File size: 6,056 Bytes
508417c feb79d4 508417c feb79d4 508417c b1b9082 508417c b1b9082 508417c a7b4aba 508417c 0b3c04a 8b3c00a 0b3c04a 508417c 97a7363 508417c 97a7363 508417c 97a7363 508417c ee95356 508417c feb79d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
---
language:
- en
license: llama3
tags:
- moe
model-index:
- name: L3-SnowStorm-v1.15-4x8B-B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.67
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.6
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 51.69
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.56
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-B
name: Open LLM Leaderboard
---
<style>
.image-container {
position: relative;
display: inline-block;
}
.image-container img {
display: block;
border-radius: 10px;
box-shadow: 0 0 1px rgba(0, 0, 0, 0.3);
}
.image-container::before {
content: "";
position: absolute;
top: 0px;
left: 20px;
width: calc(100% - 40px);
height: calc(100%);
background-image: url("https://cdn-uploads.huggingface.co/production/uploads/64f5e51289c121cb864ba464/A_c2JSJ0vVbwKDxFaUPRN.png");
background-size: cover;
filter: blur(10px);
z-index: -1;
}
</style>
<br>
<div class="image-container">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64f5e51289c121cb864ba464/A_c2JSJ0vVbwKDxFaUPRN.png" style="width: 96%; margin: auto;" >
</div>
> [!NOTE]
> [GGUF](https://huggingface.co/collections/xxx777xxxASD/snowstorm-v115-4x8b-b-6655885530511ba6250e074f)
Experimental RP-oriented MoE, the idea was to get a model that would be equal to or better than Mixtral 8x7B and it's finetunes in RP/ERP tasks.
There's:
- [v1.15A](https://huggingface.co/xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-A)
- [v1.15B](https://huggingface.co/xxx777xxxASD/L3-SnowStorm-v1.15-4x8B-B) <- You're here
### Llama 3 SnowStorm v1.15B 4x8B
```
base_model: Sao10K_L3-8B-Stheno-v3.1
gate_mode: random
dtype: bfloat16
experts_per_token: 2
experts:
- source_model: Nitral-AI_Poppy_Porpoise-1.0-L3-8B
- source_model: NeverSleep_Llama-3-Lumimaid-8B-v0.1-OAS
- source_model: openlynn_Llama-3-Soliloquy-8B-v2
- source_model: Sao10K_L3-8B-Stheno-v3.1
```
## Models used
- [Nitral-AI/Poppy_Porpoise-1.0-L3-8B](https://huggingface.co/Nitral-AI/Poppy_Porpoise-1.0-L3-8B)
- [NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS)
- [openlynn/Llama-3-Soliloquy-8B-v2](https://huggingface.co/openlynn/Llama-3-Soliloquy-8B-v2)
- [Sao10K/L3-8B-Stheno-v3.1](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.1)
## Difference(from SnowStorm v1.0)
- Update from [ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B](https://huggingface.co/ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B) to [Nitral-AI/Poppy_Porpoise-1.0-L3-8B](https://huggingface.co/Nitral-AI/Poppy_Porpoise-1.0-L3-8B)
- Change base model from [NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS) to [Sao10K/L3-8B-Stheno-v3.1](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.1)
## Vision
[llama3_mmproj](https://huggingface.co/ChaoticNeutrals/LLaVA-Llama-3-8B-mmproj-Updated)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f5e51289c121cb864ba464/yv4C6NalqORLjvY3KKZk8.png)
## Prompt format: Llama 3
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_xxx777xxxASD__L3-SnowStorm-v1.15-4x8B-B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.01|
|AI2 Reasoning Challenge (25-Shot)|60.67|
|HellaSwag (10-Shot) |81.60|
|MMLU (5-Shot) |68.12|
|TruthfulQA (0-shot) |51.69|
|Winogrande (5-shot) |76.56|
|GSM8k (5-shot) |69.45|
|