update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
model-index:
|
7 |
+
- name: twiiter_try15_fold2
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# twiiter_try15_fold2
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.1872
|
19 |
+
- F1: 0.9801
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 3e-05
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 16
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 15
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
50 |
+
| 0.2295 | 1.0 | 500 | 0.1052 | 0.9689 |
|
51 |
+
| 0.0621 | 2.0 | 1000 | 0.1340 | 0.9727 |
|
52 |
+
| 0.0317 | 3.0 | 1500 | 0.1108 | 0.9776 |
|
53 |
+
| 0.0148 | 4.0 | 2000 | 0.1810 | 0.9738 |
|
54 |
+
| 0.0066 | 5.0 | 2500 | 0.1783 | 0.9743 |
|
55 |
+
| 0.0028 | 6.0 | 3000 | 0.1780 | 0.9776 |
|
56 |
+
| 0.0012 | 7.0 | 3500 | 0.1487 | 0.9826 |
|
57 |
+
| 0.0059 | 8.0 | 4000 | 0.1443 | 0.9805 |
|
58 |
+
| 0.0024 | 9.0 | 4500 | 0.1709 | 0.9795 |
|
59 |
+
| 0.0049 | 10.0 | 5000 | 0.1743 | 0.9781 |
|
60 |
+
| 0.0003 | 11.0 | 5500 | 0.1898 | 0.9785 |
|
61 |
+
| 0.0028 | 12.0 | 6000 | 0.2119 | 0.9773 |
|
62 |
+
| 0.0013 | 13.0 | 6500 | 0.1929 | 0.9786 |
|
63 |
+
| 0.0 | 14.0 | 7000 | 0.1863 | 0.9801 |
|
64 |
+
| 0.0 | 15.0 | 7500 | 0.1872 | 0.9801 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.28.0
|
70 |
+
- Pytorch 2.0.1+cu118
|
71 |
+
- Datasets 2.12.0
|
72 |
+
- Tokenizers 0.13.3
|