e1
6fcbc81
2abf5e1
6fcbc81
2abf5e1
6fcbc81
2abf5e1
6fcbc81
2abf5e1
6fcbc81
2abf5e1
6fcbc81
2abf5e1
6fcbc81
2abf5e1
6fcbc81
 
e55bc82
 
6fcbc81
 
 
e55bc82
6fcbc81
2abf5e1
6fcbc81
2abf5e1
3e3e739
 
4c59f43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2abf5e1
 
6fcbc81
2abf5e1
6fcbc81
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
base_model: ai-forever/ruT5-base
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: skilltext
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# skilltext

This model is a fine-tuned version of [ai-forever/ruT5-base](https://huggingface.co/ai-forever/ruT5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0396
- Rouge1: 35.5496
- Rouge2: 22.9927
- Rougel: 33.7986
- Rougelsum: 33.9427
- Bleu: 3.0002
- Gen Len: 18.7273

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Bleu   | Gen Len |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------:|:-------:|
| No log        | 0.5882  | 50   | 2.0006          | 22.8478 | 9.3528  | 21.5245 | 21.4195   | 1.3965 | 19.0    |
| No log        | 1.1765  | 100  | 1.5029          | 26.0894 | 12.5184 | 22.7242 | 22.8568   | 1.7386 | 18.9545 |
| No log        | 1.7647  | 150  | 1.4072          | 24.1385 | 9.8714  | 22.0278 | 22.0679   | 2.009  | 18.9545 |
| No log        | 2.3529  | 200  | 1.3292          | 27.642  | 12.2998 | 26.3455 | 25.9994   | 1.2632 | 18.7727 |
| No log        | 2.9412  | 250  | 1.2788          | 32.096  | 12.3806 | 30.9883 | 30.6962   | 1.6429 | 18.7273 |
| No log        | 3.5294  | 300  | 1.1847          | 31.8602 | 21.2094 | 31.1454 | 30.9145   | 1.5913 | 18.8636 |
| No log        | 4.1176  | 350  | 1.2193          | 22.6777 | 11.7225 | 22.1941 | 22.1638   | 1.4306 | 18.7727 |
| No log        | 4.7059  | 400  | 1.1527          | 23.4161 | 11.2979 | 22.9918 | 23.0266   | 1.7552 | 18.8636 |
| No log        | 5.2941  | 450  | 1.1200          | 28.9205 | 15.5233 | 27.153  | 27.2644   | 1.8557 | 18.7273 |
| 2.1495        | 5.8824  | 500  | 1.1426          | 28.2199 | 13.8386 | 26.9115 | 26.5472   | 2.3855 | 18.7273 |
| 2.1495        | 6.4706  | 550  | 1.1053          | 32.432  | 18.9395 | 30.9397 | 31.1198   | 2.2867 | 18.7727 |
| 2.1495        | 7.0588  | 600  | 1.0777          | 38.285  | 23.5443 | 35.0994 | 35.3165   | 2.6353 | 18.7727 |
| 2.1495        | 7.6471  | 650  | 1.0900          | 38.5934 | 21.6941 | 36.5629 | 36.9151   | 2.2212 | 18.7727 |
| 2.1495        | 8.2353  | 700  | 1.0931          | 41.2586 | 27.5923 | 40.1612 | 40.1672   | 2.5568 | 18.8182 |
| 2.1495        | 8.8235  | 750  | 1.0691          | 38.3785 | 25.0231 | 38.453  | 38.5248   | 2.4491 | 18.7273 |
| 2.1495        | 9.4118  | 800  | 1.0627          | 36.3073 | 20.703  | 35.2405 | 35.3787   | 2.3678 | 18.8636 |
| 2.1495        | 10.0    | 850  | 1.0528          | 39.1894 | 24.8355 | 39.3713 | 39.483    | 1.9687 | 18.8636 |
| 2.1495        | 10.5882 | 900  | 1.0628          | 40.0052 | 23.746  | 38.8726 | 39.077    | 2.0485 | 18.8636 |
| 2.1495        | 11.1765 | 950  | 1.0371          | 34.4982 | 23.4663 | 34.1685 | 34.1247   | 2.0922 | 18.8636 |
| 1.046         | 11.7647 | 1000 | 1.0368          | 38.0619 | 19.7898 | 36.4367 | 36.8115   | 2.3387 | 18.8636 |
| 1.046         | 12.3529 | 1050 | 1.0427          | 38.9055 | 25.1615 | 38.8253 | 38.9385   | 2.5522 | 18.8182 |
| 1.046         | 12.9412 | 1100 | 1.0255          | 36.5256 | 21.2328 | 34.8816 | 35.2236   | 2.4057 | 18.8182 |
| 1.046         | 13.5294 | 1150 | 1.0237          | 36.0048 | 25.3977 | 35.9471 | 35.9807   | 2.4804 | 18.8182 |
| 1.046         | 14.1176 | 1200 | 0.9918          | 32.6697 | 21.3968 | 30.8639 | 31.0221   | 2.4669 | 18.7727 |
| 1.046         | 14.7059 | 1250 | 1.0598          | 37.7878 | 20.6971 | 36.6794 | 36.7289   | 2.5767 | 18.7727 |
| 1.046         | 15.2941 | 1300 | 1.0130          | 34.549  | 24.4177 | 34.0376 | 34.1226   | 2.1773 | 18.8182 |
| 1.046         | 15.8824 | 1350 | 1.0256          | 32.774  | 19.6047 | 31.6125 | 31.9067   | 2.0504 | 18.7727 |
| 1.046         | 16.4706 | 1400 | 1.0232          | 31.4885 | 18.4703 | 30.0937 | 30.5529   | 2.514  | 18.8182 |
| 1.046         | 17.0588 | 1450 | 1.0210          | 33.4684 | 20.7982 | 31.7789 | 32.0023   | 2.4881 | 18.7273 |
| 0.7674        | 17.6471 | 1500 | 1.0419          | 37.4914 | 20.9444 | 35.0519 | 35.2368   | 3.0058 | 18.7727 |
| 0.7674        | 18.2353 | 1550 | 1.0328          | 36.5606 | 21.0215 | 35.2548 | 35.4748   | 2.7878 | 18.7273 |
| 0.7674        | 18.8235 | 1600 | 1.0376          | 31.3516 | 18.5826 | 29.6759 | 29.8435   | 2.3192 | 18.8182 |
| 0.7674        | 19.4118 | 1650 | 1.0414          | 37.4725 | 22.3216 | 35.6306 | 35.7383   | 2.477  | 18.8182 |
| 0.7674        | 20.0    | 1700 | 1.0513          | 39.5759 | 23.2665 | 39.2332 | 39.3667   | 2.4322 | 18.7273 |
| 0.7674        | 20.5882 | 1750 | 1.0518          | 36.1526 | 23.8263 | 34.5677 | 34.6173   | 2.8518 | 18.7727 |
| 0.7674        | 21.1765 | 1800 | 1.0446          | 41.5192 | 23.3064 | 39.3799 | 39.6548   | 3.0326 | 18.8182 |
| 0.7674        | 21.7647 | 1850 | 1.0150          | 40.5093 | 21.8683 | 38.2773 | 38.6063   | 2.6653 | 18.8636 |
| 0.7674        | 22.3529 | 1900 | 1.0364          | 34.2216 | 20.2095 | 32.5945 | 32.6999   | 2.6078 | 18.8182 |
| 0.7674        | 22.9412 | 1950 | 1.0148          | 39.8173 | 20.6247 | 37.2954 | 37.6752   | 3.0336 | 18.8636 |
| 0.6485        | 23.5294 | 2000 | 1.0429          | 40.2889 | 21.1598 | 37.7657 | 38.0596   | 2.9108 | 18.8182 |
| 0.6485        | 24.1176 | 2050 | 1.0423          | 39.2679 | 20.8842 | 36.7395 | 36.9295   | 2.845  | 18.8636 |
| 0.6485        | 24.7059 | 2100 | 1.0358          | 39.086  | 20.7799 | 36.2138 | 36.3741   | 2.9429 | 18.8182 |
| 0.6485        | 25.2941 | 2150 | 1.0219          | 38.754  | 22.4097 | 36.9752 | 37.121    | 2.831  | 18.8182 |
| 0.6485        | 25.8824 | 2200 | 1.0450          | 38.3531 | 22.3593 | 36.4439 | 36.6304   | 2.9804 | 18.7727 |
| 0.6485        | 26.4706 | 2250 | 1.0482          | 40.6921 | 23.617  | 39.298  | 39.5895   | 3.0971 | 18.7727 |
| 0.6485        | 27.0588 | 2300 | 1.0495          | 39.6761 | 22.7969 | 37.0805 | 37.4949   | 3.2639 | 18.7727 |
| 0.6485        | 27.6471 | 2350 | 1.0412          | 40.8199 | 23.7109 | 38.9222 | 39.2493   | 3.0267 | 18.7273 |
| 0.6485        | 28.2353 | 2400 | 1.0453          | 39.9504 | 23.888  | 38.0725 | 38.3121   | 3.2191 | 18.7727 |
| 0.6485        | 28.8235 | 2450 | 1.0400          | 36.205  | 23.1356 | 34.6087 | 34.6263   | 3.028  | 18.7727 |
| 0.5501        | 29.4118 | 2500 | 1.0402          | 35.033  | 22.2393 | 33.3754 | 33.4477   | 3.0299 | 18.7273 |
| 0.5501        | 30.0    | 2550 | 1.0396          | 35.5496 | 22.9927 | 33.7986 | 33.9427   | 3.0002 | 18.7273 |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.2
- Datasets 2.12.0
- Tokenizers 0.19.1