File size: 9,648 Bytes
d8a7d36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33a4f5
 
 
 
 
 
 
 
d8a7d36
617fcc5
d8a7d36
 
617fcc5
 
 
 
 
 
d8a7d36
 
 
617fcc5
 
 
 
 
 
 
 
 
 
 
 
d8a7d36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff35221
 
d8a7d36
 
 
ff35221
d8a7d36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
datasets:
- Lin-Chen/ShareGPT4V
pipeline_tag: image-text-to-text
library_name: xtuner
---

<div align="center">
  <img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/>


[![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner)


</div>

## Model

llava-phi-3-mini is a LLaVA model fine-tuned from [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [ShareGPT4V-PT](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V) and [InternVL-SFT](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#prepare-training-datasets) by [XTuner](https://github.com/InternLM/xtuner).


**Note: This model is in official LLaVA format.**

Resources:

- GitHub: [xtuner](https://github.com/InternLM/xtuner)
- HuggingFace LLaVA format model: [xtuner/llava-phi-3-mini-hf](https://huggingface.co/xtuner/llava-phi-3-mini-hf)
- GGUF LLaVA model: [xtuner/llava-phi-3-mini-gguf](https://huggingface.co/xtuner/llava-phi-3-mini-gguf)
- XTuner LLaVA format model: [xtuner/llava-phi-3-mini-xtuner](https://huggingface.co/xtuner/llava-phi-3-mini-xtuner)


## Details

| Model                 | Visual      Encoder | Projector | Resolution |   Pretraining Strategy | Fine-tuning      Strategy |      Pretrain     Dataset |    Fine-tune     Dataset | Pretrain Epoch | Fine-tune Epoch |
| :-------------------- | ------------------: | --------: | ---------: | ---------------------: | ------------------------: | ------------------------: | -----------------------: | -------------- | --------------- |
| LLaVA-v1.5-7B         |              CLIP-L |       MLP |        336 | Frozen LLM, Frozen ViT |      Full LLM, Frozen ViT |       LLaVA-PT     (558K) |     LLaVA-Mix     (665K) | 1              | 1               |
| LLaVA-Llama-3-8B      |              CLIP-L |       MLP |        336 | Frozen LLM, Frozen ViT |        Full LLM, LoRA ViT |       LLaVA-PT     (558K) |     LLaVA-Mix     (665K) | 1              | 1               |
| LLaVA-Llama-3-8B-v1.1 |              CLIP-L |       MLP |        336 | Frozen LLM, Frozen ViT |        Full LLM, LoRA ViT | ShareGPT4V-PT     (1246K) | InternVL-SFT     (1268K) | 1              | 1               |
| **LLaVA-Phi-3-mini**  |              CLIP-L |       MLP |        336 | Frozen LLM, Frozen ViT |        Full LLM, Full ViT | ShareGPT4V-PT     (1246K) | InternVL-SFT     (1268K) | 1              | 2               |

## Results

<div  align="center">
<img src="https://github.com/InternLM/xtuner/assets/36994684/78524f65-260d-4ae3-a687-03fc5a19dcbb" alt="Image" width=500" />
</div>

| Model                 | MMBench Test (EN) | MMMU  Val | SEED-IMG | AI2D Test | ScienceQA Test | HallusionBench aAcc | POPE | GQA  | TextVQA |   MME    | MMStar |
| :-------------------- | :---------------: | :-------: | :------: | :-------: | :------------: | :-----------------: | :--: | :--: | :-----: | :------: | :----: |
| LLaVA-v1.5-7B         |       66.5        |   35.3    |   60.5   |   54.8    |      70.4      |        44.9         | 85.9 | 62.0 |  58.2   | 1511/348 |  30.3  |
| LLaVA-Llama-3-8B      |       68.9        |   36.8    |   69.8   |   60.9    |      73.3      |        47.3         | 87.2 | 63.5 |  58.0   | 1506/295 |  38.2  |
| LLaVA-Llama-3-8B-v1.1 |       72.3        |   37.1    |   70.1   |   70.0    |      72.9      |        47.7         | 86.4 | 62.6 |  59.0   | 1469/349 |  45.1  |
| **LLaVA-Phi-3-mini**  |       69.2        |   41.4    |   70.0   |   69.3    |      73.7      |        49.8         | 87.3 | 61.5 |  57.8   | 1477/313 |  43.7  |



## Quickstart

### Chat with LLaVA official library

1. Install official LLaVA library

```bash
pip install git+https://github.com/haotian-liu/LLaVA.git
```

2. Chat with below script

<details> 
    <summary>cli.py</summary>

```python
import argparse
from io import BytesIO

import requests
import torch
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import Conversation, SeparatorStyle
from llava.mm_utils import process_images, tokenizer_image_token
from llava.model import LlavaLlamaForCausalLM
from PIL import Image
from transformers import (AutoTokenizer, BitsAndBytesConfig, StoppingCriteria,
                          StoppingCriteriaList, TextStreamer)


def load_image(image_file):
    if image_file.startswith('http://') or image_file.startswith('https://'):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')
    return image


class StopWordStoppingCriteria(StoppingCriteria):
    """StopWord stopping criteria."""

    def __init__(self, tokenizer, stop_word):
        self.tokenizer = tokenizer
        self.stop_word = stop_word
        self.length = len(self.stop_word)

    def __call__(self, input_ids, *args, **kwargs) -> bool:
        cur_text = self.tokenizer.decode(input_ids[0])
        cur_text = cur_text.replace('\r', '').replace('\n', '')
        return cur_text[-self.length:] == self.stop_word


def get_stop_criteria(tokenizer, stop_words=[]):
    stop_criteria = StoppingCriteriaList()
    for word in stop_words:
        stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
    return stop_criteria


def main(args):
    kwargs = {'device_map': args.device}
    if args.load_8bit:
        kwargs['load_in_8bit'] = True
    elif args.load_4bit:
        kwargs['load_in_4bit'] = True
        kwargs['quantization_config'] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4')
    else:
        kwargs['torch_dtype'] = torch.float16

    tokenizer = AutoTokenizer.from_pretrained(args.model_path)
    model = LlavaLlamaForCausalLM.from_pretrained(
        args.model_path, low_cpu_mem_usage=True, **kwargs)
    vision_tower = model.get_vision_tower()
    if not vision_tower.is_loaded:
        vision_tower.load_model(device_map=args.device)
    image_processor = vision_tower.image_processor

    conv = Conversation(
        system=system='<|system|>\nAnswer the questions.',
        roles=('<|user|>\n', '<|assistant|>\n'),
        messages=[],
        offset=0,
        sep_style=SeparatorStyle.MPT,
        sep='<|end|>',
    )
    roles = conv.roles

    image = load_image(args.image_file)
    image_size = image.size
    image_tensor = process_images([image], image_processor, model.config)

    if type(image_tensor) is list:
        image_tensor = [
            image.to(model.device, dtype=torch.float16)
            for image in image_tensor
        ]
    else:
        image_tensor = image_tensor.to(model.device, dtype=torch.float16)

    while True:
        try:
            inp = input(f'{roles[0]}: ')
        except EOFError:
            inp = ''
        if not inp:
            print('exit...')
            break

        print(f'{roles[1]}: ', end='')

        if image is not None:
            inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
            image = None

        conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(
            prompt, tokenizer, IMAGE_TOKEN_INDEX,
            return_tensors='pt').unsqueeze(0).to(model.device)
        stop_criteria = get_stop_criteria(
            tokenizer=tokenizer, stop_words=[conv.sep])

        streamer = TextStreamer(
            tokenizer, skip_prompt=True, skip_special_tokens=True)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=image_tensor,
                image_sizes=[image_size],
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                max_new_tokens=args.max_new_tokens,
                streamer=streamer,
                stopping_criteria=stop_criteria,
                use_cache=True)

        outputs = tokenizer.decode(output_ids[0]).strip()
        conv.messages[-1][-1] = outputs

        if args.debug:
            print('\n', {'prompt': prompt, 'outputs': outputs}, '\n')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model-path', type=str, default='xtuner/llava-llama-3-8b-v1_1-hf')
    parser.add_argument('--image-file', type=str, required=True)
    parser.add_argument('--device', type=str, default='auto')
    parser.add_argument('--temperature', type=float, default=0.2)
    parser.add_argument('--max-new-tokens', type=int, default=512)
    parser.add_argument('--load-8bit', action='store_true')
    parser.add_argument('--load-4bit', action='store_true')
    parser.add_argument('--debug', action='store_true')
    args = parser.parse_args()
    main(args)
```

</details>

```
python ./cli.py  --model-path xtuner/llava-phi-3-mini --image-file https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg  --load-4bit
```


### Reproduction

Please refer to [docs](https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llava/phi3_mini_4k_instruct_clip_vit_large_p14_336#readme).

## Citation

```bibtex
@misc{2023xtuner,
    title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
    author={XTuner Contributors},
    howpublished = {\url{https://github.com/InternLM/xtuner}},
    year={2023}
}
```