File size: 2,835 Bytes
51bd4e9
76f0eee
51bd4e9
 
 
 
 
05339c4
 
 
 
 
51bd4e9
597491f
1af8d2b
51bd4e9
 
 
472fc4f
51bd4e9
653a10f
51bd4e9
6a8ef05
 
51bd4e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a8ef05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51bd4e9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: MiMe-MeMo/MeMo-BERT-01
tags:
- generated_from_trainer
model-index:
- name: new_memo_model
  results: []
language: da        # <-- my language
widget:
 - text: "Men havde Gud vendt sig fra ham , saa kunde han ogsaa vende sig fra Gud . Havde Gud ingen Øren , saa havde han heller ingen Læber , havde Gud ingen Naade , saa havde han heller ingen Tilbedelse , og han trodsede og viste Gud ud af sit Hjærte ."


---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MeMo Model (Word Sense Disambiguation)

This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-01](https://huggingface.co/MiMe-MeMo/MeMo-BERT-01) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7214
- F1-score: 0.6667

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 11   | 0.7214          | 0.6667   |
| No log        | 2.0   | 22   | 1.2543          | 0.5429   |
| No log        | 3.0   | 33   | 1.0829          | 0.6837   |
| No log        | 4.0   | 44   | 1.3815          | 0.7552   |
| No log        | 5.0   | 55   | 1.4733          | 0.7005   |
| No log        | 6.0   | 66   | 2.3876          | 0.5513   |
| No log        | 7.0   | 77   | 1.3215          | 0.8004   |
| No log        | 8.0   | 88   | 1.4006          | 0.7608   |
| No log        | 9.0   | 99   | 1.4862          | 0.7608   |
| No log        | 10.0  | 110  | 1.4974          | 0.7608   |
| No log        | 11.0  | 121  | 1.4966          | 0.7608   |
| No log        | 12.0  | 132  | 1.5040          | 0.7608   |
| No log        | 13.0  | 143  | 1.5010          | 0.7608   |
| No log        | 14.0  | 154  | 1.4741          | 0.7608   |
| No log        | 15.0  | 165  | 1.4507          | 0.7608   |
| No log        | 16.0  | 176  | 1.4420          | 0.7608   |
| No log        | 17.0  | 187  | 1.4398          | 0.7608   |
| No log        | 18.0  | 198  | 1.4426          | 0.7608   |
| No log        | 19.0  | 209  | 1.4438          | 0.7608   |
| No log        | 20.0  | 220  | 1.4439          | 0.7608   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1