File size: 1,960 Bytes
56c1103
54886ba
 
 
 
 
 
 
 
 
 
56c1103
 
54886ba
 
56c1103
54886ba
56c1103
54886ba
 
 
 
 
 
56c1103
54886ba
56c1103
54886ba
56c1103
54886ba
56c1103
54886ba
56c1103
54886ba
56c1103
54886ba
56c1103
54886ba
56c1103
54886ba
56c1103
54886ba
 
 
 
 
 
 
 
56c1103
54886ba
56c1103
54886ba
 
 
 
 
 
 
 
 
56c1103
 
54886ba
56c1103
54886ba
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: UBC-NLP/AraT5v2-base-1024
library_name: peft
metrics:
- bleu
- rouge
tags:
- generated_from_trainer
model-index:
- name: araT5-Base-with-IA3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# araT5-Base-with-IA3

This model is a fine-tuned version of [UBC-NLP/AraT5v2-base-1024](https://huggingface.co/UBC-NLP/AraT5v2-base-1024) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5700
- Bleu: 5.2733
- Rouge: 0.2997
- Gen Len: 14.2112

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu   | Rouge  | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------:|
| 8.4777        | 1.0   | 7500  | 4.1503          | 3.0695 | 0.2361 | 14.3284 |
| 5.3262        | 2.0   | 15000 | 3.8670          | 4.0626 | 0.2757 | 14.1688 |
| 5.0341        | 3.0   | 22500 | 3.7264          | 4.5492 | 0.2893 | 14.1428 |
| 4.879         | 4.0   | 30000 | 3.6486          | 4.945  | 0.2955 | 14.224  |
| 4.7908        | 5.0   | 37500 | 3.6025          | 5.1278 | 0.298  | 14.2372 |
| 4.7425        | 6.0   | 45000 | 3.5780          | 5.2779 | 0.2995 | 14.2132 |
| 4.7198        | 7.0   | 52500 | 3.5700          | 5.2733 | 0.2997 | 14.2112 |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1