nbbert_ED1

This model is a fine-tuned version of NbAiLab/nb-bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4147
  • F1-score: 0.8769

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 69 0.7063 0.3425
No log 2.0 138 0.6562 0.4700
No log 3.0 207 0.5758 0.8114
No log 4.0 276 0.4802 0.8441
No log 5.0 345 0.4557 0.8096
No log 6.0 414 0.4620 0.8597
No log 7.0 483 0.4147 0.8769
0.4906 8.0 552 0.5979 0.8442
0.4906 9.0 621 0.6290 0.8432
0.4906 10.0 690 0.5401 0.8443
0.4906 11.0 759 0.5805 0.8606
0.4906 12.0 828 0.6075 0.8688
0.4906 13.0 897 0.7802 0.8436
0.4906 14.0 966 0.7530 0.8432
0.1795 15.0 1035 0.6979 0.8606
0.1795 16.0 1104 0.7619 0.8524
0.1795 17.0 1173 0.7760 0.8525
0.1795 18.0 1242 0.8060 0.8525
0.1795 19.0 1311 0.8363 0.8525
0.1795 20.0 1380 0.8305 0.8525

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
25
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/nbbert_ED2

Finetuned
(17)
this model