--- license: apache-2.0 language: - en - zh datasets: - teknium/OpenHermes-2.5 pipeline_tag: text-generation tags: - llama - latest library_name: transformers --- ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/64ef2a96f2b8f40224d7b407/9wZAYV-keBPVtn6-cd17n.webp) Gigi is fine-tuned on over 1.3 million pieces of high-quality Chinese-English bilingual corpus screened with the state-of-the-art Llama-3-8B-Instruct. It can better handle various downstream tasks and provide you with high-quality Chinese-English bilingual results. We incorporated high-quality fine-tuning data, such as Hermes and glaive-function-calling instructions, into the training, as well as a large amount of GPT4 data translated using GPT3.5. Gigi can meet your needs well in Chinese-English bilingual contexts. Gigi 是使用最先进的 Llama-3-8B-Instruct 在超过130万条经过筛选的高质量中英双语语料上进行精调,它能更好地处理各种下游任务,并为您提供高质量的中英双语结果。我们在训练中加入了包含Hermes、glaive-function-calling等高质量的指令精调数据,以及大量使用GPT3.5翻译的GPT4数据,Gigi能很好的在中英双语上满足您的需求。 # Gigi-Llama-3-8B-zh Gigi-Llama-3-8B-zh is the first model in the Gigi series, trained on the Hermes, glaive-function-calling, refgpt_fact_v2 datasets, and some Chinese data translated using GPT3.5. It has also improved the model's behavior in both Chinese and English and further enhanced its Chinese capabilities by incorporating datasets such as COIG-CQIA and alpaca-gpt4-data-zh. Gigi-Llama-3-8B-zh 是 Gigi 系列的第一个模型,在Hermes、glaive-function-calling、refgpt_fact_v2数据集以及一部分使用GPT3.5翻译成的中文数据上训练,同时改进了模型在中英文上的行为,还加入了COIG-CQIA、alpaca-gpt4-data-zh等中文数据集进一步增强中文能力。 # How to use Gigi-Llama-3-8B-zh follows the dialogue template of Llama-3-8B-Instruct, using `<|end_of_text|>` as the pad token. Gigi-Llama-3-8B-zh 遵循 Llama-3-8B-Instruct 的对话模板,pad token 使用 `<|end_of_text|>`。 ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_msg_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {{ model_answer_1 }}<|eot_id|> ``` You can use the following code to load the model for inference. For more efficient inference, it is recommended to use vLLM. We will introduce the specific performance of the model later, and will soon update to a larger parameter and better performance fine-tuned version. 您可以使用下面代码加载模型推理,对于更高效的推理建议使用vLLM,我们随后会介绍模型的具体性能,并很快更新更大参数和性能更好的精调版本。 ```python import torch from transformers import PreTrainedTokenizerFast, AutoModelForCausalLM from peft import PeftModel from torch.nn.functional import softmax device = "cuda" model_id = "yaojialzc/Gigi-Llama-3-8B-zh" tokenizer = PreTrainedTokenizerFast.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype=torch.bfloat16) messages = [ {"role": "system", "content": "你是一个AI助手。"}, {"role": "user", "content": "明朝最后一位皇帝是谁?回答他的名字,然后停止输出"}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(device) output = model.generate( input_ids, do_sample=True, temperature=0.01, top_k=50, top_p=0.7, repetition_penalty=1, max_length=128, pad_token_id=tokenizer.eos_token_id, ) output = tokenizer.decode(output[0], skip_special_tokens=False) print(output) ``` The model output of llama 3 does not stop at eot, so it cannot be used out of the box. For the time being, we respect the official behavior and guide the model to output "end_of_text" directly at the end of fine-tuning, making it convenient for immediate fine-tuning in downstream fields. llama 3 模型输出 eot 时不会停止,无法开箱即用。我们暂时尊重官方的行为,精调时指导模型在最后直接输出 end_of_text,方便目前开箱即用地在下游领域精调。