File size: 7,886 Bytes
fa7405d
6efb9bb
 
 
8ee9f3a
 
189e2ef
 
e2bbebd
8ee9f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dabf1d4
 
40e6674
dabf1d4
6e19c43
 
be866a5
 
 
 
 
 
2511426
 
 
6e19c43
 
2511426
 
 
 
6e19c43
 
5e02dcd
2511426
 
 
 
 
 
 
 
 
 
 
6e19c43
 
6dfcfb7
2511426
a5d4d9e
2511426
a431d39
 
 
 
2511426
bafe458
a431d39
 
 
 
 
2511426
 
9dc5cf1
a431d39
2511426
a431d39
2511426
 
 
 
a431d39
2511426
a431d39
 
2511426
a431d39
 
 
 
 
 
2511426
a431d39
 
e6836d8
 
6e19c43
 
8ee9f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
language:
- en
- zh
license: apache-2.0
library_name: transformers
tags:
- llama
- latest
datasets:
- teknium/OpenHermes-2.5
pipeline_tag: text-generation
model-index:
- name: Gigi-Llama3-8B-Chinese-zh
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 59.64
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 80.28
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.91
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 52.14
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 76.48
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.79
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh
      name: Open LLM Leaderboard
---

![image/webp](https://cdn-uploads.huggingface.co/production/uploads/64ef2a96f2b8f40224d7b407/9wZAYV-keBPVtn6-cd17n.webp)

Gigi is fine-tuned on over 1.3 million pieces of high-quality Chinese-English bilingual corpus screened with the state-of-the-art Llama-3-8B-Instruct. It can better handle various downstream tasks and provide you with high-quality Chinese-English bilingual results. We incorporated high-quality fine-tuning data, such as Hermes and glaive-function-calling instructions, into the training, as well as a large amount of GPT4 data translated using GPT3.5. Gigi can meet your needs well in Chinese-English bilingual contexts.

`Gigi` 是 [Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) 在超过130万条经过筛选的高质量中英双语语料上的精调模型,明显增强中文能力。

训练数据来源:

- **英文**:[OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) 包含超过 100 万条 GPT-4 生成精调数据
- **中文**:超过20万条,包含多个高质量中文 SFT 数据集合和校正翻译的 GPT-4 生成数据。

# Gigi-Llama-3-8B-zh

Gigi-Llama-3-8B-zh is the first model in the Gigi series, trained on the Hermes, glaive-function-calling, refgpt_fact_v2 datasets, and some Chinese data translated using GPT3.5. It has also improved the model's behavior in both Chinese and English and further enhanced its Chinese capabilities by incorporating datasets such as COIG-CQIA and alpaca-gpt4-data-zh.

Gigi-Llama-3-8B-zh 是 Gigi 系列的第一个模型,在Hermes、glaive-function-calling、refgpt_fact_v2数据集以及一部分使用GPT3.5翻译成的中文数据上训练,同时改进了模型在中英文上的行为,还加入了COIG-CQIA、alpaca-gpt4-data-zh等中文数据集进一步增强中文能力。

# How to use

Gigi-Llama-3-8B-zh follows the dialogue template of Llama-3-8B-Instruct, using `<|end_of_text|>` as the pad token.

Gigi-Llama-3-8B-zh 遵循 Llama-3-8B-Instruct 的对话模板,pad token 使用 `<|end_of_text|>````
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|>

{{ user_msg_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{{ model_answer_1 }}<|eot_id|>
```

You can use the following code to load the model for inference. For more efficient inference, it is recommended to use vLLM. We will introduce the specific performance of the model later, and will soon update to a larger parameter and better performance fine-tuned version.

您可以使用下面代码加载模型推理,对于更高效的推理建议使用vLLM,我们随后会介绍模型的具体性能,并很快更新更大参数和性能更好的精调版本。

```python
import torch
from transformers import PreTrainedTokenizerFast, AutoModelForCausalLM
from peft import PeftModel
from torch.nn.functional import softmax
device = "cuda"

model_id = "yaojialzc/Gigi-Llama-3-8B-zh"
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype=torch.bfloat16)

messages = [
    {"role": "system", "content": "你是一个AI助手。"},
    {"role": "user", "content": "明朝最后一位皇帝是谁?回答他的名字,然后停止输出"},
]
prompt = tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
)
input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(device)

output = model.generate(
    input_ids,
    do_sample=True,
    temperature=0.01,
    top_k=50,
    top_p=0.7,
    repetition_penalty=1,
    max_length=128,
    pad_token_id=tokenizer.eos_token_id,
)
output = tokenizer.decode(output[0], skip_special_tokens=False)
print(output)
```

The model output of llama 3 does not stop at eot, so it cannot be used out of the box. For the time being, we respect the official behavior and guide the model to output "end_of_text" directly at the end of fine-tuning, making it convenient for immediate fine-tuning in downstream fields.

llama 3 模型输出 eot 时不会停止,无法开箱即用。我们暂时尊重官方的行为,精调时指导模型在最后直接输出 end_of_text,方便目前开箱即用地在下游领域精调。
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_yaojialzc__Gigi-Llama3-8B-Chinese-zh)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |67.04|
|AI2 Reasoning Challenge (25-Shot)|59.64|
|HellaSwag (10-Shot)              |80.28|
|MMLU (5-Shot)                    |66.91|
|TruthfulQA (0-shot)              |52.14|
|Winogrande (5-shot)              |76.48|
|GSM8k (5-shot)                   |66.79|