|
import logging |
|
from math import pi |
|
|
|
import torch |
|
from einops import rearrange, repeat |
|
from torch import nn |
|
|
|
|
|
def broadcat(tensors, dim=-1): |
|
num_tensors = len(tensors) |
|
shape_lens = set(list(map(lambda t: len(t.shape), tensors))) |
|
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" |
|
shape_len = list(shape_lens)[0] |
|
dim = (dim + shape_len) if dim < 0 else dim |
|
dims = list(zip(*map(lambda t: list(t.shape), tensors))) |
|
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] |
|
assert all( |
|
[*map(lambda t: len(set(t[1])) <= 2, expandable_dims)] |
|
), "invalid dimensions for broadcastable concatentation" |
|
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) |
|
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) |
|
expanded_dims.insert(dim, (dim, dims[dim])) |
|
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) |
|
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) |
|
return torch.cat(tensors, dim=dim) |
|
|
|
|
|
def rotate_half(x): |
|
x = rearrange(x, "... (d r) -> ... d r", r=2) |
|
x1, x2 = x.unbind(dim=-1) |
|
x = torch.stack((-x2, x1), dim=-1) |
|
return rearrange(x, "... d r -> ... (d r)") |
|
|
|
|
|
class VisionRotaryEmbeddingFast(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
pt_seq_len, |
|
ft_seq_len=None, |
|
custom_freqs=None, |
|
freqs_for="lang", |
|
theta=10000, |
|
max_freq=10, |
|
num_freqs=1, |
|
patch_dropout=0.0, |
|
): |
|
super().__init__() |
|
if custom_freqs: |
|
freqs = custom_freqs |
|
elif freqs_for == "lang": |
|
freqs = 1.0 / ( |
|
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) |
|
) |
|
elif freqs_for == "pixel": |
|
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi |
|
elif freqs_for == "constant": |
|
freqs = torch.ones(num_freqs).float() |
|
else: |
|
raise ValueError(f"unknown modality {freqs_for}") |
|
|
|
if ft_seq_len is None: |
|
ft_seq_len = pt_seq_len |
|
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len |
|
|
|
freqs = torch.einsum("..., f -> ... f", t, freqs) |
|
freqs = repeat(freqs, "... n -> ... (n r)", r=2) |
|
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1) |
|
|
|
freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) |
|
freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) |
|
|
|
self.patch_dropout = patch_dropout |
|
|
|
self.register_buffer("freqs_cos", freqs_cos) |
|
self.register_buffer("freqs_sin", freqs_sin) |
|
|
|
logging.info(f"Shape of rope freq: {self.freqs_cos.shape}") |
|
|
|
def forward(self, t, patch_indices_keep=None): |
|
if patch_indices_keep is not None: |
|
batch = t.size()[0] |
|
batch_indices = torch.arange(batch) |
|
batch_indices = batch_indices[..., None] |
|
|
|
freqs_cos = repeat( |
|
self.freqs_cos, "i j -> n i m j", n=t.shape[0], m=t.shape[1] |
|
) |
|
freqs_sin = repeat( |
|
self.freqs_sin, "i j -> n i m j", n=t.shape[0], m=t.shape[1] |
|
) |
|
|
|
freqs_cos = freqs_cos[batch_indices, patch_indices_keep] |
|
freqs_cos = rearrange(freqs_cos, "n i m j -> n m i j") |
|
freqs_sin = freqs_sin[batch_indices, patch_indices_keep] |
|
freqs_sin = rearrange(freqs_sin, "n i m j -> n m i j") |
|
|
|
return t * freqs_cos + rotate_half(t) * freqs_sin |
|
|
|
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin |
|
|
|
|
|
import logging |
|
|
|
|
|
|
|
|
|
import math |
|
import os |
|
from dataclasses import dataclass |
|
from functools import partial |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
try: |
|
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ |
|
except: |
|
from timm.layers import drop_path, to_2tuple, trunc_normal_ |
|
|
|
|
|
class PatchDropout(nn.Module): |
|
""" |
|
https://arxiv.org/abs/2212.00794 |
|
""" |
|
|
|
def __init__(self, prob, exclude_first_token=True): |
|
super().__init__() |
|
assert 0 <= prob < 1.0 |
|
self.prob = prob |
|
self.exclude_first_token = exclude_first_token |
|
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}") |
|
|
|
def forward(self, x): |
|
if not self.training or self.prob == 0.0: |
|
return x |
|
|
|
if self.exclude_first_token: |
|
cls_tokens, x = x[:, :1], x[:, 1:] |
|
else: |
|
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) |
|
|
|
batch = x.size()[0] |
|
num_tokens = x.size()[1] |
|
|
|
batch_indices = torch.arange(batch) |
|
batch_indices = batch_indices[..., None] |
|
|
|
keep_prob = 1 - self.prob |
|
num_patches_keep = max(1, int(num_tokens * keep_prob)) |
|
|
|
rand = torch.randn(batch, num_tokens) |
|
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices |
|
|
|
x = x[batch_indices, patch_indices_keep] |
|
|
|
if self.exclude_first_token: |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
if self.training and os.getenv("RoPE") == "1": |
|
return x, patch_indices_keep |
|
|
|
return x |
|
|
|
|
|
if os.getenv("ENV_TYPE") == "deepspeed": |
|
try: |
|
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint |
|
except: |
|
from torch.utils.checkpoint import checkpoint |
|
else: |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
import xformers.ops as xops |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return "p={}".format(self.drop_prob) |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
drop=0.0, |
|
subln=False, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
|
|
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() |
|
|
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
|
|
|
|
x = self.ffn_ln(x) |
|
|
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class SwiGLU(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.SiLU, |
|
drop=0.0, |
|
norm_layer=nn.LayerNorm, |
|
subln=False, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
|
|
self.w1 = nn.Linear(in_features, hidden_features) |
|
self.w2 = nn.Linear(in_features, hidden_features) |
|
|
|
self.act = act_layer() |
|
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() |
|
self.w3 = nn.Linear(hidden_features, out_features) |
|
|
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x1 = self.w1(x) |
|
x2 = self.w2(x) |
|
hidden = self.act(x1) * x2 |
|
x = self.ffn_ln(hidden) |
|
x = self.w3(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
window_size=None, |
|
attn_head_dim=None, |
|
xattn=False, |
|
rope=None, |
|
subln=False, |
|
norm_layer=nn.LayerNorm, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.subln = subln |
|
if self.subln: |
|
self.q_proj = nn.Linear(dim, all_head_dim, bias=False) |
|
self.k_proj = nn.Linear(dim, all_head_dim, bias=False) |
|
self.v_proj = nn.Linear(dim, all_head_dim, bias=False) |
|
else: |
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
|
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
if window_size: |
|
self.window_size = window_size |
|
self.num_relative_distance = (2 * window_size[0] - 1) * ( |
|
2 * window_size[1] - 1 |
|
) + 3 |
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros(self.num_relative_distance, num_heads) |
|
) |
|
|
|
|
|
|
|
coords_h = torch.arange(window_size[0]) |
|
coords_w = torch.arange(window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = ( |
|
coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
) |
|
relative_coords = relative_coords.permute( |
|
1, 2, 0 |
|
).contiguous() |
|
relative_coords[:, :, 0] += window_size[0] - 1 |
|
relative_coords[:, :, 1] += window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 |
|
relative_position_index = torch.zeros( |
|
size=(window_size[0] * window_size[1] + 1,) * 2, |
|
dtype=relative_coords.dtype, |
|
) |
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) |
|
relative_position_index[0, 0:] = self.num_relative_distance - 3 |
|
relative_position_index[0:, 0] = self.num_relative_distance - 2 |
|
relative_position_index[0, 0] = self.num_relative_distance - 1 |
|
|
|
self.register_buffer("relative_position_index", relative_position_index) |
|
else: |
|
self.window_size = None |
|
self.relative_position_bias_table = None |
|
self.relative_position_index = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity() |
|
|
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.xattn = xattn |
|
self.xattn_drop = attn_drop |
|
|
|
self.rope = rope |
|
|
|
def forward(self, x, rel_pos_bias=None, attn_mask=None): |
|
B, N, C = x.shape |
|
if self.subln: |
|
print("self.q_proj.weight.dtype=", self.q_proj.weight.dtype) |
|
if self.q_proj.weight.dtype == torch.uint8: |
|
import bitsandbytes as bnb |
|
|
|
|
|
|
|
|
|
q = bnb.matmul_4bit( |
|
x, |
|
self.q_proj.weight.t(), |
|
bias=self.q_bias, |
|
quant_state=self.q_proj.weight.quant_state, |
|
) |
|
k = bnb.matmul_4bit( |
|
x, |
|
self.k_proj.weight.t(), |
|
bias=None, |
|
quant_state=self.k_proj.weight.quant_state, |
|
) |
|
v = bnb.matmul_4bit( |
|
x, |
|
self.v_proj.weight.t(), |
|
bias=self.v_bias, |
|
quant_state=self.v_proj.weight.quant_state, |
|
) |
|
elif self.q_proj.weight.dtype == torch.int8: |
|
import bitsandbytes as bnb |
|
|
|
def make_state(weight_v): |
|
state = bnb.MatmulLtState() |
|
state.threshold = 0 |
|
state.has_fp16_weights = weight_v.has_fp16_weights |
|
state.memory_efficient_backward = False |
|
state.CB = weight_v.CB |
|
state.SCB = weight_v.SCB |
|
return state |
|
|
|
q = bnb.matmul( |
|
x, |
|
self.q_proj.weight, |
|
bias=self.q_bias, |
|
state=make_state(self.q_proj.weight), |
|
) |
|
k = bnb.matmul( |
|
x, |
|
self.k_proj.weight, |
|
bias=None, |
|
state=make_state(self.k_proj.weight), |
|
) |
|
v = bnb.matmul( |
|
x, |
|
self.v_proj.weight, |
|
bias=self.v_bias, |
|
state=make_state(self.v_proj.weight), |
|
) |
|
else: |
|
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias) |
|
k = F.linear(input=x, weight=self.k_proj.weight, bias=None) |
|
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias) |
|
|
|
q = q.reshape(B, N, self.num_heads, -1).permute( |
|
0, 2, 1, 3 |
|
) |
|
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) |
|
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) |
|
else: |
|
|
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat( |
|
( |
|
self.q_bias, |
|
torch.zeros_like(self.v_bias, requires_grad=False), |
|
self.v_bias, |
|
) |
|
) |
|
|
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute( |
|
2, 0, 3, 1, 4 |
|
) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
if self.rope: |
|
|
|
q_t = q[:, :, 1:, :] |
|
ro_q_t = self.rope(q_t) |
|
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v) |
|
|
|
k_t = k[:, :, 1:, :] |
|
ro_k_t = self.rope(k_t) |
|
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v) |
|
|
|
if self.xattn: |
|
q = q.permute(0, 2, 1, 3) |
|
k = k.permute(0, 2, 1, 3) |
|
v = v.permute(0, 2, 1, 3) |
|
|
|
x = xops.memory_efficient_attention( |
|
q, |
|
k, |
|
v, |
|
p=self.xattn_drop, |
|
scale=self.scale, |
|
) |
|
x = x.reshape(B, N, -1) |
|
x = self.inner_attn_ln(x) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
|
|
if self.relative_position_bias_table is not None: |
|
relative_position_bias = self.relative_position_bias_table[ |
|
self.relative_position_index.view(-1) |
|
].view( |
|
self.window_size[0] * self.window_size[1] + 1, |
|
self.window_size[0] * self.window_size[1] + 1, |
|
-1, |
|
) |
|
relative_position_bias = relative_position_bias.permute( |
|
2, 0, 1 |
|
).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn) |
|
|
|
if rel_pos_bias is not None: |
|
attn = attn + rel_pos_bias.type_as(attn) |
|
|
|
if attn_mask is not None: |
|
attn_mask = attn_mask.bool() |
|
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
x = self.inner_attn_ln(x) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
init_values=None, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
window_size=None, |
|
attn_head_dim=None, |
|
xattn=False, |
|
rope=None, |
|
postnorm=False, |
|
subln=False, |
|
naiveswiglu=False, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
window_size=window_size, |
|
attn_head_dim=attn_head_dim, |
|
xattn=xattn, |
|
rope=rope, |
|
subln=subln, |
|
norm_layer=norm_layer, |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
|
if naiveswiglu: |
|
self.mlp = SwiGLU( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
subln=subln, |
|
norm_layer=norm_layer, |
|
) |
|
else: |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
subln=subln, |
|
drop=drop, |
|
) |
|
|
|
if init_values is not None and init_values > 0: |
|
self.gamma_1 = nn.Parameter( |
|
init_values * torch.ones((dim)), requires_grad=True |
|
) |
|
self.gamma_2 = nn.Parameter( |
|
init_values * torch.ones((dim)), requires_grad=True |
|
) |
|
else: |
|
self.gamma_1, self.gamma_2 = None, None |
|
|
|
self.postnorm = postnorm |
|
|
|
def forward(self, x, rel_pos_bias=None, attn_mask=None): |
|
if self.gamma_1 is None: |
|
if self.postnorm: |
|
x = x + self.drop_path( |
|
self.norm1( |
|
self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask) |
|
) |
|
) |
|
x = x + self.drop_path(self.norm2(self.mlp(x))) |
|
else: |
|
x = x + self.drop_path( |
|
self.attn( |
|
self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask |
|
) |
|
) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
else: |
|
if self.postnorm: |
|
x = x + self.drop_path( |
|
self.gamma_1 |
|
* self.norm1( |
|
self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask) |
|
) |
|
) |
|
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) |
|
else: |
|
x = x + self.drop_path( |
|
self.gamma_1 |
|
* self.attn( |
|
self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask |
|
) |
|
) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""Image to Patch Embedding""" |
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) |
|
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size |
|
) |
|
|
|
def forward(self, x, **kwargs): |
|
B, C, H, W = x.shape |
|
|
|
assert ( |
|
H == self.img_size[0] and W == self.img_size[1] |
|
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class RelativePositionBias(nn.Module): |
|
|
|
def __init__(self, window_size, num_heads): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.num_relative_distance = (2 * window_size[0] - 1) * ( |
|
2 * window_size[1] - 1 |
|
) + 3 |
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros(self.num_relative_distance, num_heads) |
|
) |
|
|
|
|
|
|
|
coords_h = torch.arange(window_size[0]) |
|
coords_w = torch.arange(window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = ( |
|
coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
) |
|
relative_coords = relative_coords.permute( |
|
1, 2, 0 |
|
).contiguous() |
|
relative_coords[:, :, 0] += window_size[0] - 1 |
|
relative_coords[:, :, 1] += window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 |
|
relative_position_index = torch.zeros( |
|
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype |
|
) |
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) |
|
relative_position_index[0, 0:] = self.num_relative_distance - 3 |
|
relative_position_index[0:, 0] = self.num_relative_distance - 2 |
|
relative_position_index[0, 0] = self.num_relative_distance - 1 |
|
|
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
def forward(self): |
|
relative_position_bias = self.relative_position_bias_table[ |
|
self.relative_position_index.view(-1) |
|
].view( |
|
self.window_size[0] * self.window_size[1] + 1, |
|
self.window_size[0] * self.window_size[1] + 1, |
|
-1, |
|
) |
|
return relative_position_bias.permute(2, 0, 1).contiguous() |
|
|
|
|
|
class EVAVisionTransformer(nn.Module): |
|
"""Vision Transformer with support for patch or hybrid CNN input stage""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
num_classes=1000, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop_rate=0.0, |
|
attn_drop_rate=0.0, |
|
drop_path_rate=0.0, |
|
norm_layer=nn.LayerNorm, |
|
init_values=None, |
|
patch_dropout=0.0, |
|
use_abs_pos_emb=True, |
|
use_rel_pos_bias=False, |
|
use_shared_rel_pos_bias=False, |
|
rope=False, |
|
use_mean_pooling=True, |
|
init_scale=0.001, |
|
grad_checkpointing=False, |
|
xattn=False, |
|
postnorm=False, |
|
pt_hw_seq_len=16, |
|
intp_freq=False, |
|
naiveswiglu=False, |
|
subln=False, |
|
): |
|
super().__init__() |
|
self.image_size = img_size |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = ( |
|
embed_dim |
|
) |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
|
|
if use_abs_pos_emb: |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
else: |
|
self.pos_embed = None |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
if use_shared_rel_pos_bias: |
|
self.rel_pos_bias = RelativePositionBias( |
|
window_size=self.patch_embed.patch_shape, num_heads=num_heads |
|
) |
|
else: |
|
self.rel_pos_bias = None |
|
|
|
if rope: |
|
half_head_dim = embed_dim // num_heads // 2 |
|
hw_seq_len = img_size // patch_size |
|
self.rope = VisionRotaryEmbeddingFast( |
|
dim=half_head_dim, |
|
pt_seq_len=pt_hw_seq_len, |
|
ft_seq_len=hw_seq_len if intp_freq else None, |
|
|
|
) |
|
else: |
|
self.rope = None |
|
|
|
self.naiveswiglu = naiveswiglu |
|
|
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, depth) |
|
] |
|
self.use_rel_pos_bias = use_rel_pos_bias |
|
self.blocks = nn.ModuleList( |
|
[ |
|
Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
init_values=init_values, |
|
window_size=( |
|
self.patch_embed.patch_shape if use_rel_pos_bias else None |
|
), |
|
xattn=xattn, |
|
rope=self.rope, |
|
postnorm=postnorm, |
|
subln=subln, |
|
naiveswiglu=naiveswiglu, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) |
|
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None |
|
self.head = ( |
|
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
) |
|
|
|
if self.pos_embed is not None: |
|
trunc_normal_(self.pos_embed, std=0.02) |
|
|
|
trunc_normal_(self.cls_token, std=0.02) |
|
|
|
|
|
self.apply(self._init_weights) |
|
self.fix_init_weight() |
|
|
|
if isinstance(self.head, nn.Linear): |
|
trunc_normal_(self.head.weight, std=0.02) |
|
self.head.weight.data.mul_(init_scale) |
|
self.head.bias.data.mul_(init_scale) |
|
|
|
|
|
self.patch_dropout = ( |
|
PatchDropout(patch_dropout) if patch_dropout > 0.0 else nn.Identity() |
|
) |
|
|
|
self.grad_checkpointing = grad_checkpointing |
|
|
|
def fix_init_weight(self): |
|
def rescale(param, layer_id): |
|
param.div_(math.sqrt(2.0 * layer_id)) |
|
|
|
for layer_id, layer in enumerate(self.blocks): |
|
rescale(layer.attn.proj.weight.data, layer_id + 1) |
|
if self.naiveswiglu: |
|
rescale(layer.mlp.w3.weight.data, layer_id + 1) |
|
else: |
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1) |
|
|
|
def get_cast_dtype(self) -> torch.dtype: |
|
return self.blocks[0].mlp.fc2.weight.dtype |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def get_num_layers(self): |
|
return len(self.blocks) |
|
|
|
def lock(self, unlocked_groups=0, freeze_bn_stats=False): |
|
assert ( |
|
unlocked_groups == 0 |
|
), "partial locking not currently supported for this model" |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {"pos_embed", "cls_token"} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=""): |
|
self.num_classes = num_classes |
|
self.head = ( |
|
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
) |
|
|
|
def forward_features(self, x, return_all_features=False): |
|
|
|
x = self.patch_embed(x) |
|
batch_size, seq_len, _ = x.size() |
|
|
|
cls_tokens = self.cls_token.expand( |
|
batch_size, -1, -1 |
|
) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
if self.pos_embed is not None: |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
|
|
if os.getenv("RoPE") == "1": |
|
if self.training and not isinstance(self.patch_dropout, nn.Identity): |
|
x, patch_indices_keep = self.patch_dropout(x) |
|
self.rope.forward = partial( |
|
self.rope.forward, patch_indices_keep=patch_indices_keep |
|
) |
|
else: |
|
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None) |
|
x = self.patch_dropout(x) |
|
else: |
|
x = self.patch_dropout(x) |
|
|
|
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None |
|
for i, blk in enumerate(self.blocks): |
|
if i == len(self.blocks) - 1: |
|
continue |
|
if self.grad_checkpointing: |
|
x = checkpoint(blk, x, (rel_pos_bias,)) |
|
else: |
|
x = blk(x, rel_pos_bias=rel_pos_bias) |
|
|
|
if not return_all_features: |
|
x = self.norm(x) |
|
if self.fc_norm is not None: |
|
return self.fc_norm(x.mean(1)) |
|
else: |
|
return x[:, 0] |
|
return x |
|
|
|
def forward(self, x, return_all_features=False): |
|
if return_all_features: |
|
return self.forward_features(x, return_all_features) |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm (with cast back to input dtype).""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
return x.to(orig_type) |
|
|
|
|
|
try: |
|
from apex.normalization import FusedLayerNorm |
|
except: |
|
FusedLayerNorm = LayerNorm |
|
print("Please 'pip install apex'") |
|
|
|
|
|
@dataclass |
|
class CLIPVisionCfg: |
|
layers: Union[Tuple[int, int, int, int], int] = 12 |
|
width: int = 768 |
|
head_width: int = 64 |
|
mlp_ratio: float = 4.0 |
|
patch_size: int = 16 |
|
image_size: Union[Tuple[int, int], int] = 224 |
|
ls_init_value: Optional[float] = None |
|
patch_dropout: float = ( |
|
0.0 |
|
) |
|
global_average_pool: bool = ( |
|
False |
|
) |
|
drop_path_rate: Optional[float] = None |
|
timm_model_name: str = ( |
|
None |
|
) |
|
timm_model_pretrained: bool = ( |
|
False |
|
) |
|
timm_pool: str = ( |
|
"avg" |
|
) |
|
timm_proj: str = ( |
|
"linear" |
|
) |
|
timm_proj_bias: bool = False |
|
eva_model_name: str = ( |
|
None |
|
) |
|
qkv_bias: bool = True |
|
fusedLN: bool = False |
|
xattn: bool = False |
|
postnorm: bool = False |
|
rope: bool = False |
|
pt_hw_seq_len: int = 16 |
|
intp_freq: bool = False |
|
naiveswiglu: bool = False |
|
subln: bool = False |
|
|
|
|
|
def _build_vision_tower(embed_dim: int, vision_cfg: CLIPVisionCfg): |
|
if isinstance(vision_cfg, dict): |
|
vision_cfg = CLIPVisionCfg(**vision_cfg) |
|
|
|
if vision_cfg.eva_model_name: |
|
vision_heads = vision_cfg.width // vision_cfg.head_width |
|
norm_layer = LayerNorm |
|
visual = EVAVisionTransformer( |
|
img_size=vision_cfg.image_size, |
|
patch_size=vision_cfg.patch_size, |
|
num_classes=embed_dim, |
|
use_mean_pooling=vision_cfg.global_average_pool, |
|
init_values=vision_cfg.ls_init_value, |
|
patch_dropout=vision_cfg.patch_dropout, |
|
embed_dim=vision_cfg.width, |
|
depth=vision_cfg.layers, |
|
num_heads=vision_heads, |
|
mlp_ratio=vision_cfg.mlp_ratio, |
|
qkv_bias=vision_cfg.qkv_bias, |
|
drop_path_rate=vision_cfg.drop_path_rate, |
|
norm_layer=( |
|
partial(FusedLayerNorm, eps=1e-6) |
|
if vision_cfg.fusedLN |
|
else partial(norm_layer, eps=1e-6) |
|
), |
|
xattn=vision_cfg.xattn, |
|
rope=vision_cfg.rope, |
|
postnorm=vision_cfg.postnorm, |
|
pt_hw_seq_len=vision_cfg.pt_hw_seq_len, |
|
intp_freq=vision_cfg.intp_freq, |
|
naiveswiglu=vision_cfg.naiveswiglu, |
|
subln=vision_cfg.subln, |
|
) |
|
|
|
return visual |
|
|
|
|
|
class Eva2LargeEncoder(nn.Module): |
|
def __init__(self, image_size=224): |
|
super(Eva2LargeEncoder, self).__init__() |
|
self.config = { |
|
"embed_dim": 768, |
|
"vision_cfg": { |
|
"image_size": 336, |
|
"layers": 24, |
|
"width": 1024, |
|
"drop_path_rate": 0, |
|
"head_width": 64, |
|
"mlp_ratio": 2.6667, |
|
"patch_size": 14, |
|
"eva_model_name": "eva-clip-l-14-336", |
|
"xattn": True, |
|
"fusedLN": True, |
|
"rope": True, |
|
"pt_hw_seq_len": 16, |
|
"intp_freq": True, |
|
"naiveswiglu": True, |
|
"subln": True, |
|
}, |
|
} |
|
self.config["vision_cfg"]["image_size"] = image_size |
|
|
|
import os |
|
|
|
os.environ["delRoPE"] = ( |
|
"1" |
|
) |
|
self.model = _build_vision_tower(**self.config) |
|
|
|
def forward(self, images): |
|
encode = self.model(images, return_all_features=True)[:, 1:, :] |
|
return encode |
|
|
|
|
|
class CrossVisionModel(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.vit = Eva2LargeEncoder(image_size=config.cross_image_size) |
|
self.pos_embed = nn.Parameter( |
|
torch.zeros( |
|
( |
|
self.vit.config["vision_cfg"]["image_size"] |
|
// self.vit.config["vision_cfg"]["patch_size"] |
|
) |
|
** 2, |
|
self.vit.config["vision_cfg"]["width"], |
|
) |
|
) |
|
|
|
def forward(self, images): |
|
enc = self.vit(images) |
|
return enc + self.pos_embed.to(enc.device).unsqueeze(0) |
|
|