File size: 7,311 Bytes
2abf5e1 3e3e739 6fcbc81 e55bc82 6fcbc81 2abf5e1 6fcbc81 2abf5e1 6fcbc81 2abf5e1 3e3e739 6fcbc81 4c59f43 2abf5e1 6fcbc81 2abf5e1 6fcbc81 2abf5e1 6fcbc81 2abf5e1 6fcbc81 2abf5e1 6fcbc81 2abf5e1 6fcbc81 2abf5e1 6fcbc81 2abf5e1 6fcbc81 2abf5e1 6fcbc81 e55bc82 6fcbc81 e55bc82 6fcbc81 2abf5e1 6fcbc81 2abf5e1 3e3e739 4c59f43 2abf5e1 6fcbc81 2abf5e1 6fcbc81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
base_model: ai-forever/ruT5-base
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: skilltext
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# skilltext
This model is a fine-tuned version of [ai-forever/ruT5-base](https://huggingface.co/ai-forever/ruT5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0396
- Rouge1: 35.5496
- Rouge2: 22.9927
- Rougel: 33.7986
- Rougelsum: 33.9427
- Bleu: 3.0002
- Gen Len: 18.7273
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------:|:-------:|
| No log | 0.5882 | 50 | 2.0006 | 22.8478 | 9.3528 | 21.5245 | 21.4195 | 1.3965 | 19.0 |
| No log | 1.1765 | 100 | 1.5029 | 26.0894 | 12.5184 | 22.7242 | 22.8568 | 1.7386 | 18.9545 |
| No log | 1.7647 | 150 | 1.4072 | 24.1385 | 9.8714 | 22.0278 | 22.0679 | 2.009 | 18.9545 |
| No log | 2.3529 | 200 | 1.3292 | 27.642 | 12.2998 | 26.3455 | 25.9994 | 1.2632 | 18.7727 |
| No log | 2.9412 | 250 | 1.2788 | 32.096 | 12.3806 | 30.9883 | 30.6962 | 1.6429 | 18.7273 |
| No log | 3.5294 | 300 | 1.1847 | 31.8602 | 21.2094 | 31.1454 | 30.9145 | 1.5913 | 18.8636 |
| No log | 4.1176 | 350 | 1.2193 | 22.6777 | 11.7225 | 22.1941 | 22.1638 | 1.4306 | 18.7727 |
| No log | 4.7059 | 400 | 1.1527 | 23.4161 | 11.2979 | 22.9918 | 23.0266 | 1.7552 | 18.8636 |
| No log | 5.2941 | 450 | 1.1200 | 28.9205 | 15.5233 | 27.153 | 27.2644 | 1.8557 | 18.7273 |
| 2.1495 | 5.8824 | 500 | 1.1426 | 28.2199 | 13.8386 | 26.9115 | 26.5472 | 2.3855 | 18.7273 |
| 2.1495 | 6.4706 | 550 | 1.1053 | 32.432 | 18.9395 | 30.9397 | 31.1198 | 2.2867 | 18.7727 |
| 2.1495 | 7.0588 | 600 | 1.0777 | 38.285 | 23.5443 | 35.0994 | 35.3165 | 2.6353 | 18.7727 |
| 2.1495 | 7.6471 | 650 | 1.0900 | 38.5934 | 21.6941 | 36.5629 | 36.9151 | 2.2212 | 18.7727 |
| 2.1495 | 8.2353 | 700 | 1.0931 | 41.2586 | 27.5923 | 40.1612 | 40.1672 | 2.5568 | 18.8182 |
| 2.1495 | 8.8235 | 750 | 1.0691 | 38.3785 | 25.0231 | 38.453 | 38.5248 | 2.4491 | 18.7273 |
| 2.1495 | 9.4118 | 800 | 1.0627 | 36.3073 | 20.703 | 35.2405 | 35.3787 | 2.3678 | 18.8636 |
| 2.1495 | 10.0 | 850 | 1.0528 | 39.1894 | 24.8355 | 39.3713 | 39.483 | 1.9687 | 18.8636 |
| 2.1495 | 10.5882 | 900 | 1.0628 | 40.0052 | 23.746 | 38.8726 | 39.077 | 2.0485 | 18.8636 |
| 2.1495 | 11.1765 | 950 | 1.0371 | 34.4982 | 23.4663 | 34.1685 | 34.1247 | 2.0922 | 18.8636 |
| 1.046 | 11.7647 | 1000 | 1.0368 | 38.0619 | 19.7898 | 36.4367 | 36.8115 | 2.3387 | 18.8636 |
| 1.046 | 12.3529 | 1050 | 1.0427 | 38.9055 | 25.1615 | 38.8253 | 38.9385 | 2.5522 | 18.8182 |
| 1.046 | 12.9412 | 1100 | 1.0255 | 36.5256 | 21.2328 | 34.8816 | 35.2236 | 2.4057 | 18.8182 |
| 1.046 | 13.5294 | 1150 | 1.0237 | 36.0048 | 25.3977 | 35.9471 | 35.9807 | 2.4804 | 18.8182 |
| 1.046 | 14.1176 | 1200 | 0.9918 | 32.6697 | 21.3968 | 30.8639 | 31.0221 | 2.4669 | 18.7727 |
| 1.046 | 14.7059 | 1250 | 1.0598 | 37.7878 | 20.6971 | 36.6794 | 36.7289 | 2.5767 | 18.7727 |
| 1.046 | 15.2941 | 1300 | 1.0130 | 34.549 | 24.4177 | 34.0376 | 34.1226 | 2.1773 | 18.8182 |
| 1.046 | 15.8824 | 1350 | 1.0256 | 32.774 | 19.6047 | 31.6125 | 31.9067 | 2.0504 | 18.7727 |
| 1.046 | 16.4706 | 1400 | 1.0232 | 31.4885 | 18.4703 | 30.0937 | 30.5529 | 2.514 | 18.8182 |
| 1.046 | 17.0588 | 1450 | 1.0210 | 33.4684 | 20.7982 | 31.7789 | 32.0023 | 2.4881 | 18.7273 |
| 0.7674 | 17.6471 | 1500 | 1.0419 | 37.4914 | 20.9444 | 35.0519 | 35.2368 | 3.0058 | 18.7727 |
| 0.7674 | 18.2353 | 1550 | 1.0328 | 36.5606 | 21.0215 | 35.2548 | 35.4748 | 2.7878 | 18.7273 |
| 0.7674 | 18.8235 | 1600 | 1.0376 | 31.3516 | 18.5826 | 29.6759 | 29.8435 | 2.3192 | 18.8182 |
| 0.7674 | 19.4118 | 1650 | 1.0414 | 37.4725 | 22.3216 | 35.6306 | 35.7383 | 2.477 | 18.8182 |
| 0.7674 | 20.0 | 1700 | 1.0513 | 39.5759 | 23.2665 | 39.2332 | 39.3667 | 2.4322 | 18.7273 |
| 0.7674 | 20.5882 | 1750 | 1.0518 | 36.1526 | 23.8263 | 34.5677 | 34.6173 | 2.8518 | 18.7727 |
| 0.7674 | 21.1765 | 1800 | 1.0446 | 41.5192 | 23.3064 | 39.3799 | 39.6548 | 3.0326 | 18.8182 |
| 0.7674 | 21.7647 | 1850 | 1.0150 | 40.5093 | 21.8683 | 38.2773 | 38.6063 | 2.6653 | 18.8636 |
| 0.7674 | 22.3529 | 1900 | 1.0364 | 34.2216 | 20.2095 | 32.5945 | 32.6999 | 2.6078 | 18.8182 |
| 0.7674 | 22.9412 | 1950 | 1.0148 | 39.8173 | 20.6247 | 37.2954 | 37.6752 | 3.0336 | 18.8636 |
| 0.6485 | 23.5294 | 2000 | 1.0429 | 40.2889 | 21.1598 | 37.7657 | 38.0596 | 2.9108 | 18.8182 |
| 0.6485 | 24.1176 | 2050 | 1.0423 | 39.2679 | 20.8842 | 36.7395 | 36.9295 | 2.845 | 18.8636 |
| 0.6485 | 24.7059 | 2100 | 1.0358 | 39.086 | 20.7799 | 36.2138 | 36.3741 | 2.9429 | 18.8182 |
| 0.6485 | 25.2941 | 2150 | 1.0219 | 38.754 | 22.4097 | 36.9752 | 37.121 | 2.831 | 18.8182 |
| 0.6485 | 25.8824 | 2200 | 1.0450 | 38.3531 | 22.3593 | 36.4439 | 36.6304 | 2.9804 | 18.7727 |
| 0.6485 | 26.4706 | 2250 | 1.0482 | 40.6921 | 23.617 | 39.298 | 39.5895 | 3.0971 | 18.7727 |
| 0.6485 | 27.0588 | 2300 | 1.0495 | 39.6761 | 22.7969 | 37.0805 | 37.4949 | 3.2639 | 18.7727 |
| 0.6485 | 27.6471 | 2350 | 1.0412 | 40.8199 | 23.7109 | 38.9222 | 39.2493 | 3.0267 | 18.7273 |
| 0.6485 | 28.2353 | 2400 | 1.0453 | 39.9504 | 23.888 | 38.0725 | 38.3121 | 3.2191 | 18.7727 |
| 0.6485 | 28.8235 | 2450 | 1.0400 | 36.205 | 23.1356 | 34.6087 | 34.6263 | 3.028 | 18.7727 |
| 0.5501 | 29.4118 | 2500 | 1.0402 | 35.033 | 22.2393 | 33.3754 | 33.4477 | 3.0299 | 18.7273 |
| 0.5501 | 30.0 | 2550 | 1.0396 | 35.5496 | 22.9927 | 33.7986 | 33.9427 | 3.0002 | 18.7273 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.2
- Datasets 2.12.0
- Tokenizers 0.19.1
|