yangwang825
commited on
Commit
•
a09ce64
1
Parent(s):
ca3e491
Create modeling_svector.py
Browse files- modeling_svector.py +548 -0
modeling_svector.py
ADDED
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import typing as tp
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from transformers.utils import ModelOutput
|
7 |
+
from transformers.modeling_utils import PreTrainedModel
|
8 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
9 |
+
|
10 |
+
from .helpers_svector import Fbank
|
11 |
+
from .configuration_svector import SvectorConfig
|
12 |
+
|
13 |
+
|
14 |
+
class InputNormalization(nn.Module):
|
15 |
+
|
16 |
+
spk_dict_mean: tp.Dict[int, torch.Tensor]
|
17 |
+
spk_dict_std: tp.Dict[int, torch.Tensor]
|
18 |
+
spk_dict_count: tp.Dict[int, int]
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
mean_norm=True,
|
23 |
+
std_norm=True,
|
24 |
+
norm_type="global",
|
25 |
+
avg_factor=None,
|
26 |
+
requires_grad=False,
|
27 |
+
update_until_epoch=3,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.mean_norm = mean_norm
|
31 |
+
self.std_norm = std_norm
|
32 |
+
self.norm_type = norm_type
|
33 |
+
self.avg_factor = avg_factor
|
34 |
+
self.requires_grad = requires_grad
|
35 |
+
self.glob_mean = torch.tensor([0])
|
36 |
+
self.glob_std = torch.tensor([0])
|
37 |
+
self.spk_dict_mean = {}
|
38 |
+
self.spk_dict_std = {}
|
39 |
+
self.spk_dict_count = {}
|
40 |
+
self.weight = 1.0
|
41 |
+
self.count = 0
|
42 |
+
self.eps = 1e-10
|
43 |
+
self.update_until_epoch = update_until_epoch
|
44 |
+
|
45 |
+
def forward(self, input_values, lengths=None, spk_ids=torch.tensor([]), epoch=0):
|
46 |
+
"""Returns the tensor with the surrounding context.
|
47 |
+
|
48 |
+
Arguments
|
49 |
+
---------
|
50 |
+
x : tensor
|
51 |
+
A batch of tensors.
|
52 |
+
lengths : tensor
|
53 |
+
A batch of tensors containing the relative length of each
|
54 |
+
sentence (e.g, [0.7, 0.9, 1.0]). It is used to avoid
|
55 |
+
computing stats on zero-padded steps.
|
56 |
+
spk_ids : tensor containing the ids of each speaker (e.g, [0 10 6]).
|
57 |
+
It is used to perform per-speaker normalization when
|
58 |
+
norm_type='speaker'.
|
59 |
+
"""
|
60 |
+
x = input_values
|
61 |
+
N_batches = x.shape[0]
|
62 |
+
|
63 |
+
current_means = []
|
64 |
+
current_stds = []
|
65 |
+
|
66 |
+
for snt_id in range(N_batches):
|
67 |
+
# Avoiding padded time steps
|
68 |
+
# lengths = torch.sum(attention_mask, dim=1)
|
69 |
+
# relative_lengths = lengths / torch.max(lengths)
|
70 |
+
# actual_size = torch.round(relative_lengths[snt_id] * x.shape[1]).int()
|
71 |
+
actual_size = torch.round(lengths[snt_id] * x.shape[1]).int()
|
72 |
+
|
73 |
+
# computing statistics
|
74 |
+
current_mean, current_std = self._compute_current_stats(
|
75 |
+
x[snt_id, 0:actual_size, ...]
|
76 |
+
)
|
77 |
+
|
78 |
+
current_means.append(current_mean)
|
79 |
+
current_stds.append(current_std)
|
80 |
+
|
81 |
+
if self.norm_type == "sentence":
|
82 |
+
x[snt_id] = (x[snt_id] - current_mean.data) / current_std.data
|
83 |
+
|
84 |
+
if self.norm_type == "speaker":
|
85 |
+
spk_id = int(spk_ids[snt_id][0])
|
86 |
+
|
87 |
+
if self.training:
|
88 |
+
if spk_id not in self.spk_dict_mean:
|
89 |
+
# Initialization of the dictionary
|
90 |
+
self.spk_dict_mean[spk_id] = current_mean
|
91 |
+
self.spk_dict_std[spk_id] = current_std
|
92 |
+
self.spk_dict_count[spk_id] = 1
|
93 |
+
|
94 |
+
else:
|
95 |
+
self.spk_dict_count[spk_id] = (
|
96 |
+
self.spk_dict_count[spk_id] + 1
|
97 |
+
)
|
98 |
+
|
99 |
+
if self.avg_factor is None:
|
100 |
+
self.weight = 1 / self.spk_dict_count[spk_id]
|
101 |
+
else:
|
102 |
+
self.weight = self.avg_factor
|
103 |
+
|
104 |
+
self.spk_dict_mean[spk_id] = (
|
105 |
+
(1 - self.weight) * self.spk_dict_mean[spk_id]
|
106 |
+
+ self.weight * current_mean
|
107 |
+
)
|
108 |
+
self.spk_dict_std[spk_id] = (
|
109 |
+
(1 - self.weight) * self.spk_dict_std[spk_id]
|
110 |
+
+ self.weight * current_std
|
111 |
+
)
|
112 |
+
|
113 |
+
self.spk_dict_mean[spk_id].detach()
|
114 |
+
self.spk_dict_std[spk_id].detach()
|
115 |
+
|
116 |
+
speaker_mean = self.spk_dict_mean[spk_id].data
|
117 |
+
speaker_std = self.spk_dict_std[spk_id].data
|
118 |
+
else:
|
119 |
+
if spk_id in self.spk_dict_mean:
|
120 |
+
speaker_mean = self.spk_dict_mean[spk_id].data
|
121 |
+
speaker_std = self.spk_dict_std[spk_id].data
|
122 |
+
else:
|
123 |
+
speaker_mean = current_mean.data
|
124 |
+
speaker_std = current_std.data
|
125 |
+
|
126 |
+
x[snt_id] = (x[snt_id] - speaker_mean) / speaker_std
|
127 |
+
|
128 |
+
if self.norm_type == "batch" or self.norm_type == "global":
|
129 |
+
current_mean = torch.mean(torch.stack(current_means), dim=0)
|
130 |
+
current_std = torch.mean(torch.stack(current_stds), dim=0)
|
131 |
+
|
132 |
+
if self.norm_type == "batch":
|
133 |
+
x = (x - current_mean.data) / (current_std.data)
|
134 |
+
|
135 |
+
if self.norm_type == "global":
|
136 |
+
if self.training:
|
137 |
+
if self.count == 0:
|
138 |
+
self.glob_mean = current_mean
|
139 |
+
self.glob_std = current_std
|
140 |
+
|
141 |
+
elif epoch < self.update_until_epoch:
|
142 |
+
if self.avg_factor is None:
|
143 |
+
self.weight = 1 / (self.count + 1)
|
144 |
+
else:
|
145 |
+
self.weight = self.avg_factor
|
146 |
+
|
147 |
+
self.glob_mean = (
|
148 |
+
1 - self.weight
|
149 |
+
) * self.glob_mean + self.weight * current_mean
|
150 |
+
|
151 |
+
self.glob_std = (
|
152 |
+
1 - self.weight
|
153 |
+
) * self.glob_std + self.weight * current_std
|
154 |
+
|
155 |
+
self.glob_mean.detach()
|
156 |
+
self.glob_std.detach()
|
157 |
+
|
158 |
+
self.count = self.count + 1
|
159 |
+
|
160 |
+
x = (x - self.glob_mean.data) / (self.glob_std.data)
|
161 |
+
|
162 |
+
return x
|
163 |
+
|
164 |
+
def _compute_current_stats(self, x):
|
165 |
+
"""Returns the tensor with the surrounding context.
|
166 |
+
|
167 |
+
Arguments
|
168 |
+
---------
|
169 |
+
x : tensor
|
170 |
+
A batch of tensors.
|
171 |
+
"""
|
172 |
+
# Compute current mean
|
173 |
+
if self.mean_norm:
|
174 |
+
current_mean = torch.mean(x, dim=0).detach().data
|
175 |
+
else:
|
176 |
+
current_mean = torch.tensor([0.0], device=x.device)
|
177 |
+
|
178 |
+
# Compute current std
|
179 |
+
if self.std_norm:
|
180 |
+
current_std = torch.std(x, dim=0).detach().data
|
181 |
+
else:
|
182 |
+
current_std = torch.tensor([1.0], device=x.device)
|
183 |
+
|
184 |
+
# Improving numerical stability of std
|
185 |
+
current_std = torch.max(
|
186 |
+
current_std, self.eps * torch.ones_like(current_std)
|
187 |
+
)
|
188 |
+
|
189 |
+
return current_mean, current_std
|
190 |
+
|
191 |
+
def _statistics_dict(self):
|
192 |
+
"""Fills the dictionary containing the normalization statistics."""
|
193 |
+
state = {}
|
194 |
+
state["count"] = self.count
|
195 |
+
state["glob_mean"] = self.glob_mean
|
196 |
+
state["glob_std"] = self.glob_std
|
197 |
+
state["spk_dict_mean"] = self.spk_dict_mean
|
198 |
+
state["spk_dict_std"] = self.spk_dict_std
|
199 |
+
state["spk_dict_count"] = self.spk_dict_count
|
200 |
+
|
201 |
+
return state
|
202 |
+
|
203 |
+
def _load_statistics_dict(self, state):
|
204 |
+
"""Loads the dictionary containing the statistics.
|
205 |
+
|
206 |
+
Arguments
|
207 |
+
---------
|
208 |
+
state : dict
|
209 |
+
A dictionary containing the normalization statistics.
|
210 |
+
"""
|
211 |
+
self.count = state["count"]
|
212 |
+
if isinstance(state["glob_mean"], int):
|
213 |
+
self.glob_mean = state["glob_mean"]
|
214 |
+
self.glob_std = state["glob_std"]
|
215 |
+
else:
|
216 |
+
self.glob_mean = state["glob_mean"] # .to(self.device_inp)
|
217 |
+
self.glob_std = state["glob_std"] # .to(self.device_inp)
|
218 |
+
|
219 |
+
# Loading the spk_dict_mean in the right device
|
220 |
+
self.spk_dict_mean = {}
|
221 |
+
for spk in state["spk_dict_mean"]:
|
222 |
+
self.spk_dict_mean[spk] = state["spk_dict_mean"][spk].to(
|
223 |
+
self.device_inp
|
224 |
+
)
|
225 |
+
|
226 |
+
# Loading the spk_dict_std in the right device
|
227 |
+
self.spk_dict_std = {}
|
228 |
+
for spk in state["spk_dict_std"]:
|
229 |
+
self.spk_dict_std[spk] = state["spk_dict_std"][spk].to(
|
230 |
+
self.device_inp
|
231 |
+
)
|
232 |
+
|
233 |
+
self.spk_dict_count = state["spk_dict_count"]
|
234 |
+
|
235 |
+
return state
|
236 |
+
|
237 |
+
def to(self, device):
|
238 |
+
"""Puts the needed tensors in the right device."""
|
239 |
+
self = super(InputNormalization, self).to(device)
|
240 |
+
self.glob_mean = self.glob_mean.to(device)
|
241 |
+
self.glob_std = self.glob_std.to(device)
|
242 |
+
for spk in self.spk_dict_mean:
|
243 |
+
self.spk_dict_mean[spk] = self.spk_dict_mean[spk].to(device)
|
244 |
+
self.spk_dict_std[spk] = self.spk_dict_std[spk].to(device)
|
245 |
+
return self
|
246 |
+
|
247 |
+
|
248 |
+
class TdnnLayer(nn.Module):
|
249 |
+
|
250 |
+
def __init__(
|
251 |
+
self,
|
252 |
+
in_channels,
|
253 |
+
out_channels,
|
254 |
+
kernel_size,
|
255 |
+
dilation=1,
|
256 |
+
stride=1,
|
257 |
+
padding=0,
|
258 |
+
padding_mode="reflect",
|
259 |
+
activation=torch.nn.LeakyReLU,
|
260 |
+
):
|
261 |
+
super(TdnnLayer, self).__init__()
|
262 |
+
self.in_channels = in_channels
|
263 |
+
self.out_channels = out_channels
|
264 |
+
self.kernel_size = kernel_size
|
265 |
+
self.dilation = dilation
|
266 |
+
self.stride = stride
|
267 |
+
self.padding = padding
|
268 |
+
self.padding_mode = padding_mode
|
269 |
+
self.activation = activation
|
270 |
+
|
271 |
+
self.conv = nn.Conv1d(
|
272 |
+
self.in_channels,
|
273 |
+
self.out_channels,
|
274 |
+
self.kernel_size,
|
275 |
+
dilation=self.dilation,
|
276 |
+
padding=self.padding
|
277 |
+
)
|
278 |
+
|
279 |
+
# Set Affine=false to be compatible with the original kaldi version
|
280 |
+
# self.ln = nn.LayerNorm(out_channels, elementwise_affine=False)
|
281 |
+
self.norm = nn.BatchNorm1d(out_channels, affine=False)
|
282 |
+
|
283 |
+
def forward(self, x):
|
284 |
+
x = self._manage_padding(x, self.kernel_size, self.dilation, self.stride)
|
285 |
+
out = self.conv(x)
|
286 |
+
out = self.activation()(out)
|
287 |
+
out = self.norm(out)
|
288 |
+
return out
|
289 |
+
|
290 |
+
def _manage_padding(
|
291 |
+
self, x, kernel_size: int, dilation: int, stride: int,
|
292 |
+
):
|
293 |
+
# Detecting input shape
|
294 |
+
L_in = self.in_channels
|
295 |
+
|
296 |
+
# Time padding
|
297 |
+
padding = get_padding_elem(L_in, stride, kernel_size, dilation)
|
298 |
+
|
299 |
+
# Applying padding
|
300 |
+
x = F.pad(x, padding, mode=self.padding_mode)
|
301 |
+
|
302 |
+
return x
|
303 |
+
|
304 |
+
|
305 |
+
def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int):
|
306 |
+
"""This function computes the number of elements to add for zero-padding.
|
307 |
+
|
308 |
+
Arguments
|
309 |
+
---------
|
310 |
+
L_in : int
|
311 |
+
stride: int
|
312 |
+
kernel_size : int
|
313 |
+
dilation : int
|
314 |
+
"""
|
315 |
+
if stride > 1:
|
316 |
+
padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)]
|
317 |
+
|
318 |
+
else:
|
319 |
+
L_out = (
|
320 |
+
math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1
|
321 |
+
)
|
322 |
+
padding = [
|
323 |
+
math.floor((L_in - L_out) / 2),
|
324 |
+
math.floor((L_in - L_out) / 2),
|
325 |
+
]
|
326 |
+
return padding
|
327 |
+
|
328 |
+
|
329 |
+
class StatisticsPooling(nn.Module):
|
330 |
+
|
331 |
+
def __init__(self, return_mean=True, return_std=True):
|
332 |
+
super().__init__()
|
333 |
+
|
334 |
+
# Small value for GaussNoise
|
335 |
+
self.eps = 1e-5
|
336 |
+
self.return_mean = return_mean
|
337 |
+
self.return_std = return_std
|
338 |
+
if not (self.return_mean or self.return_std):
|
339 |
+
raise ValueError(
|
340 |
+
"both of statistics are equal to False \n"
|
341 |
+
"consider enabling mean and/or std statistic pooling"
|
342 |
+
)
|
343 |
+
|
344 |
+
def forward(self, input_values, lengths=None):
|
345 |
+
"""Calculates mean and std for a batch (input tensor).
|
346 |
+
|
347 |
+
Arguments
|
348 |
+
---------
|
349 |
+
x : torch.Tensor
|
350 |
+
It represents a tensor for a mini-batch.
|
351 |
+
"""
|
352 |
+
x = input_values
|
353 |
+
if lengths is None:
|
354 |
+
if self.return_mean:
|
355 |
+
mean = x.mean(dim=1)
|
356 |
+
if self.return_std:
|
357 |
+
std = x.std(dim=1)
|
358 |
+
else:
|
359 |
+
mean = []
|
360 |
+
std = []
|
361 |
+
for snt_id in range(x.shape[0]):
|
362 |
+
# Avoiding padded time steps
|
363 |
+
# lengths = torch.sum(attention_mask, dim=1)
|
364 |
+
# relative_lengths = lengths / torch.max(lengths)
|
365 |
+
# actual_size = torch.round(relative_lengths[snt_id] * x.shape[1]).int()
|
366 |
+
actual_size = int(torch.round(lengths[snt_id] * x.shape[1]))
|
367 |
+
|
368 |
+
# computing statistics
|
369 |
+
if self.return_mean:
|
370 |
+
mean.append(
|
371 |
+
torch.mean(x[snt_id, 0:actual_size, ...], dim=0)
|
372 |
+
)
|
373 |
+
if self.return_std:
|
374 |
+
std.append(torch.std(x[snt_id, 0:actual_size, ...], dim=0))
|
375 |
+
if self.return_mean:
|
376 |
+
mean = torch.stack(mean)
|
377 |
+
if self.return_std:
|
378 |
+
std = torch.stack(std)
|
379 |
+
|
380 |
+
if self.return_mean:
|
381 |
+
gnoise = self._get_gauss_noise(mean.size(), device=mean.device)
|
382 |
+
gnoise = gnoise
|
383 |
+
mean += gnoise
|
384 |
+
if self.return_std:
|
385 |
+
std = std + self.eps
|
386 |
+
|
387 |
+
# Append mean and std of the batch
|
388 |
+
if self.return_mean and self.return_std:
|
389 |
+
pooled_stats = torch.cat((mean, std), dim=1)
|
390 |
+
pooled_stats = pooled_stats.unsqueeze(1)
|
391 |
+
elif self.return_mean:
|
392 |
+
pooled_stats = mean.unsqueeze(1)
|
393 |
+
elif self.return_std:
|
394 |
+
pooled_stats = std.unsqueeze(1)
|
395 |
+
|
396 |
+
return pooled_stats
|
397 |
+
|
398 |
+
def _get_gauss_noise(self, shape_of_tensor, device="cpu"):
|
399 |
+
"""Returns a tensor of epsilon Gaussian noise.
|
400 |
+
|
401 |
+
Arguments
|
402 |
+
---------
|
403 |
+
shape_of_tensor : tensor
|
404 |
+
It represents the size of tensor for generating Gaussian noise.
|
405 |
+
"""
|
406 |
+
gnoise = torch.randn(shape_of_tensor, device=device)
|
407 |
+
gnoise -= torch.min(gnoise)
|
408 |
+
gnoise /= torch.max(gnoise)
|
409 |
+
gnoise = self.eps * ((1 - 9) * gnoise + 9)
|
410 |
+
|
411 |
+
return gnoise
|
412 |
+
|
413 |
+
|
414 |
+
class SvectorEmbedder(nn.Module):
|
415 |
+
|
416 |
+
def __init__(
|
417 |
+
self,
|
418 |
+
in_channels=40,
|
419 |
+
num_heads=8,
|
420 |
+
num_layers=5,
|
421 |
+
activation=torch.nn.LeakyReLU,
|
422 |
+
hidden_size=512,
|
423 |
+
) -> None:
|
424 |
+
super(SvectorEmbedder, self).__init__()
|
425 |
+
self.tdnn = TdnnLayer(
|
426 |
+
in_channels=in_channels,
|
427 |
+
out_channels=hidden_size,
|
428 |
+
kernel_size=1,
|
429 |
+
dilation=1,
|
430 |
+
activation=activation,
|
431 |
+
)
|
432 |
+
encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_size, nhead=num_heads)
|
433 |
+
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
434 |
+
self.pooler = StatisticsPooling()
|
435 |
+
self.fc = nn.Linear(2 * hidden_size, hidden_size)
|
436 |
+
|
437 |
+
def forward(self, input_values, lengths=None):
|
438 |
+
"""
|
439 |
+
x: [B, T, F]
|
440 |
+
"""
|
441 |
+
x = input_values
|
442 |
+
x = self.tdnn(x.transpose(1, 2))
|
443 |
+
last_hidden_state = self.transformer_encoder(x.transpose(1, 2))
|
444 |
+
pooler_output = self.pooler(last_hidden_state, lengths)
|
445 |
+
pooler_output = self.fc(pooler_output.squeeze(1))
|
446 |
+
return ModelOutput(
|
447 |
+
last_hidden_state=last_hidden_state,
|
448 |
+
pooler_output=pooler_output
|
449 |
+
)
|
450 |
+
|
451 |
+
|
452 |
+
class CosineSimilarityHead(torch.nn.Module):
|
453 |
+
"""
|
454 |
+
This class implements the cosine similarity on the top of features.
|
455 |
+
"""
|
456 |
+
def __init__(
|
457 |
+
self,
|
458 |
+
in_channels,
|
459 |
+
lin_blocks=0,
|
460 |
+
hidden_size=192,
|
461 |
+
num_classes=1211,
|
462 |
+
):
|
463 |
+
super().__init__()
|
464 |
+
self.blocks = nn.ModuleList()
|
465 |
+
|
466 |
+
for block_index in range(lin_blocks):
|
467 |
+
self.blocks.extend(
|
468 |
+
[
|
469 |
+
nn.BatchNorm1d(num_features=in_channels),
|
470 |
+
nn.Linear(in_features=in_channels, out_features=hidden_size),
|
471 |
+
]
|
472 |
+
)
|
473 |
+
in_channels = hidden_size
|
474 |
+
|
475 |
+
# Final Layer
|
476 |
+
self.weight = nn.Parameter(
|
477 |
+
torch.FloatTensor(num_classes, in_channels)
|
478 |
+
)
|
479 |
+
nn.init.xavier_uniform_(self.weight)
|
480 |
+
|
481 |
+
def forward(self, x):
|
482 |
+
"""Returns the output probabilities over speakers.
|
483 |
+
|
484 |
+
Arguments
|
485 |
+
---------
|
486 |
+
x : torch.Tensor
|
487 |
+
Torch tensor.
|
488 |
+
"""
|
489 |
+
for layer in self.blocks:
|
490 |
+
x = layer(x)
|
491 |
+
|
492 |
+
# Need to be normalized
|
493 |
+
x = F.linear(F.normalize(x), F.normalize(self.weight))
|
494 |
+
return x
|
495 |
+
|
496 |
+
|
497 |
+
class SvectorPreTrainedModel(PreTrainedModel):
|
498 |
+
|
499 |
+
config_class = SvectorConfig
|
500 |
+
base_model_prefix = "svector"
|
501 |
+
main_input_name = "input_values"
|
502 |
+
supports_gradient_checkpointing = True
|
503 |
+
|
504 |
+
def _init_weights(self, module):
|
505 |
+
"""Initialize the weights"""
|
506 |
+
if isinstance(module, nn.Linear):
|
507 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
508 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
509 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
510 |
+
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
511 |
+
module.bias.data.zero_()
|
512 |
+
module.weight.data.fill_(1.0)
|
513 |
+
elif isinstance(module, nn.Conv1d):
|
514 |
+
nn.init.kaiming_normal_(module.weight.data)
|
515 |
+
|
516 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None:
|
517 |
+
module.bias.data.zero_()
|
518 |
+
|
519 |
+
|
520 |
+
class SvectorModel(SvectorPreTrainedModel):
|
521 |
+
|
522 |
+
def __init__(self, config):
|
523 |
+
super().__init__(config)
|
524 |
+
self.compute_features = Fbank(
|
525 |
+
n_mels=config.n_mels,
|
526 |
+
sample_rate=config.sample_rate,
|
527 |
+
win_length=config.win_length,
|
528 |
+
hop_length=config.hop_length,
|
529 |
+
)
|
530 |
+
self.mean_var_norm = InputNormalization(
|
531 |
+
mean_norm=config.mean_norm,
|
532 |
+
std_norm=config.std_norm,
|
533 |
+
norm_type=config.norm_type
|
534 |
+
)
|
535 |
+
self.embedding_model = SvectorEmbedder(
|
536 |
+
in_channels=config.n_mels,
|
537 |
+
activation=nn.LeakyReLU,
|
538 |
+
num_heads=config.num_heads,
|
539 |
+
num_layers=config.num_layers,
|
540 |
+
hidden_size=config.hidden_size,
|
541 |
+
)
|
542 |
+
|
543 |
+
def forward(self, input_values, lengths=None):
|
544 |
+
x = input_values
|
545 |
+
x = self.compute_features(x)
|
546 |
+
x = self.mean_var_norm(x, lengths)
|
547 |
+
output = self.embedding_model(x, lengths)
|
548 |
+
return output
|