File size: 2,508 Bytes
1a67d61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
base_model: MiMe-MeMo/MeMo-BERT-02
tags:
- generated_from_trainer
model-index:
- name: MeMo_BERT-WSD-02
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MeMo_BERT-WSD-02
This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-02](https://huggingface.co/MiMe-MeMo/MeMo-BERT-02) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4274
- F1-score: 0.3523
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 61 | 1.6387 | 0.1229 |
| No log | 2.0 | 122 | 1.4760 | 0.2016 |
| No log | 3.0 | 183 | 1.4995 | 0.2754 |
| No log | 4.0 | 244 | 1.9750 | 0.2519 |
| No log | 5.0 | 305 | 2.3945 | 0.3115 |
| No log | 6.0 | 366 | 2.9512 | 0.2336 |
| No log | 7.0 | 427 | 3.3875 | 0.2933 |
| No log | 8.0 | 488 | 3.4274 | 0.3523 |
| 0.6662 | 9.0 | 549 | 3.8142 | 0.3244 |
| 0.6662 | 10.0 | 610 | 4.3089 | 0.3271 |
| 0.6662 | 11.0 | 671 | 4.4936 | 0.2806 |
| 0.6662 | 12.0 | 732 | 4.4328 | 0.2893 |
| 0.6662 | 13.0 | 793 | 4.8685 | 0.2353 |
| 0.6662 | 14.0 | 854 | 4.4432 | 0.3018 |
| 0.6662 | 15.0 | 915 | 4.6090 | 0.2820 |
| 0.6662 | 16.0 | 976 | 4.5783 | 0.2871 |
| 0.0033 | 17.0 | 1037 | 4.6179 | 0.2871 |
| 0.0033 | 18.0 | 1098 | 4.7173 | 0.2847 |
| 0.0033 | 19.0 | 1159 | 4.7240 | 0.3029 |
| 0.0033 | 20.0 | 1220 | 4.7167 | 0.3029 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|