yesj1234 commited on
Commit
ce6b2db
1 Parent(s): 360f893

Upload folder using huggingface_hub

Browse files
Files changed (42) hide show
  1. README.md +58 -0
  2. added_tokens.json +4 -0
  3. all_results.json +8 -0
  4. checkpoint-804146/added_tokens.json +4 -0
  5. checkpoint-804146/config.json +117 -0
  6. checkpoint-804146/model.safetensors +3 -0
  7. checkpoint-804146/optimizer.pt +3 -0
  8. checkpoint-804146/preprocessor_config.json +10 -0
  9. checkpoint-804146/rng_state_0.pth +3 -0
  10. checkpoint-804146/rng_state_1.pth +3 -0
  11. checkpoint-804146/rng_state_2.pth +3 -0
  12. checkpoint-804146/rng_state_3.pth +3 -0
  13. checkpoint-804146/scheduler.pt +3 -0
  14. checkpoint-804146/special_tokens_map.json +30 -0
  15. checkpoint-804146/tokenizer_config.json +51 -0
  16. checkpoint-804146/trainer_state.json +1636 -0
  17. checkpoint-804146/training_args.bin +3 -0
  18. checkpoint-804146/vocab.json +3303 -0
  19. checkpoint-837650/added_tokens.json +4 -0
  20. checkpoint-837650/config.json +117 -0
  21. checkpoint-837650/model.safetensors +3 -0
  22. checkpoint-837650/optimizer.pt +3 -0
  23. checkpoint-837650/preprocessor_config.json +10 -0
  24. checkpoint-837650/rng_state_0.pth +3 -0
  25. checkpoint-837650/rng_state_1.pth +3 -0
  26. checkpoint-837650/rng_state_2.pth +3 -0
  27. checkpoint-837650/rng_state_3.pth +3 -0
  28. checkpoint-837650/scheduler.pt +3 -0
  29. checkpoint-837650/special_tokens_map.json +30 -0
  30. checkpoint-837650/tokenizer_config.json +51 -0
  31. checkpoint-837650/trainer_state.json +1702 -0
  32. checkpoint-837650/training_args.bin +3 -0
  33. checkpoint-837650/vocab.json +3303 -0
  34. config.json +117 -0
  35. model.safetensors +3 -0
  36. preprocessor_config.json +10 -0
  37. special_tokens_map.json +30 -0
  38. tokenizer_config.json +51 -0
  39. train_results.json +8 -0
  40. trainer_state.json +1711 -0
  41. training_args.bin +3 -0
  42. vocab.json +3303 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jako_xlsr_100p_run1
3
+ tags:
4
+ - automatic-speech-recognition
5
+ - ./train_dataset.py
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: jako_xlsr_100p_run1
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # jako_xlsr_100p_run1
16
+
17
+ This model is a fine-tuned version of [jako_xlsr_100p_run1](https://huggingface.co/jako_xlsr_100p_run1) on the ./TRAIN_DATASET.PY - NA dataset.
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 5.064680186549053e-07
37
+ - train_batch_size: 2
38
+ - eval_batch_size: 8
39
+ - seed: 42
40
+ - distributed_type: multi-GPU
41
+ - num_devices: 4
42
+ - gradient_accumulation_steps: 2
43
+ - total_train_batch_size: 16
44
+ - total_eval_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 25
48
+
49
+ ### Training results
50
+
51
+
52
+
53
+ ### Framework versions
54
+
55
+ - Transformers 4.35.2
56
+ - Pytorch 2.1.1+cu121
57
+ - Datasets 2.15.0
58
+ - Tokenizers 0.15.0
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "</s>": 3302,
3
+ "<s>": 3301
4
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 25.0,
3
+ "train_loss": 0.13803036045986866,
4
+ "train_runtime": 107320.4824,
5
+ "train_samples": 536104,
6
+ "train_samples_per_second": 124.884,
7
+ "train_steps_per_second": 7.805
8
+ }
checkpoint-804146/added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "</s>": 3302,
3
+ "<s>": 3301
4
+ }
checkpoint-804146/config.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jako_xlsr_100p_run1",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForCTC"
11
+ ],
12
+ "attention_dropout": 0.05,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 768,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "mean",
46
+ "ctc_zero_infinity": true,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.05,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "gradient_checkpointing": false,
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.05,
59
+ "hidden_size": 1024,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 4096,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.05,
64
+ "mask_channel_length": 10,
65
+ "mask_channel_min_space": 1,
66
+ "mask_channel_other": 0.0,
67
+ "mask_channel_prob": 0.0,
68
+ "mask_channel_selection": "static",
69
+ "mask_feature_length": 10,
70
+ "mask_feature_min_masks": 0,
71
+ "mask_feature_prob": 0.0,
72
+ "mask_time_length": 10,
73
+ "mask_time_min_masks": 2,
74
+ "mask_time_min_space": 1,
75
+ "mask_time_other": 0.0,
76
+ "mask_time_prob": 0.05,
77
+ "mask_time_selection": "static",
78
+ "model_type": "wav2vec2",
79
+ "num_adapter_layers": 3,
80
+ "num_attention_heads": 16,
81
+ "num_codevector_groups": 2,
82
+ "num_codevectors_per_group": 320,
83
+ "num_conv_pos_embedding_groups": 16,
84
+ "num_conv_pos_embeddings": 128,
85
+ "num_feat_extract_layers": 7,
86
+ "num_hidden_layers": 24,
87
+ "num_negatives": 100,
88
+ "output_hidden_size": 1024,
89
+ "pad_token_id": 3300,
90
+ "proj_codevector_dim": 768,
91
+ "tdnn_dilation": [
92
+ 1,
93
+ 2,
94
+ 3,
95
+ 1,
96
+ 1
97
+ ],
98
+ "tdnn_dim": [
99
+ 512,
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 1500
104
+ ],
105
+ "tdnn_kernel": [
106
+ 5,
107
+ 3,
108
+ 3,
109
+ 1,
110
+ 1
111
+ ],
112
+ "torch_dtype": "float32",
113
+ "transformers_version": "4.35.2",
114
+ "use_weighted_layer_sum": false,
115
+ "vocab_size": 3303,
116
+ "xvector_output_dim": 512
117
+ }
checkpoint-804146/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc66eedace84be271c55088df670f6809aa9ff054e33435763a01bdd9502f7c3
3
+ size 1275349820
checkpoint-804146/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f96ecbcd2c6e0352cb7699f9c845502c028a3909974cbe765b02f01d0836a301
3
+ size 2517244342
checkpoint-804146/preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
checkpoint-804146/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6037c7290bce1a3bc89fb12f01a90517b98126ee4ecf65c52ff2edd0bb46b13b
3
+ size 15024
checkpoint-804146/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:073ceb47cd0de073701fe38fc4843358681723b1ff3433fb0d1876d9c4f02c6d
3
+ size 15024
checkpoint-804146/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:145e7e6b6515007db9b7e8d5ae18dc3bc756600cf99749ae00fb0bf4b2fbd26e
3
+ size 15024
checkpoint-804146/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:561a16090f11048a57d0637e3f6cb0ad5b63aafe2631cd3244adbf142d5f5a6a
3
+ size 15088
checkpoint-804146/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88acb73fa3414c30c7607569a71318928c09a6fe6f255b95801a7aa5e3879c27
3
+ size 1064
checkpoint-804146/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "[UNK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": true,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-804146/tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "3299": {
4
+ "content": "[UNK]",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "3300": {
12
+ "content": "[PAD]",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "3301": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3302": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": true,
38
+ "config": null,
39
+ "do_lower_case": false,
40
+ "eos_token": "</s>",
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "[PAD]",
43
+ "processor_class": "Wav2Vec2Processor",
44
+ "replace_word_delimiter_char": " ",
45
+ "target_lang": null,
46
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
47
+ "tokenizer_type": "wav2vec2",
48
+ "trust_remote_code": false,
49
+ "unk_token": "[UNK]",
50
+ "word_delimiter_token": "|"
51
+ }
checkpoint-804146/trainer_state.json ADDED
@@ -0,0 +1,1636 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 24.0,
5
+ "eval_steps": 500,
6
+ "global_step": 804146,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.09,
13
+ "learning_rate": 0.0001342882721575649,
14
+ "loss": 12.1916,
15
+ "step": 3000
16
+ },
17
+ {
18
+ "epoch": 0.18,
19
+ "learning_rate": 0.0002685765443151298,
20
+ "loss": 2.3149,
21
+ "step": 6000
22
+ },
23
+ {
24
+ "epoch": 0.27,
25
+ "learning_rate": 0.00029896083615458125,
26
+ "loss": 1.9954,
27
+ "step": 9000
28
+ },
29
+ {
30
+ "epoch": 0.36,
31
+ "learning_rate": 0.00029760422539032704,
32
+ "loss": 1.8429,
33
+ "step": 12000
34
+ },
35
+ {
36
+ "epoch": 0.45,
37
+ "learning_rate": 0.0002962476146260728,
38
+ "loss": 1.7657,
39
+ "step": 15000
40
+ },
41
+ {
42
+ "epoch": 0.54,
43
+ "learning_rate": 0.0002948910038618186,
44
+ "loss": 1.6944,
45
+ "step": 18000
46
+ },
47
+ {
48
+ "epoch": 0.63,
49
+ "learning_rate": 0.0002935343930975644,
50
+ "loss": 1.6484,
51
+ "step": 21000
52
+ },
53
+ {
54
+ "epoch": 0.72,
55
+ "learning_rate": 0.0002921777823333102,
56
+ "loss": 1.6187,
57
+ "step": 24000
58
+ },
59
+ {
60
+ "epoch": 0.81,
61
+ "learning_rate": 0.00029082117156905597,
62
+ "loss": 1.5982,
63
+ "step": 27000
64
+ },
65
+ {
66
+ "epoch": 0.9,
67
+ "learning_rate": 0.00028946456080480176,
68
+ "loss": 1.5673,
69
+ "step": 30000
70
+ },
71
+ {
72
+ "epoch": 0.98,
73
+ "learning_rate": 0.00028810795004054755,
74
+ "loss": 1.5474,
75
+ "step": 33000
76
+ },
77
+ {
78
+ "epoch": 1.07,
79
+ "learning_rate": 0.0002867513392762934,
80
+ "loss": 1.4948,
81
+ "step": 36000
82
+ },
83
+ {
84
+ "epoch": 1.16,
85
+ "learning_rate": 0.0002853947285120391,
86
+ "loss": 1.4913,
87
+ "step": 39000
88
+ },
89
+ {
90
+ "epoch": 1.25,
91
+ "learning_rate": 0.00028403811774778496,
92
+ "loss": 1.4821,
93
+ "step": 42000
94
+ },
95
+ {
96
+ "epoch": 1.34,
97
+ "learning_rate": 0.0002826815069835307,
98
+ "loss": 1.4474,
99
+ "step": 45000
100
+ },
101
+ {
102
+ "epoch": 1.43,
103
+ "learning_rate": 0.00028132489621927653,
104
+ "loss": 1.4602,
105
+ "step": 48000
106
+ },
107
+ {
108
+ "epoch": 1.52,
109
+ "learning_rate": 0.00027996828545502226,
110
+ "loss": 1.456,
111
+ "step": 51000
112
+ },
113
+ {
114
+ "epoch": 1.61,
115
+ "learning_rate": 0.0002786116746907681,
116
+ "loss": 1.4377,
117
+ "step": 54000
118
+ },
119
+ {
120
+ "epoch": 1.7,
121
+ "learning_rate": 0.0002772550639265139,
122
+ "loss": 1.4301,
123
+ "step": 57000
124
+ },
125
+ {
126
+ "epoch": 1.79,
127
+ "learning_rate": 0.0002758984531622597,
128
+ "loss": 1.425,
129
+ "step": 60000
130
+ },
131
+ {
132
+ "epoch": 1.88,
133
+ "learning_rate": 0.00027454184239800546,
134
+ "loss": 1.4153,
135
+ "step": 63000
136
+ },
137
+ {
138
+ "epoch": 1.97,
139
+ "learning_rate": 0.00027318523163375125,
140
+ "loss": 1.4046,
141
+ "step": 66000
142
+ },
143
+ {
144
+ "epoch": 2.06,
145
+ "learning_rate": 0.00027182862086949704,
146
+ "loss": 1.3565,
147
+ "step": 69000
148
+ },
149
+ {
150
+ "epoch": 2.15,
151
+ "learning_rate": 0.0002704720101052428,
152
+ "loss": 1.3488,
153
+ "step": 72000
154
+ },
155
+ {
156
+ "epoch": 2.24,
157
+ "learning_rate": 0.0002691153993409886,
158
+ "loss": 1.339,
159
+ "step": 75000
160
+ },
161
+ {
162
+ "epoch": 2.33,
163
+ "learning_rate": 0.0002677587885767344,
164
+ "loss": 1.3513,
165
+ "step": 78000
166
+ },
167
+ {
168
+ "epoch": 2.42,
169
+ "learning_rate": 0.0002664021778124802,
170
+ "loss": 1.3491,
171
+ "step": 81000
172
+ },
173
+ {
174
+ "epoch": 2.51,
175
+ "learning_rate": 0.00026504556704822597,
176
+ "loss": 1.3345,
177
+ "step": 84000
178
+ },
179
+ {
180
+ "epoch": 2.6,
181
+ "learning_rate": 0.00026368895628397175,
182
+ "loss": 1.3313,
183
+ "step": 87000
184
+ },
185
+ {
186
+ "epoch": 2.69,
187
+ "learning_rate": 0.00026233234551971754,
188
+ "loss": 1.3319,
189
+ "step": 90000
190
+ },
191
+ {
192
+ "epoch": 2.78,
193
+ "learning_rate": 0.00026097573475546333,
194
+ "loss": 1.3185,
195
+ "step": 93000
196
+ },
197
+ {
198
+ "epoch": 2.87,
199
+ "learning_rate": 0.00025961912399120917,
200
+ "loss": 1.325,
201
+ "step": 96000
202
+ },
203
+ {
204
+ "epoch": 2.95,
205
+ "learning_rate": 0.0002582625132269549,
206
+ "loss": 1.3048,
207
+ "step": 99000
208
+ },
209
+ {
210
+ "epoch": 3.04,
211
+ "learning_rate": 0.00025690590246270074,
212
+ "loss": 1.2797,
213
+ "step": 102000
214
+ },
215
+ {
216
+ "epoch": 3.13,
217
+ "learning_rate": 0.00025554929169844653,
218
+ "loss": 1.2646,
219
+ "step": 105000
220
+ },
221
+ {
222
+ "epoch": 3.22,
223
+ "learning_rate": 0.0002541926809341923,
224
+ "loss": 1.2595,
225
+ "step": 108000
226
+ },
227
+ {
228
+ "epoch": 3.31,
229
+ "learning_rate": 0.0002528360701699381,
230
+ "loss": 1.2574,
231
+ "step": 111000
232
+ },
233
+ {
234
+ "epoch": 3.4,
235
+ "learning_rate": 0.0002514794594056839,
236
+ "loss": 1.2623,
237
+ "step": 114000
238
+ },
239
+ {
240
+ "epoch": 3.49,
241
+ "learning_rate": 0.0002501228486414297,
242
+ "loss": 1.2548,
243
+ "step": 117000
244
+ },
245
+ {
246
+ "epoch": 3.58,
247
+ "learning_rate": 0.00024876623787717546,
248
+ "loss": 1.2615,
249
+ "step": 120000
250
+ },
251
+ {
252
+ "epoch": 3.67,
253
+ "learning_rate": 0.00024740962711292125,
254
+ "loss": 1.2558,
255
+ "step": 123000
256
+ },
257
+ {
258
+ "epoch": 3.76,
259
+ "learning_rate": 0.00024605301634866703,
260
+ "loss": 1.2537,
261
+ "step": 126000
262
+ },
263
+ {
264
+ "epoch": 3.85,
265
+ "learning_rate": 0.0002446964055844128,
266
+ "loss": 1.2393,
267
+ "step": 129000
268
+ },
269
+ {
270
+ "epoch": 3.94,
271
+ "learning_rate": 0.0002433397948201586,
272
+ "loss": 1.2438,
273
+ "step": 132000
274
+ },
275
+ {
276
+ "epoch": 4.03,
277
+ "learning_rate": 0.00024198318405590442,
278
+ "loss": 1.2277,
279
+ "step": 135000
280
+ },
281
+ {
282
+ "epoch": 4.12,
283
+ "learning_rate": 0.00024062657329165018,
284
+ "loss": 1.1934,
285
+ "step": 138000
286
+ },
287
+ {
288
+ "epoch": 4.21,
289
+ "learning_rate": 0.000239269962527396,
290
+ "loss": 1.1857,
291
+ "step": 141000
292
+ },
293
+ {
294
+ "epoch": 4.3,
295
+ "learning_rate": 0.00023791335176314175,
296
+ "loss": 1.1902,
297
+ "step": 144000
298
+ },
299
+ {
300
+ "epoch": 4.39,
301
+ "learning_rate": 0.00023655674099888756,
302
+ "loss": 1.1901,
303
+ "step": 147000
304
+ },
305
+ {
306
+ "epoch": 4.48,
307
+ "learning_rate": 0.00023520013023463332,
308
+ "loss": 1.1948,
309
+ "step": 150000
310
+ },
311
+ {
312
+ "epoch": 4.57,
313
+ "learning_rate": 0.00023384351947037914,
314
+ "loss": 1.1941,
315
+ "step": 153000
316
+ },
317
+ {
318
+ "epoch": 4.66,
319
+ "learning_rate": 0.00023248690870612495,
320
+ "loss": 1.1903,
321
+ "step": 156000
322
+ },
323
+ {
324
+ "epoch": 4.75,
325
+ "learning_rate": 0.0002311302979418707,
326
+ "loss": 1.1877,
327
+ "step": 159000
328
+ },
329
+ {
330
+ "epoch": 4.83,
331
+ "learning_rate": 0.00022977368717761652,
332
+ "loss": 1.1974,
333
+ "step": 162000
334
+ },
335
+ {
336
+ "epoch": 4.92,
337
+ "learning_rate": 0.00022841707641336228,
338
+ "loss": 1.189,
339
+ "step": 165000
340
+ },
341
+ {
342
+ "epoch": 5.01,
343
+ "learning_rate": 0.0002270604656491081,
344
+ "loss": 1.1851,
345
+ "step": 168000
346
+ },
347
+ {
348
+ "epoch": 5.1,
349
+ "learning_rate": 0.00022570385488485386,
350
+ "loss": 1.1479,
351
+ "step": 171000
352
+ },
353
+ {
354
+ "epoch": 5.19,
355
+ "learning_rate": 0.00022434724412059967,
356
+ "loss": 1.1374,
357
+ "step": 174000
358
+ },
359
+ {
360
+ "epoch": 5.28,
361
+ "learning_rate": 0.00022299063335634543,
362
+ "loss": 1.1343,
363
+ "step": 177000
364
+ },
365
+ {
366
+ "epoch": 5.37,
367
+ "learning_rate": 0.00022163402259209124,
368
+ "loss": 1.1306,
369
+ "step": 180000
370
+ },
371
+ {
372
+ "epoch": 5.46,
373
+ "learning_rate": 0.00022027741182783706,
374
+ "loss": 1.1399,
375
+ "step": 183000
376
+ },
377
+ {
378
+ "epoch": 5.55,
379
+ "learning_rate": 0.00021892080106358282,
380
+ "loss": 1.1457,
381
+ "step": 186000
382
+ },
383
+ {
384
+ "epoch": 5.64,
385
+ "learning_rate": 0.00021756419029932863,
386
+ "loss": 1.1469,
387
+ "step": 189000
388
+ },
389
+ {
390
+ "epoch": 5.73,
391
+ "learning_rate": 0.0002162075795350744,
392
+ "loss": 1.1448,
393
+ "step": 192000
394
+ },
395
+ {
396
+ "epoch": 5.82,
397
+ "learning_rate": 0.0002148509687708202,
398
+ "loss": 1.1397,
399
+ "step": 195000
400
+ },
401
+ {
402
+ "epoch": 5.91,
403
+ "learning_rate": 0.00021349435800656596,
404
+ "loss": 1.1441,
405
+ "step": 198000
406
+ },
407
+ {
408
+ "epoch": 6.0,
409
+ "learning_rate": 0.00021213774724231177,
410
+ "loss": 1.1453,
411
+ "step": 201000
412
+ },
413
+ {
414
+ "epoch": 6.09,
415
+ "learning_rate": 0.00021078113647805753,
416
+ "loss": 1.0897,
417
+ "step": 204000
418
+ },
419
+ {
420
+ "epoch": 6.18,
421
+ "learning_rate": 0.00020942452571380335,
422
+ "loss": 1.0956,
423
+ "step": 207000
424
+ },
425
+ {
426
+ "epoch": 6.27,
427
+ "learning_rate": 0.0002080679149495491,
428
+ "loss": 1.0947,
429
+ "step": 210000
430
+ },
431
+ {
432
+ "epoch": 6.36,
433
+ "learning_rate": 0.00020671130418529492,
434
+ "loss": 1.0961,
435
+ "step": 213000
436
+ },
437
+ {
438
+ "epoch": 6.45,
439
+ "learning_rate": 0.00020535469342104073,
440
+ "loss": 1.1117,
441
+ "step": 216000
442
+ },
443
+ {
444
+ "epoch": 6.54,
445
+ "learning_rate": 0.0002039980826567865,
446
+ "loss": 1.1032,
447
+ "step": 219000
448
+ },
449
+ {
450
+ "epoch": 6.63,
451
+ "learning_rate": 0.0002026414718925323,
452
+ "loss": 1.0983,
453
+ "step": 222000
454
+ },
455
+ {
456
+ "epoch": 6.72,
457
+ "learning_rate": 0.00020128486112827807,
458
+ "loss": 1.0885,
459
+ "step": 225000
460
+ },
461
+ {
462
+ "epoch": 6.8,
463
+ "learning_rate": 0.00019992825036402388,
464
+ "loss": 1.0867,
465
+ "step": 228000
466
+ },
467
+ {
468
+ "epoch": 6.89,
469
+ "learning_rate": 0.00019857163959976964,
470
+ "loss": 1.0993,
471
+ "step": 231000
472
+ },
473
+ {
474
+ "epoch": 6.98,
475
+ "learning_rate": 0.00019721502883551545,
476
+ "loss": 1.1021,
477
+ "step": 234000
478
+ },
479
+ {
480
+ "epoch": 7.07,
481
+ "learning_rate": 0.00019585841807126124,
482
+ "loss": 1.0519,
483
+ "step": 237000
484
+ },
485
+ {
486
+ "epoch": 7.16,
487
+ "learning_rate": 0.00019450180730700702,
488
+ "loss": 1.0594,
489
+ "step": 240000
490
+ },
491
+ {
492
+ "epoch": 7.25,
493
+ "learning_rate": 0.00019314519654275284,
494
+ "loss": 1.0555,
495
+ "step": 243000
496
+ },
497
+ {
498
+ "epoch": 7.34,
499
+ "learning_rate": 0.0001917885857784986,
500
+ "loss": 1.057,
501
+ "step": 246000
502
+ },
503
+ {
504
+ "epoch": 7.43,
505
+ "learning_rate": 0.0001904319750142444,
506
+ "loss": 1.0585,
507
+ "step": 249000
508
+ },
509
+ {
510
+ "epoch": 7.52,
511
+ "learning_rate": 0.00018907536424999017,
512
+ "loss": 1.0534,
513
+ "step": 252000
514
+ },
515
+ {
516
+ "epoch": 7.61,
517
+ "learning_rate": 0.00018771875348573598,
518
+ "loss": 1.0655,
519
+ "step": 255000
520
+ },
521
+ {
522
+ "epoch": 7.7,
523
+ "learning_rate": 0.00018636214272148174,
524
+ "loss": 1.056,
525
+ "step": 258000
526
+ },
527
+ {
528
+ "epoch": 7.79,
529
+ "learning_rate": 0.00018500553195722756,
530
+ "loss": 1.0638,
531
+ "step": 261000
532
+ },
533
+ {
534
+ "epoch": 7.88,
535
+ "learning_rate": 0.00018364892119297334,
536
+ "loss": 1.0521,
537
+ "step": 264000
538
+ },
539
+ {
540
+ "epoch": 7.97,
541
+ "learning_rate": 0.00018229231042871913,
542
+ "loss": 1.0633,
543
+ "step": 267000
544
+ },
545
+ {
546
+ "epoch": 8.06,
547
+ "learning_rate": 0.00018093569966446492,
548
+ "loss": 1.0345,
549
+ "step": 270000
550
+ },
551
+ {
552
+ "epoch": 8.15,
553
+ "learning_rate": 0.0001795790889002107,
554
+ "loss": 1.0186,
555
+ "step": 273000
556
+ },
557
+ {
558
+ "epoch": 8.24,
559
+ "learning_rate": 0.00017822247813595652,
560
+ "loss": 1.0141,
561
+ "step": 276000
562
+ },
563
+ {
564
+ "epoch": 8.33,
565
+ "learning_rate": 0.00017686586737170228,
566
+ "loss": 1.0184,
567
+ "step": 279000
568
+ },
569
+ {
570
+ "epoch": 8.42,
571
+ "learning_rate": 0.0001755092566074481,
572
+ "loss": 1.0184,
573
+ "step": 282000
574
+ },
575
+ {
576
+ "epoch": 8.51,
577
+ "learning_rate": 0.00017415264584319385,
578
+ "loss": 1.0222,
579
+ "step": 285000
580
+ },
581
+ {
582
+ "epoch": 8.6,
583
+ "learning_rate": 0.00017279603507893966,
584
+ "loss": 1.0176,
585
+ "step": 288000
586
+ },
587
+ {
588
+ "epoch": 8.68,
589
+ "learning_rate": 0.00017143942431468545,
590
+ "loss": 1.0236,
591
+ "step": 291000
592
+ },
593
+ {
594
+ "epoch": 8.77,
595
+ "learning_rate": 0.00017008281355043123,
596
+ "loss": 1.0278,
597
+ "step": 294000
598
+ },
599
+ {
600
+ "epoch": 8.86,
601
+ "learning_rate": 0.00016872620278617702,
602
+ "loss": 1.0076,
603
+ "step": 297000
604
+ },
605
+ {
606
+ "epoch": 8.95,
607
+ "learning_rate": 0.0001673695920219228,
608
+ "loss": 1.0248,
609
+ "step": 300000
610
+ },
611
+ {
612
+ "epoch": 9.04,
613
+ "learning_rate": 0.00016601298125766862,
614
+ "loss": 0.9915,
615
+ "step": 303000
616
+ },
617
+ {
618
+ "epoch": 9.13,
619
+ "learning_rate": 0.00016465637049341438,
620
+ "loss": 0.9759,
621
+ "step": 306000
622
+ },
623
+ {
624
+ "epoch": 9.22,
625
+ "learning_rate": 0.0001632997597291602,
626
+ "loss": 0.9813,
627
+ "step": 309000
628
+ },
629
+ {
630
+ "epoch": 9.31,
631
+ "learning_rate": 0.00016194314896490595,
632
+ "loss": 0.9853,
633
+ "step": 312000
634
+ },
635
+ {
636
+ "epoch": 9.4,
637
+ "learning_rate": 0.00016058653820065177,
638
+ "loss": 0.9808,
639
+ "step": 315000
640
+ },
641
+ {
642
+ "epoch": 9.49,
643
+ "learning_rate": 0.00015922992743639755,
644
+ "loss": 0.9759,
645
+ "step": 318000
646
+ },
647
+ {
648
+ "epoch": 9.58,
649
+ "learning_rate": 0.00015787331667214334,
650
+ "loss": 0.9852,
651
+ "step": 321000
652
+ },
653
+ {
654
+ "epoch": 9.67,
655
+ "learning_rate": 0.00015651670590788913,
656
+ "loss": 0.9796,
657
+ "step": 324000
658
+ },
659
+ {
660
+ "epoch": 9.76,
661
+ "learning_rate": 0.0001551600951436349,
662
+ "loss": 0.9871,
663
+ "step": 327000
664
+ },
665
+ {
666
+ "epoch": 9.85,
667
+ "learning_rate": 0.0001538034843793807,
668
+ "loss": 0.9953,
669
+ "step": 330000
670
+ },
671
+ {
672
+ "epoch": 9.94,
673
+ "learning_rate": 0.00015244687361512649,
674
+ "loss": 0.9883,
675
+ "step": 333000
676
+ },
677
+ {
678
+ "epoch": 10.03,
679
+ "learning_rate": 0.0001510902628508723,
680
+ "loss": 0.9735,
681
+ "step": 336000
682
+ },
683
+ {
684
+ "epoch": 10.12,
685
+ "learning_rate": 0.00014973365208661809,
686
+ "loss": 0.9509,
687
+ "step": 339000
688
+ },
689
+ {
690
+ "epoch": 10.21,
691
+ "learning_rate": 0.00014837704132236387,
692
+ "loss": 0.9448,
693
+ "step": 342000
694
+ },
695
+ {
696
+ "epoch": 10.3,
697
+ "learning_rate": 0.00014702043055810966,
698
+ "loss": 0.9395,
699
+ "step": 345000
700
+ },
701
+ {
702
+ "epoch": 10.39,
703
+ "learning_rate": 0.00014566381979385544,
704
+ "loss": 0.9438,
705
+ "step": 348000
706
+ },
707
+ {
708
+ "epoch": 10.48,
709
+ "learning_rate": 0.00014430720902960123,
710
+ "loss": 0.9498,
711
+ "step": 351000
712
+ },
713
+ {
714
+ "epoch": 10.57,
715
+ "learning_rate": 0.00014295059826534702,
716
+ "loss": 0.9481,
717
+ "step": 354000
718
+ },
719
+ {
720
+ "epoch": 10.65,
721
+ "learning_rate": 0.0001415939875010928,
722
+ "loss": 0.9509,
723
+ "step": 357000
724
+ },
725
+ {
726
+ "epoch": 10.74,
727
+ "learning_rate": 0.0001402373767368386,
728
+ "loss": 0.9527,
729
+ "step": 360000
730
+ },
731
+ {
732
+ "epoch": 10.83,
733
+ "learning_rate": 0.0001388807659725844,
734
+ "loss": 0.944,
735
+ "step": 363000
736
+ },
737
+ {
738
+ "epoch": 10.92,
739
+ "learning_rate": 0.0001375241552083302,
740
+ "loss": 0.9427,
741
+ "step": 366000
742
+ },
743
+ {
744
+ "epoch": 11.01,
745
+ "learning_rate": 0.00013616754444407598,
746
+ "loss": 0.9511,
747
+ "step": 369000
748
+ },
749
+ {
750
+ "epoch": 11.1,
751
+ "learning_rate": 0.00013481093367982176,
752
+ "loss": 0.901,
753
+ "step": 372000
754
+ },
755
+ {
756
+ "epoch": 11.19,
757
+ "learning_rate": 0.00013345432291556755,
758
+ "loss": 0.9175,
759
+ "step": 375000
760
+ },
761
+ {
762
+ "epoch": 11.28,
763
+ "learning_rate": 0.00013209771215131334,
764
+ "loss": 0.9061,
765
+ "step": 378000
766
+ },
767
+ {
768
+ "epoch": 11.37,
769
+ "learning_rate": 0.00013074110138705912,
770
+ "loss": 0.9175,
771
+ "step": 381000
772
+ },
773
+ {
774
+ "epoch": 11.46,
775
+ "learning_rate": 0.0001293844906228049,
776
+ "loss": 0.9175,
777
+ "step": 384000
778
+ },
779
+ {
780
+ "epoch": 11.55,
781
+ "learning_rate": 0.0001280278798585507,
782
+ "loss": 0.9149,
783
+ "step": 387000
784
+ },
785
+ {
786
+ "epoch": 11.64,
787
+ "learning_rate": 0.0001266712690942965,
788
+ "loss": 0.9155,
789
+ "step": 390000
790
+ },
791
+ {
792
+ "epoch": 11.73,
793
+ "learning_rate": 0.0001253146583300423,
794
+ "loss": 0.9129,
795
+ "step": 393000
796
+ },
797
+ {
798
+ "epoch": 11.82,
799
+ "learning_rate": 0.00012395804756578808,
800
+ "loss": 0.9178,
801
+ "step": 396000
802
+ },
803
+ {
804
+ "epoch": 11.91,
805
+ "learning_rate": 0.00012260143680153387,
806
+ "loss": 0.912,
807
+ "step": 399000
808
+ },
809
+ {
810
+ "epoch": 12.0,
811
+ "learning_rate": 0.00012124482603727964,
812
+ "loss": 0.9217,
813
+ "step": 402000
814
+ },
815
+ {
816
+ "epoch": 12.09,
817
+ "learning_rate": 0.00011988821527302545,
818
+ "loss": 0.8778,
819
+ "step": 405000
820
+ },
821
+ {
822
+ "epoch": 12.18,
823
+ "learning_rate": 0.00011853160450877124,
824
+ "loss": 0.8741,
825
+ "step": 408000
826
+ },
827
+ {
828
+ "epoch": 12.27,
829
+ "learning_rate": 0.00011717499374451703,
830
+ "loss": 0.8786,
831
+ "step": 411000
832
+ },
833
+ {
834
+ "epoch": 12.36,
835
+ "learning_rate": 0.00011581838298026281,
836
+ "loss": 0.8837,
837
+ "step": 414000
838
+ },
839
+ {
840
+ "epoch": 12.45,
841
+ "learning_rate": 0.0001144617722160086,
842
+ "loss": 0.883,
843
+ "step": 417000
844
+ },
845
+ {
846
+ "epoch": 12.53,
847
+ "learning_rate": 0.00011310516145175439,
848
+ "loss": 0.8764,
849
+ "step": 420000
850
+ },
851
+ {
852
+ "epoch": 12.62,
853
+ "learning_rate": 0.00011174855068750017,
854
+ "loss": 0.8881,
855
+ "step": 423000
856
+ },
857
+ {
858
+ "epoch": 12.71,
859
+ "learning_rate": 0.00011039193992324596,
860
+ "loss": 0.8844,
861
+ "step": 426000
862
+ },
863
+ {
864
+ "epoch": 12.8,
865
+ "learning_rate": 0.00010903532915899175,
866
+ "loss": 0.8838,
867
+ "step": 429000
868
+ },
869
+ {
870
+ "epoch": 12.89,
871
+ "learning_rate": 0.00010767871839473755,
872
+ "loss": 0.8799,
873
+ "step": 432000
874
+ },
875
+ {
876
+ "epoch": 12.98,
877
+ "learning_rate": 0.00010632210763048335,
878
+ "loss": 0.8766,
879
+ "step": 435000
880
+ },
881
+ {
882
+ "epoch": 13.07,
883
+ "learning_rate": 0.00010496549686622913,
884
+ "loss": 0.8562,
885
+ "step": 438000
886
+ },
887
+ {
888
+ "epoch": 13.16,
889
+ "learning_rate": 0.00010360888610197492,
890
+ "loss": 0.8445,
891
+ "step": 441000
892
+ },
893
+ {
894
+ "epoch": 13.25,
895
+ "learning_rate": 0.0001022522753377207,
896
+ "loss": 0.8422,
897
+ "step": 444000
898
+ },
899
+ {
900
+ "epoch": 13.34,
901
+ "learning_rate": 0.00010089566457346649,
902
+ "loss": 0.8405,
903
+ "step": 447000
904
+ },
905
+ {
906
+ "epoch": 13.43,
907
+ "learning_rate": 9.953905380921228e-05,
908
+ "loss": 0.8456,
909
+ "step": 450000
910
+ },
911
+ {
912
+ "epoch": 13.52,
913
+ "learning_rate": 9.818244304495806e-05,
914
+ "loss": 0.8516,
915
+ "step": 453000
916
+ },
917
+ {
918
+ "epoch": 13.61,
919
+ "learning_rate": 9.682583228070386e-05,
920
+ "loss": 0.8514,
921
+ "step": 456000
922
+ },
923
+ {
924
+ "epoch": 13.7,
925
+ "learning_rate": 9.546922151644965e-05,
926
+ "loss": 0.8465,
927
+ "step": 459000
928
+ },
929
+ {
930
+ "epoch": 13.79,
931
+ "learning_rate": 9.411261075219544e-05,
932
+ "loss": 0.8499,
933
+ "step": 462000
934
+ },
935
+ {
936
+ "epoch": 13.88,
937
+ "learning_rate": 9.275599998794124e-05,
938
+ "loss": 0.8582,
939
+ "step": 465000
940
+ },
941
+ {
942
+ "epoch": 13.97,
943
+ "learning_rate": 9.139938922368702e-05,
944
+ "loss": 0.8544,
945
+ "step": 468000
946
+ },
947
+ {
948
+ "epoch": 14.06,
949
+ "learning_rate": 9.004277845943281e-05,
950
+ "loss": 0.8226,
951
+ "step": 471000
952
+ },
953
+ {
954
+ "epoch": 14.15,
955
+ "learning_rate": 8.86861676951786e-05,
956
+ "loss": 0.8132,
957
+ "step": 474000
958
+ },
959
+ {
960
+ "epoch": 14.24,
961
+ "learning_rate": 8.732955693092438e-05,
962
+ "loss": 0.8196,
963
+ "step": 477000
964
+ },
965
+ {
966
+ "epoch": 14.33,
967
+ "learning_rate": 8.597294616667018e-05,
968
+ "loss": 0.8221,
969
+ "step": 480000
970
+ },
971
+ {
972
+ "epoch": 14.42,
973
+ "learning_rate": 8.461633540241597e-05,
974
+ "loss": 0.8155,
975
+ "step": 483000
976
+ },
977
+ {
978
+ "epoch": 14.5,
979
+ "learning_rate": 8.325972463816176e-05,
980
+ "loss": 0.8219,
981
+ "step": 486000
982
+ },
983
+ {
984
+ "epoch": 14.59,
985
+ "learning_rate": 8.190311387390754e-05,
986
+ "loss": 0.8171,
987
+ "step": 489000
988
+ },
989
+ {
990
+ "epoch": 14.68,
991
+ "learning_rate": 8.054650310965333e-05,
992
+ "loss": 0.8116,
993
+ "step": 492000
994
+ },
995
+ {
996
+ "epoch": 14.77,
997
+ "learning_rate": 7.918989234539913e-05,
998
+ "loss": 0.8213,
999
+ "step": 495000
1000
+ },
1001
+ {
1002
+ "epoch": 14.86,
1003
+ "learning_rate": 7.783328158114491e-05,
1004
+ "loss": 0.8154,
1005
+ "step": 498000
1006
+ },
1007
+ {
1008
+ "epoch": 14.95,
1009
+ "learning_rate": 7.64766708168907e-05,
1010
+ "loss": 0.824,
1011
+ "step": 501000
1012
+ },
1013
+ {
1014
+ "epoch": 15.04,
1015
+ "learning_rate": 7.512006005263649e-05,
1016
+ "loss": 0.8068,
1017
+ "step": 504000
1018
+ },
1019
+ {
1020
+ "epoch": 15.13,
1021
+ "learning_rate": 7.376344928838229e-05,
1022
+ "loss": 0.7813,
1023
+ "step": 507000
1024
+ },
1025
+ {
1026
+ "epoch": 15.22,
1027
+ "learning_rate": 7.240683852412807e-05,
1028
+ "loss": 0.7947,
1029
+ "step": 510000
1030
+ },
1031
+ {
1032
+ "epoch": 15.31,
1033
+ "learning_rate": 7.105022775987386e-05,
1034
+ "loss": 0.7899,
1035
+ "step": 513000
1036
+ },
1037
+ {
1038
+ "epoch": 15.4,
1039
+ "learning_rate": 6.969361699561965e-05,
1040
+ "loss": 0.7885,
1041
+ "step": 516000
1042
+ },
1043
+ {
1044
+ "epoch": 15.49,
1045
+ "learning_rate": 6.833700623136545e-05,
1046
+ "loss": 0.7963,
1047
+ "step": 519000
1048
+ },
1049
+ {
1050
+ "epoch": 15.58,
1051
+ "learning_rate": 6.698039546711123e-05,
1052
+ "loss": 0.787,
1053
+ "step": 522000
1054
+ },
1055
+ {
1056
+ "epoch": 15.67,
1057
+ "learning_rate": 6.562378470285702e-05,
1058
+ "loss": 0.7877,
1059
+ "step": 525000
1060
+ },
1061
+ {
1062
+ "epoch": 15.76,
1063
+ "learning_rate": 6.42671739386028e-05,
1064
+ "loss": 0.7949,
1065
+ "step": 528000
1066
+ },
1067
+ {
1068
+ "epoch": 15.85,
1069
+ "learning_rate": 6.291056317434859e-05,
1070
+ "loss": 0.7835,
1071
+ "step": 531000
1072
+ },
1073
+ {
1074
+ "epoch": 15.94,
1075
+ "learning_rate": 6.155395241009439e-05,
1076
+ "loss": 0.7904,
1077
+ "step": 534000
1078
+ },
1079
+ {
1080
+ "epoch": 16.03,
1081
+ "learning_rate": 6.019734164584017e-05,
1082
+ "loss": 0.7797,
1083
+ "step": 537000
1084
+ },
1085
+ {
1086
+ "epoch": 16.12,
1087
+ "learning_rate": 5.8840730881585965e-05,
1088
+ "loss": 0.7606,
1089
+ "step": 540000
1090
+ },
1091
+ {
1092
+ "epoch": 16.21,
1093
+ "learning_rate": 5.748412011733175e-05,
1094
+ "loss": 0.7671,
1095
+ "step": 543000
1096
+ },
1097
+ {
1098
+ "epoch": 16.3,
1099
+ "learning_rate": 5.6127509353077545e-05,
1100
+ "loss": 0.764,
1101
+ "step": 546000
1102
+ },
1103
+ {
1104
+ "epoch": 16.38,
1105
+ "learning_rate": 5.477089858882333e-05,
1106
+ "loss": 0.758,
1107
+ "step": 549000
1108
+ },
1109
+ {
1110
+ "epoch": 16.47,
1111
+ "learning_rate": 5.3414287824569124e-05,
1112
+ "loss": 0.7518,
1113
+ "step": 552000
1114
+ },
1115
+ {
1116
+ "epoch": 16.56,
1117
+ "learning_rate": 5.205767706031491e-05,
1118
+ "loss": 0.7644,
1119
+ "step": 555000
1120
+ },
1121
+ {
1122
+ "epoch": 16.65,
1123
+ "learning_rate": 5.07010662960607e-05,
1124
+ "loss": 0.7577,
1125
+ "step": 558000
1126
+ },
1127
+ {
1128
+ "epoch": 16.74,
1129
+ "learning_rate": 4.934445553180649e-05,
1130
+ "loss": 0.762,
1131
+ "step": 561000
1132
+ },
1133
+ {
1134
+ "epoch": 16.83,
1135
+ "learning_rate": 4.7987844767552283e-05,
1136
+ "loss": 0.7548,
1137
+ "step": 564000
1138
+ },
1139
+ {
1140
+ "epoch": 16.92,
1141
+ "learning_rate": 4.663123400329807e-05,
1142
+ "loss": 0.7567,
1143
+ "step": 567000
1144
+ },
1145
+ {
1146
+ "epoch": 17.01,
1147
+ "learning_rate": 4.5274623239043856e-05,
1148
+ "loss": 0.7613,
1149
+ "step": 570000
1150
+ },
1151
+ {
1152
+ "epoch": 17.1,
1153
+ "learning_rate": 4.391801247478964e-05,
1154
+ "loss": 0.7346,
1155
+ "step": 573000
1156
+ },
1157
+ {
1158
+ "epoch": 17.19,
1159
+ "learning_rate": 4.256140171053544e-05,
1160
+ "loss": 0.7323,
1161
+ "step": 576000
1162
+ },
1163
+ {
1164
+ "epoch": 17.28,
1165
+ "learning_rate": 4.120479094628123e-05,
1166
+ "loss": 0.7322,
1167
+ "step": 579000
1168
+ },
1169
+ {
1170
+ "epoch": 17.37,
1171
+ "learning_rate": 3.9848180182027016e-05,
1172
+ "loss": 0.7456,
1173
+ "step": 582000
1174
+ },
1175
+ {
1176
+ "epoch": 17.46,
1177
+ "learning_rate": 3.84915694177728e-05,
1178
+ "loss": 0.7324,
1179
+ "step": 585000
1180
+ },
1181
+ {
1182
+ "epoch": 17.55,
1183
+ "learning_rate": 3.7134958653518595e-05,
1184
+ "loss": 0.7414,
1185
+ "step": 588000
1186
+ },
1187
+ {
1188
+ "epoch": 17.64,
1189
+ "learning_rate": 3.577834788926438e-05,
1190
+ "loss": 0.7334,
1191
+ "step": 591000
1192
+ },
1193
+ {
1194
+ "epoch": 17.73,
1195
+ "learning_rate": 3.442173712501017e-05,
1196
+ "loss": 0.731,
1197
+ "step": 594000
1198
+ },
1199
+ {
1200
+ "epoch": 17.82,
1201
+ "learning_rate": 3.306512636075596e-05,
1202
+ "loss": 0.7488,
1203
+ "step": 597000
1204
+ },
1205
+ {
1206
+ "epoch": 17.91,
1207
+ "learning_rate": 3.170851559650175e-05,
1208
+ "loss": 0.7287,
1209
+ "step": 600000
1210
+ },
1211
+ {
1212
+ "epoch": 18.0,
1213
+ "learning_rate": 3.035190483224754e-05,
1214
+ "loss": 0.7361,
1215
+ "step": 603000
1216
+ },
1217
+ {
1218
+ "epoch": 18.09,
1219
+ "learning_rate": 2.8995294067993327e-05,
1220
+ "loss": 0.7173,
1221
+ "step": 606000
1222
+ },
1223
+ {
1224
+ "epoch": 18.18,
1225
+ "learning_rate": 2.763868330373912e-05,
1226
+ "loss": 0.7173,
1227
+ "step": 609000
1228
+ },
1229
+ {
1230
+ "epoch": 18.27,
1231
+ "learning_rate": 2.6282072539484907e-05,
1232
+ "loss": 0.7138,
1233
+ "step": 612000
1234
+ },
1235
+ {
1236
+ "epoch": 18.35,
1237
+ "learning_rate": 2.4925461775230697e-05,
1238
+ "loss": 0.71,
1239
+ "step": 615000
1240
+ },
1241
+ {
1242
+ "epoch": 18.44,
1243
+ "learning_rate": 2.3568851010976486e-05,
1244
+ "loss": 0.7128,
1245
+ "step": 618000
1246
+ },
1247
+ {
1248
+ "epoch": 18.53,
1249
+ "learning_rate": 2.2212240246722276e-05,
1250
+ "loss": 0.7168,
1251
+ "step": 621000
1252
+ },
1253
+ {
1254
+ "epoch": 18.62,
1255
+ "learning_rate": 2.0855629482468066e-05,
1256
+ "loss": 0.7184,
1257
+ "step": 624000
1258
+ },
1259
+ {
1260
+ "epoch": 18.71,
1261
+ "learning_rate": 1.9499018718213856e-05,
1262
+ "loss": 0.7099,
1263
+ "step": 627000
1264
+ },
1265
+ {
1266
+ "epoch": 18.8,
1267
+ "learning_rate": 1.8142407953959646e-05,
1268
+ "loss": 0.7047,
1269
+ "step": 630000
1270
+ },
1271
+ {
1272
+ "epoch": 18.89,
1273
+ "learning_rate": 1.6785797189705435e-05,
1274
+ "loss": 0.7131,
1275
+ "step": 633000
1276
+ },
1277
+ {
1278
+ "epoch": 18.98,
1279
+ "learning_rate": 1.5429186425451222e-05,
1280
+ "loss": 0.7151,
1281
+ "step": 636000
1282
+ },
1283
+ {
1284
+ "epoch": 19.07,
1285
+ "learning_rate": 1.4072575661197012e-05,
1286
+ "loss": 0.7058,
1287
+ "step": 639000
1288
+ },
1289
+ {
1290
+ "epoch": 19.16,
1291
+ "learning_rate": 1.2715964896942801e-05,
1292
+ "loss": 0.6982,
1293
+ "step": 642000
1294
+ },
1295
+ {
1296
+ "epoch": 19.25,
1297
+ "learning_rate": 1.1359354132688591e-05,
1298
+ "loss": 0.6983,
1299
+ "step": 645000
1300
+ },
1301
+ {
1302
+ "epoch": 19.34,
1303
+ "learning_rate": 1.0002743368434381e-05,
1304
+ "loss": 0.6932,
1305
+ "step": 648000
1306
+ },
1307
+ {
1308
+ "epoch": 19.43,
1309
+ "learning_rate": 8.64613260418017e-06,
1310
+ "loss": 0.7025,
1311
+ "step": 651000
1312
+ },
1313
+ {
1314
+ "epoch": 19.52,
1315
+ "learning_rate": 7.289521839925958e-06,
1316
+ "loss": 0.6945,
1317
+ "step": 654000
1318
+ },
1319
+ {
1320
+ "epoch": 19.61,
1321
+ "learning_rate": 5.932911075671748e-06,
1322
+ "loss": 0.7039,
1323
+ "step": 657000
1324
+ },
1325
+ {
1326
+ "epoch": 19.7,
1327
+ "learning_rate": 4.576300311417537e-06,
1328
+ "loss": 0.6921,
1329
+ "step": 660000
1330
+ },
1331
+ {
1332
+ "epoch": 19.79,
1333
+ "learning_rate": 3.2196895471633263e-06,
1334
+ "loss": 0.6914,
1335
+ "step": 663000
1336
+ },
1337
+ {
1338
+ "epoch": 19.88,
1339
+ "learning_rate": 1.863078782909116e-06,
1340
+ "loss": 0.6969,
1341
+ "step": 666000
1342
+ },
1343
+ {
1344
+ "epoch": 19.97,
1345
+ "learning_rate": 5.064680186549053e-07,
1346
+ "loss": 0.6948,
1347
+ "step": 669000
1348
+ },
1349
+ {
1350
+ "epoch": 20.0,
1351
+ "step": 670120,
1352
+ "total_flos": 1.67362005330918e+21,
1353
+ "train_loss": 1.0658713307571661,
1354
+ "train_runtime": 426567.9926,
1355
+ "train_samples_per_second": 25.136,
1356
+ "train_steps_per_second": 1.571
1357
+ },
1358
+ {
1359
+ "epoch": 20.06,
1360
+ "learning_rate": 5.053313149301143e-07,
1361
+ "loss": 0.6923,
1362
+ "step": 672000
1363
+ },
1364
+ {
1365
+ "epoch": 20.15,
1366
+ "learning_rate": 5.035174260075754e-07,
1367
+ "loss": 0.6958,
1368
+ "step": 675000
1369
+ },
1370
+ {
1371
+ "epoch": 20.24,
1372
+ "learning_rate": 5.017035370850364e-07,
1373
+ "loss": 0.6885,
1374
+ "step": 678000
1375
+ },
1376
+ {
1377
+ "epoch": 20.32,
1378
+ "learning_rate": 4.998896481624976e-07,
1379
+ "loss": 0.6976,
1380
+ "step": 681000
1381
+ },
1382
+ {
1383
+ "epoch": 20.41,
1384
+ "learning_rate": 4.980757592399586e-07,
1385
+ "loss": 0.6997,
1386
+ "step": 684000
1387
+ },
1388
+ {
1389
+ "epoch": 20.5,
1390
+ "learning_rate": 4.962618703174198e-07,
1391
+ "loss": 0.6856,
1392
+ "step": 687000
1393
+ },
1394
+ {
1395
+ "epoch": 20.59,
1396
+ "learning_rate": 4.944479813948808e-07,
1397
+ "loss": 0.6866,
1398
+ "step": 690000
1399
+ },
1400
+ {
1401
+ "epoch": 20.68,
1402
+ "learning_rate": 4.926340924723419e-07,
1403
+ "loss": 0.6981,
1404
+ "step": 693000
1405
+ },
1406
+ {
1407
+ "epoch": 20.77,
1408
+ "learning_rate": 4.90820203549803e-07,
1409
+ "loss": 0.695,
1410
+ "step": 696000
1411
+ },
1412
+ {
1413
+ "epoch": 20.86,
1414
+ "learning_rate": 4.890063146272641e-07,
1415
+ "loss": 0.6946,
1416
+ "step": 699000
1417
+ },
1418
+ {
1419
+ "epoch": 20.95,
1420
+ "learning_rate": 4.871924257047252e-07,
1421
+ "loss": 0.6912,
1422
+ "step": 702000
1423
+ },
1424
+ {
1425
+ "epoch": 21.04,
1426
+ "learning_rate": 4.853785367821862e-07,
1427
+ "loss": 0.6885,
1428
+ "step": 705000
1429
+ },
1430
+ {
1431
+ "epoch": 21.13,
1432
+ "learning_rate": 4.835646478596474e-07,
1433
+ "loss": 0.6896,
1434
+ "step": 708000
1435
+ },
1436
+ {
1437
+ "epoch": 21.22,
1438
+ "learning_rate": 4.817507589371084e-07,
1439
+ "loss": 0.694,
1440
+ "step": 711000
1441
+ },
1442
+ {
1443
+ "epoch": 21.31,
1444
+ "learning_rate": 4.799368700145696e-07,
1445
+ "loss": 0.6885,
1446
+ "step": 714000
1447
+ },
1448
+ {
1449
+ "epoch": 21.4,
1450
+ "learning_rate": 4.781229810920306e-07,
1451
+ "loss": 0.6924,
1452
+ "step": 717000
1453
+ },
1454
+ {
1455
+ "epoch": 21.49,
1456
+ "learning_rate": 4.763090921694917e-07,
1457
+ "loss": 0.6928,
1458
+ "step": 720000
1459
+ },
1460
+ {
1461
+ "epoch": 21.58,
1462
+ "learning_rate": 4.744952032469528e-07,
1463
+ "loss": 0.6943,
1464
+ "step": 723000
1465
+ },
1466
+ {
1467
+ "epoch": 21.67,
1468
+ "learning_rate": 4.726813143244139e-07,
1469
+ "loss": 0.6893,
1470
+ "step": 726000
1471
+ },
1472
+ {
1473
+ "epoch": 21.76,
1474
+ "learning_rate": 4.70867425401875e-07,
1475
+ "loss": 0.6895,
1476
+ "step": 729000
1477
+ },
1478
+ {
1479
+ "epoch": 21.85,
1480
+ "learning_rate": 4.690535364793361e-07,
1481
+ "loss": 0.6949,
1482
+ "step": 732000
1483
+ },
1484
+ {
1485
+ "epoch": 21.94,
1486
+ "learning_rate": 4.6723964755679714e-07,
1487
+ "loss": 0.6919,
1488
+ "step": 735000
1489
+ },
1490
+ {
1491
+ "epoch": 22.03,
1492
+ "learning_rate": 4.6542575863425824e-07,
1493
+ "loss": 0.6885,
1494
+ "step": 738000
1495
+ },
1496
+ {
1497
+ "epoch": 22.12,
1498
+ "learning_rate": 4.636118697117194e-07,
1499
+ "loss": 0.6922,
1500
+ "step": 741000
1501
+ },
1502
+ {
1503
+ "epoch": 22.2,
1504
+ "learning_rate": 4.617979807891805e-07,
1505
+ "loss": 0.6863,
1506
+ "step": 744000
1507
+ },
1508
+ {
1509
+ "epoch": 22.29,
1510
+ "learning_rate": 4.599840918666416e-07,
1511
+ "loss": 0.6899,
1512
+ "step": 747000
1513
+ },
1514
+ {
1515
+ "epoch": 22.38,
1516
+ "learning_rate": 4.581702029441027e-07,
1517
+ "loss": 0.6844,
1518
+ "step": 750000
1519
+ },
1520
+ {
1521
+ "epoch": 22.47,
1522
+ "learning_rate": 4.563563140215638e-07,
1523
+ "loss": 0.6956,
1524
+ "step": 753000
1525
+ },
1526
+ {
1527
+ "epoch": 22.56,
1528
+ "learning_rate": 4.545424250990249e-07,
1529
+ "loss": 0.6916,
1530
+ "step": 756000
1531
+ },
1532
+ {
1533
+ "epoch": 22.65,
1534
+ "learning_rate": 4.527285361764859e-07,
1535
+ "loss": 0.6828,
1536
+ "step": 759000
1537
+ },
1538
+ {
1539
+ "epoch": 22.74,
1540
+ "learning_rate": 4.50914647253947e-07,
1541
+ "loss": 0.6865,
1542
+ "step": 762000
1543
+ },
1544
+ {
1545
+ "epoch": 22.83,
1546
+ "learning_rate": 4.491007583314081e-07,
1547
+ "loss": 0.6916,
1548
+ "step": 765000
1549
+ },
1550
+ {
1551
+ "epoch": 22.92,
1552
+ "learning_rate": 4.472868694088692e-07,
1553
+ "loss": 0.6876,
1554
+ "step": 768000
1555
+ },
1556
+ {
1557
+ "epoch": 23.01,
1558
+ "learning_rate": 4.454729804863303e-07,
1559
+ "loss": 0.6936,
1560
+ "step": 771000
1561
+ },
1562
+ {
1563
+ "epoch": 23.1,
1564
+ "learning_rate": 4.436590915637914e-07,
1565
+ "loss": 0.6908,
1566
+ "step": 774000
1567
+ },
1568
+ {
1569
+ "epoch": 23.19,
1570
+ "learning_rate": 4.418452026412525e-07,
1571
+ "loss": 0.6864,
1572
+ "step": 777000
1573
+ },
1574
+ {
1575
+ "epoch": 23.28,
1576
+ "learning_rate": 4.400313137187136e-07,
1577
+ "loss": 0.6823,
1578
+ "step": 780000
1579
+ },
1580
+ {
1581
+ "epoch": 23.37,
1582
+ "learning_rate": 4.3821742479617464e-07,
1583
+ "loss": 0.6914,
1584
+ "step": 783000
1585
+ },
1586
+ {
1587
+ "epoch": 23.46,
1588
+ "learning_rate": 4.3640353587363574e-07,
1589
+ "loss": 0.6915,
1590
+ "step": 786000
1591
+ },
1592
+ {
1593
+ "epoch": 23.55,
1594
+ "learning_rate": 4.3458964695109684e-07,
1595
+ "loss": 0.6873,
1596
+ "step": 789000
1597
+ },
1598
+ {
1599
+ "epoch": 23.64,
1600
+ "learning_rate": 4.3277575802855793e-07,
1601
+ "loss": 0.69,
1602
+ "step": 792000
1603
+ },
1604
+ {
1605
+ "epoch": 23.73,
1606
+ "learning_rate": 4.3096186910601903e-07,
1607
+ "loss": 0.6872,
1608
+ "step": 795000
1609
+ },
1610
+ {
1611
+ "epoch": 23.82,
1612
+ "learning_rate": 4.2914798018348013e-07,
1613
+ "loss": 0.6925,
1614
+ "step": 798000
1615
+ },
1616
+ {
1617
+ "epoch": 23.91,
1618
+ "learning_rate": 4.273340912609412e-07,
1619
+ "loss": 0.6877,
1620
+ "step": 801000
1621
+ },
1622
+ {
1623
+ "epoch": 24.0,
1624
+ "learning_rate": 4.2552020233840227e-07,
1625
+ "loss": 0.6908,
1626
+ "step": 804000
1627
+ }
1628
+ ],
1629
+ "logging_steps": 3000,
1630
+ "max_steps": 837650,
1631
+ "num_train_epochs": 25,
1632
+ "save_steps": 500,
1633
+ "total_flos": 2.0083483479397598e+21,
1634
+ "trial_name": null,
1635
+ "trial_params": null
1636
+ }
checkpoint-804146/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85b3b6a5e18625ed0537c25eb5a02b86ed14477bf6bc935ecef99791b9ff6f59
3
+ size 4600
checkpoint-804146/vocab.json ADDED
@@ -0,0 +1,3303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\"": 1,
3
+ "+": 2,
4
+ "-": 3,
5
+ "[PAD]": 3300,
6
+ "[UNK]": 3299,
7
+ "]": 4,
8
+ "a": 5,
9
+ "b": 6,
10
+ "c": 7,
11
+ "d": 8,
12
+ "e": 9,
13
+ "f": 10,
14
+ "g": 11,
15
+ "h": 12,
16
+ "i": 13,
17
+ "j": 14,
18
+ "k": 15,
19
+ "l": 16,
20
+ "m": 17,
21
+ "n": 18,
22
+ "o": 19,
23
+ "p": 20,
24
+ "q": 21,
25
+ "r": 22,
26
+ "s": 23,
27
+ "t": 24,
28
+ "u": 25,
29
+ "v": 26,
30
+ "w": 27,
31
+ "x": 28,
32
+ "y": 29,
33
+ "z": 30,
34
+ "|": 0,
35
+ "°": 31,
36
+ "×": 32,
37
+ "à": 33,
38
+ "â": 34,
39
+ "ã": 35,
40
+ "ä": 36,
41
+ "ê": 37,
42
+ "í": 38,
43
+ "ö": 39,
44
+ "ú": 40,
45
+ "ü": 41,
46
+ "ā": 42,
47
+ "ė": 43,
48
+ "ę": 44,
49
+ "ł": 45,
50
+ "ş": 46,
51
+ "ż": 47,
52
+ "α": 48,
53
+ "β": 49,
54
+ "ι": 50,
55
+ "μ": 51,
56
+ "ο": 52,
57
+ "π": 53,
58
+ "а": 54,
59
+ "б": 55,
60
+ "в": 56,
61
+ "д": 57,
62
+ "е": 58,
63
+ "ж": 59,
64
+ "з": 60,
65
+ "и": 61,
66
+ "й": 62,
67
+ "к": 63,
68
+ "л": 64,
69
+ "м": 65,
70
+ "н": 66,
71
+ "о": 67,
72
+ "п": 68,
73
+ "р": 69,
74
+ "с": 70,
75
+ "т": 71,
76
+ "у": 72,
77
+ "х": 73,
78
+ "ц": 74,
79
+ "ч": 75,
80
+ "ш": 76,
81
+ "ы": 77,
82
+ "ь": 78,
83
+ "э": 79,
84
+ "ю": 80,
85
+ "я": 81,
86
+ "א": 82,
87
+ "ה": 83,
88
+ "י": 84,
89
+ "ל": 85,
90
+ "ש": 86,
91
+ "أ": 87,
92
+ "ا": 88,
93
+ "ب": 89,
94
+ "ث": 90,
95
+ "د": 91,
96
+ "س": 92,
97
+ "ل": 93,
98
+ "م": 94,
99
+ "ه": 95,
100
+ "و": 96,
101
+ "ي": 97,
102
+ "پ": 98,
103
+ "ک": 99,
104
+ "ھ": 100,
105
+ "ی": 101,
106
+ "ے": 102,
107
+ "ி": 103,
108
+ "จ": 104,
109
+ "เ": 105,
110
+ "ị": 106,
111
+ "​": 107,
112
+ "‐": 108,
113
+ "―": 109,
114
+ "‘": 110,
115
+ "“": 111,
116
+ "”": 112,
117
+ "‥": 113,
118
+ "…": 114,
119
+ "⁉": 115,
120
+ "℃": 116,
121
+ "ℓ": 117,
122
+ "⅔": 118,
123
+ "ⅱ": 119,
124
+ "ⅲ": 120,
125
+ "ⅴ": 121,
126
+ "ⅿ": 122,
127
+ "→": 123,
128
+ "∞": 124,
129
+ "①": 125,
130
+ "②": 126,
131
+ "③": 127,
132
+ "─": 128,
133
+ "○": 129,
134
+ "●": 130,
135
+ "★": 131,
136
+ "✕": 132,
137
+ "、": 133,
138
+ "。": 134,
139
+ "々": 135,
140
+ "〆": 136,
141
+ "〇": 137,
142
+ "〉": 138,
143
+ "《": 139,
144
+ "》": 140,
145
+ "「": 141,
146
+ "」": 142,
147
+ "『": 143,
148
+ "』": 144,
149
+ "【": 145,
150
+ "】": 146,
151
+ "〜": 147,
152
+ "ぁ": 148,
153
+ "あ": 149,
154
+ "ぃ": 150,
155
+ "い": 151,
156
+ "ぅ": 152,
157
+ "う": 153,
158
+ "ぇ": 154,
159
+ "え": 155,
160
+ "ぉ": 156,
161
+ "お": 157,
162
+ "か": 158,
163
+ "が": 159,
164
+ "き": 160,
165
+ "ぎ": 161,
166
+ "く": 162,
167
+ "ぐ": 163,
168
+ "け": 164,
169
+ "げ": 165,
170
+ "こ": 166,
171
+ "ご": 167,
172
+ "さ": 168,
173
+ "ざ": 169,
174
+ "し": 170,
175
+ "じ": 171,
176
+ "す": 172,
177
+ "ず": 173,
178
+ "せ": 174,
179
+ "ぜ": 175,
180
+ "そ": 176,
181
+ "ぞ": 177,
182
+ "た": 178,
183
+ "だ": 179,
184
+ "ち": 180,
185
+ "ぢ": 181,
186
+ "っ": 182,
187
+ "つ": 183,
188
+ "づ": 184,
189
+ "て": 185,
190
+ "で": 186,
191
+ "と": 187,
192
+ "ど": 188,
193
+ "な": 189,
194
+ "に": 190,
195
+ "ぬ": 191,
196
+ "ね": 192,
197
+ "の": 193,
198
+ "は": 194,
199
+ "ば": 195,
200
+ "ぱ": 196,
201
+ "ひ": 197,
202
+ "び": 198,
203
+ "ぴ": 199,
204
+ "ふ": 200,
205
+ "ぶ": 201,
206
+ "ぷ": 202,
207
+ "へ": 203,
208
+ "べ": 204,
209
+ "ぺ": 205,
210
+ "ほ": 206,
211
+ "ぼ": 207,
212
+ "ぽ": 208,
213
+ "ま": 209,
214
+ "み": 210,
215
+ "む": 211,
216
+ "め": 212,
217
+ "も": 213,
218
+ "ゃ": 214,
219
+ "や": 215,
220
+ "ゅ": 216,
221
+ "ゆ": 217,
222
+ "ょ": 218,
223
+ "よ": 219,
224
+ "ら": 220,
225
+ "り": 221,
226
+ "る": 222,
227
+ "れ": 223,
228
+ "ろ": 224,
229
+ "ゎ": 225,
230
+ "わ": 226,
231
+ "を": 227,
232
+ "ん": 228,
233
+ "ゔ": 229,
234
+ "゛": 230,
235
+ "ァ": 231,
236
+ "ア": 232,
237
+ "ィ": 233,
238
+ "イ": 234,
239
+ "ゥ": 235,
240
+ "ウ": 236,
241
+ "ェ": 237,
242
+ "エ": 238,
243
+ "ォ": 239,
244
+ "オ": 240,
245
+ "カ": 241,
246
+ "ガ": 242,
247
+ "キ": 243,
248
+ "ギ": 244,
249
+ "ク": 245,
250
+ "グ": 246,
251
+ "ケ": 247,
252
+ "ゲ": 248,
253
+ "コ": 249,
254
+ "ゴ": 250,
255
+ "サ": 251,
256
+ "ザ": 252,
257
+ "シ": 253,
258
+ "ジ": 254,
259
+ "ス": 255,
260
+ "ズ": 256,
261
+ "セ": 257,
262
+ "ゼ": 258,
263
+ "ソ": 259,
264
+ "ゾ": 260,
265
+ "タ": 261,
266
+ "ダ": 262,
267
+ "チ": 263,
268
+ "ヂ": 264,
269
+ "ッ": 265,
270
+ "ツ": 266,
271
+ "ヅ": 267,
272
+ "テ": 268,
273
+ "デ": 269,
274
+ "ト": 270,
275
+ "ド": 271,
276
+ "ナ": 272,
277
+ "ニ": 273,
278
+ "ヌ": 274,
279
+ "ネ": 275,
280
+ "ノ": 276,
281
+ "ハ": 277,
282
+ "バ": 278,
283
+ "パ": 279,
284
+ "ヒ": 280,
285
+ "ビ": 281,
286
+ "ピ": 282,
287
+ "フ": 283,
288
+ "ブ": 284,
289
+ "プ": 285,
290
+ "ヘ": 286,
291
+ "ベ": 287,
292
+ "ペ": 288,
293
+ "ホ": 289,
294
+ "ボ": 290,
295
+ "ポ": 291,
296
+ "マ": 292,
297
+ "ミ": 293,
298
+ "ム": 294,
299
+ "メ": 295,
300
+ "モ": 296,
301
+ "ャ": 297,
302
+ "ヤ": 298,
303
+ "ュ": 299,
304
+ "ユ": 300,
305
+ "ョ": 301,
306
+ "ヨ": 302,
307
+ "ラ": 303,
308
+ "リ": 304,
309
+ "ル": 305,
310
+ "レ": 306,
311
+ "ロ": 307,
312
+ "ワ": 308,
313
+ "ン": 309,
314
+ "ヴ": 310,
315
+ "ヵ": 311,
316
+ "ヶ": 312,
317
+ "・": 313,
318
+ "ー": 314,
319
+ "ㄷ": 315,
320
+ "ㅏ": 316,
321
+ "ㅑ": 317,
322
+ "ㅜ": 318,
323
+ "ㅠ": 319,
324
+ "ㅡ": 320,
325
+ "ㇱ": 321,
326
+ "ㇴ": 322,
327
+ "ㇶ": 323,
328
+ "ㇻ": 324,
329
+ "ㇽ": 325,
330
+ "㎏": 326,
331
+ "㎖": 327,
332
+ "㎝": 328,
333
+ "㎞": 329,
334
+ "㏌": 330,
335
+ "一": 331,
336
+ "丁": 332,
337
+ "七": 333,
338
+ "万": 334,
339
+ "丈": 335,
340
+ "三": 336,
341
+ "上": 337,
342
+ "下": 338,
343
+ "不": 339,
344
+ "与": 340,
345
+ "丑": 341,
346
+ "且": 342,
347
+ "世": 343,
348
+ "丘": 344,
349
+ "両": 345,
350
+ "並": 346,
351
+ "中": 347,
352
+ "串": 348,
353
+ "丸": 349,
354
+ "丹": 350,
355
+ "主": 351,
356
+ "丼": 352,
357
+ "乃": 353,
358
+ "久": 354,
359
+ "之": 355,
360
+ "乏": 356,
361
+ "乗": 357,
362
+ "乙": 358,
363
+ "九": 359,
364
+ "乞": 360,
365
+ "也": 361,
366
+ "乱": 362,
367
+ "乳": 363,
368
+ "乾": 364,
369
+ "亀": 365,
370
+ "了": 366,
371
+ "予": 367,
372
+ "争": 368,
373
+ "事": 369,
374
+ "二": 370,
375
+ "云": 371,
376
+ "互": 372,
377
+ "五": 373,
378
+ "井": 374,
379
+ "些": 375,
380
+ "亜": 376,
381
+ "亡": 377,
382
+ "交": 378,
383
+ "京": 379,
384
+ "亭": 380,
385
+ "亮": 381,
386
+ "人": 382,
387
+ "仁": 383,
388
+ "仇": 384,
389
+ "今": 385,
390
+ "介": 386,
391
+ "从": 387,
392
+ "仏": 388,
393
+ "仔": 389,
394
+ "仕": 390,
395
+ "他": 391,
396
+ "付": 392,
397
+ "仙": 393,
398
+ "代": 394,
399
+ "令": 395,
400
+ "以": 396,
401
+ "仮": 397,
402
+ "仰": 398,
403
+ "仲": 399,
404
+ "件": 400,
405
+ "任": 401,
406
+ "份": 402,
407
+ "企": 403,
408
+ "伊": 404,
409
+ "伎": 405,
410
+ "伏": 406,
411
+ "伐": 407,
412
+ "休": 408,
413
+ "会": 409,
414
+ "伝": 410,
415
+ "伯": 411,
416
+ "伴": 412,
417
+ "伶": 413,
418
+ "伸": 414,
419
+ "伺": 415,
420
+ "似": 416,
421
+ "伽": 417,
422
+ "佃": 418,
423
+ "佇": 419,
424
+ "位": 420,
425
+ "低": 421,
426
+ "住": 422,
427
+ "佐": 423,
428
+ "佑": 424,
429
+ "体": 425,
430
+ "何": 426,
431
+ "余": 427,
432
+ "作": 428,
433
+ "你": 429,
434
+ "佳": 430,
435
+ "併": 431,
436
+ "使": 432,
437
+ "來": 433,
438
+ "例": 434,
439
+ "侍": 435,
440
+ "供": 436,
441
+ "依": 437,
442
+ "侠": 438,
443
+ "価": 439,
444
+ "侮": 440,
445
+ "侯": 441,
446
+ "侵": 442,
447
+ "侶": 443,
448
+ "便": 444,
449
+ "係": 445,
450
+ "促": 446,
451
+ "俊": 447,
452
+ "俗": 448,
453
+ "保": 449,
454
+ "信": 450,
455
+ "俣": 451,
456
+ "俩": 452,
457
+ "修": 453,
458
+ "俯": 454,
459
+ "俳": 455,
460
+ "俵": 456,
461
+ "俸": 457,
462
+ "俺": 458,
463
+ "倉": 459,
464
+ "個": 460,
465
+ "倍": 461,
466
+ "倒": 462,
467
+ "倖": 463,
468
+ "候": 464,
469
+ "借": 465,
470
+ "倣": 466,
471
+ "値": 467,
472
+ "倦": 468,
473
+ "倫": 469,
474
+ "倶": 470,
475
+ "倹": 471,
476
+ "假": 472,
477
+ "偉": 473,
478
+ "偏": 474,
479
+ "做": 475,
480
+ "停": 476,
481
+ "健": 477,
482
+ "側": 478,
483
+ "偵": 479,
484
+ "偶": 480,
485
+ "偽": 481,
486
+ "傅": 482,
487
+ "傍": 483,
488
+ "傑": 484,
489
+ "傘": 485,
490
+ "備": 486,
491
+ "催": 487,
492
+ "傭": 488,
493
+ "債": 489,
494
+ "傷": 490,
495
+ "傾": 491,
496
+ "僅": 492,
497
+ "働": 493,
498
+ "像": 494,
499
+ "僕": 495,
500
+ "僚": 496,
501
+ "僧": 497,
502
+ "儀": 498,
503
+ "儂": 499,
504
+ "億": 500,
505
+ "儘": 501,
506
+ "儚": 502,
507
+ "償": 503,
508
+ "優": 504,
509
+ "儲": 505,
510
+ "元": 506,
511
+ "兄": 507,
512
+ "充": 508,
513
+ "兆": 509,
514
+ "先": 510,
515
+ "光": 511,
516
+ "克": 512,
517
+ "免": 513,
518
+ "兎": 514,
519
+ "児": 515,
520
+ "党": 516,
521
+ "兜": 517,
522
+ "入": 518,
523
+ "全": 519,
524
+ "八": 520,
525
+ "公": 521,
526
+ "六": 522,
527
+ "共": 523,
528
+ "兴": 524,
529
+ "兵": 525,
530
+ "其": 526,
531
+ "具": 527,
532
+ "典": 528,
533
+ "兼": 529,
534
+ "内": 530,
535
+ "円": 531,
536
+ "冊": 532,
537
+ "再": 533,
538
+ "冑": 534,
539
+ "冒": 535,
540
+ "冗": 536,
541
+ "写": 537,
542
+ "冠": 538,
543
+ "冤": 539,
544
+ "冥": 540,
545
+ "冨": 541,
546
+ "冬": 542,
547
+ "冰": 543,
548
+ "冲": 544,
549
+ "冴": 545,
550
+ "冶": 546,
551
+ "冷": 547,
552
+ "凄": 548,
553
+ "凌": 549,
554
+ "凍": 550,
555
+ "凛": 551,
556
+ "凝": 552,
557
+ "几": 553,
558
+ "凡": 554,
559
+ "処": 555,
560
+ "凪": 556,
561
+ "凰": 557,
562
+ "凱": 558,
563
+ "凶": 559,
564
+ "凸": 560,
565
+ "凹": 561,
566
+ "出": 562,
567
+ "函": 563,
568
+ "刀": 564,
569
+ "刃": 565,
570
+ "分": 566,
571
+ "切": 567,
572
+ "刈": 568,
573
+ "刊": 569,
574
+ "刑": 570,
575
+ "列": 571,
576
+ "初": 572,
577
+ "判": 573,
578
+ "別": 574,
579
+ "利": 575,
580
+ "刮": 576,
581
+ "到": 577,
582
+ "制": 578,
583
+ "刷": 579,
584
+ "券": 580,
585
+ "刹": 581,
586
+ "刺": 582,
587
+ "刻": 583,
588
+ "剃": 584,
589
+ "則": 585,
590
+ "削": 586,
591
+ "前": 587,
592
+ "剖": 588,
593
+ "剛": 589,
594
+ "剝": 590,
595
+ "剣": 591,
596
+ "剤": 592,
597
+ "剥": 593,
598
+ "剪": 594,
599
+ "副": 595,
600
+ "剰": 596,
601
+ "剱": 597,
602
+ "割": 598,
603
+ "創": 599,
604
+ "剽": 600,
605
+ "劇": 601,
606
+ "劔": 602,
607
+ "力": 603,
608
+ "功": 604,
609
+ "加": 605,
610
+ "劣": 606,
611
+ "动": 607,
612
+ "助": 608,
613
+ "努": 609,
614
+ "劫": 610,
615
+ "励": 611,
616
+ "労": 612,
617
+ "効": 613,
618
+ "勃": 614,
619
+ "勇": 615,
620
+ "勉": 616,
621
+ "動": 617,
622
+ "勘": 618,
623
+ "務": 619,
624
+ "勝": 620,
625
+ "募": 621,
626
+ "勢": 622,
627
+ "勤": 623,
628
+ "勧": 624,
629
+ "勲": 625,
630
+ "勾": 626,
631
+ "勿": 627,
632
+ "匂": 628,
633
+ "包": 629,
634
+ "化": 630,
635
+ "北": 631,
636
+ "匠": 632,
637
+ "匹": 633,
638
+ "区": 634,
639
+ "医": 635,
640
+ "匿": 636,
641
+ "區": 637,
642
+ "十": 638,
643
+ "千": 639,
644
+ "升": 640,
645
+ "午": 641,
646
+ "半": 642,
647
+ "卍": 643,
648
+ "卑": 644,
649
+ "卒": 645,
650
+ "卓": 646,
651
+ "協": 647,
652
+ "南": 648,
653
+ "単": 649,
654
+ "博": 650,
655
+ "占": 651,
656
+ "卦": 652,
657
+ "卭": 653,
658
+ "卯": 654,
659
+ "印": 655,
660
+ "危": 656,
661
+ "即": 657,
662
+ "却": 658,
663
+ "卵": 659,
664
+ "卷": 660,
665
+ "卸": 661,
666
+ "卿": 662,
667
+ "厄": 663,
668
+ "厚": 664,
669
+ "原": 665,
670
+ "厨": 666,
671
+ "厳": 667,
672
+ "去": 668,
673
+ "参": 669,
674
+ "又": 670,
675
+ "叉": 671,
676
+ "及": 672,
677
+ "友": 673,
678
+ "双": 674,
679
+ "反": 675,
680
+ "収": 676,
681
+ "叔": 677,
682
+ "取": 678,
683
+ "受": 679,
684
+ "叙": 680,
685
+ "叡": 681,
686
+ "口": 682,
687
+ "古": 683,
688
+ "句": 684,
689
+ "叩": 685,
690
+ "只": 686,
691
+ "叫": 687,
692
+ "召": 688,
693
+ "可": 689,
694
+ "台": 690,
695
+ "叱": 691,
696
+ "史": 692,
697
+ "右": 693,
698
+ "叶": 694,
699
+ "号": 695,
700
+ "司": 696,
701
+ "各": 697,
702
+ "合": 698,
703
+ "吉": 699,
704
+ "吊": 700,
705
+ "同": 701,
706
+ "名": 702,
707
+ "吐": 703,
708
+ "向": 704,
709
+ "君": 705,
710
+ "吞": 706,
711
+ "吟": 707,
712
+ "吠": 708,
713
+ "否": 709,
714
+ "含": 710,
715
+ "吸": 711,
716
+ "吹": 712,
717
+ "吽": 713,
718
+ "吾": 714,
719
+ "呂": 715,
720
+ "呆": 716,
721
+ "呈": 717,
722
+ "呉": 718,
723
+ "告": 719,
724
+ "呑": 720,
725
+ "呟": 721,
726
+ "周": 722,
727
+ "呪": 723,
728
+ "味": 724,
729
+ "呵": 725,
730
+ "呼": 726,
731
+ "命": 727,
732
+ "咀": 728,
733
+ "和": 729,
734
+ "咎": 730,
735
+ "咬": 731,
736
+ "咲": 732,
737
+ "咳": 733,
738
+ "咽": 734,
739
+ "哀": 735,
740
+ "品": 736,
741
+ "哉": 737,
742
+ "員": 738,
743
+ "哨": 739,
744
+ "哲": 740,
745
+ "哺": 741,
746
+ "唄": 742,
747
+ "唇": 743,
748
+ "唐": 744,
749
+ "唯": 745,
750
+ "唱": 746,
751
+ "唸": 747,
752
+ "唾": 748,
753
+ "商": 749,
754
+ "問": 750,
755
+ "啓": 751,
756
+ "啖": 752,
757
+ "善": 753,
758
+ "喉": 754,
759
+ "喋": 755,
760
+ "喘": 756,
761
+ "喚": 757,
762
+ "喜": 758,
763
+ "喝": 759,
764
+ "喧": 760,
765
+ "喩": 761,
766
+ "喪": 762,
767
+ "喫": 763,
768
+ "喰": 764,
769
+ "営": 765,
770
+ "嗅": 766,
771
+ "嗚": 767,
772
+ "嗜": 768,
773
+ "嗣": 769,
774
+ "嘆": 770,
775
+ "嘉": 771,
776
+ "嘔": 772,
777
+ "嘘": 773,
778
+ "嘩": 774,
779
+ "嘲": 775,
780
+ "噂": 776,
781
+ "噌": 777,
782
+ "噓": 778,
783
+ "噛": 779,
784
+ "器": 780,
785
+ "噴": 781,
786
+ "嚇": 782,
787
+ "嚙": 783,
788
+ "嚥": 784,
789
+ "嚼": 785,
790
+ "囁": 786,
791
+ "囃": 787,
792
+ "囚": 788,
793
+ "四": 789,
794
+ "回": 790,
795
+ "因": 791,
796
+ "団": 792,
797
+ "囮": 793,
798
+ "困": 794,
799
+ "囲": 795,
800
+ "図": 796,
801
+ "固": 797,
802
+ "国": 798,
803
+ "圀": 799,
804
+ "國": 800,
805
+ "圏": 801,
806
+ "園": 802,
807
+ "土": 803,
808
+ "圧": 804,
809
+ "在": 805,
810
+ "圭": 806,
811
+ "地": 807,
812
+ "坂": 808,
813
+ "均": 809,
814
+ "坊": 810,
815
+ "坑": 811,
816
+ "坦": 812,
817
+ "坪": 813,
818
+ "垂": 814,
819
+ "型": 815,
820
+ "垢": 816,
821
+ "垣": 817,
822
+ "埃": 818,
823
+ "埋": 819,
824
+ "城": 820,
825
+ "域": 821,
826
+ "埠": 822,
827
+ "執": 823,
828
+ "培": 824,
829
+ "基": 825,
830
+ "埼": 826,
831
+ "堀": 827,
832
+ "堂": 828,
833
+ "堅": 829,
834
+ "堆": 830,
835
+ "堕": 831,
836
+ "堤": 832,
837
+ "堪": 833,
838
+ "報": 834,
839
+ "場": 835,
840
+ "堵": 836,
841
+ "堺": 837,
842
+ "塀": 838,
843
+ "塁": 839,
844
+ "塊": 840,
845
+ "塔": 841,
846
+ "塗": 842,
847
+ "塘": 843,
848
+ "塚": 844,
849
+ "塞": 845,
850
+ "塩": 846,
851
+ "填": 847,
852
+ "塵": 848,
853
+ "塹": 849,
854
+ "塾": 850,
855
+ "境": 851,
856
+ "墓": 852,
857
+ "増": 853,
858
+ "墜": 854,
859
+ "墟": 855,
860
+ "墨": 856,
861
+ "墳": 857,
862
+ "墾": 858,
863
+ "壁": 859,
864
+ "壇": 860,
865
+ "壊": 861,
866
+ "壌": 862,
867
+ "壕": 863,
868
+ "壢": 864,
869
+ "士": 865,
870
+ "壮": 866,
871
+ "声": 867,
872
+ "壱": 868,
873
+ "売": 869,
874
+ "壺": 870,
875
+ "変": 871,
876
+ "复": 872,
877
+ "夏": 873,
878
+ "夕": 874,
879
+ "外": 875,
880
+ "多": 876,
881
+ "夜": 877,
882
+ "夢": 878,
883
+ "大": 879,
884
+ "天": 880,
885
+ "太": 881,
886
+ "夫": 882,
887
+ "央": 883,
888
+ "失": 884,
889
+ "夷": 885,
890
+ "奄": 886,
891
+ "奇": 887,
892
+ "奈": 888,
893
+ "奉": 889,
894
+ "奏": 890,
895
+ "契": 891,
896
+ "套": 892,
897
+ "奢": 893,
898
+ "奥": 894,
899
+ "奨": 895,
900
+ "奪": 896,
901
+ "奮": 897,
902
+ "女": 898,
903
+ "奴": 899,
904
+ "奶": 900,
905
+ "好": 901,
906
+ "如": 902,
907
+ "妃": 903,
908
+ "妄": 904,
909
+ "妊": 905,
910
+ "妓": 906,
911
+ "妖": 907,
912
+ "妙": 908,
913
+ "妞": 909,
914
+ "妥": 910,
915
+ "妨": 911,
916
+ "妬": 912,
917
+ "妹": 913,
918
+ "妻": 914,
919
+ "姉": 915,
920
+ "始": 916,
921
+ "姓": 917,
922
+ "委": 918,
923
+ "姜": 919,
924
+ "姪": 920,
925
+ "姫": 921,
926
+ "姻": 922,
927
+ "姿": 923,
928
+ "威": 924,
929
+ "娘": 925,
930
+ "娠": 926,
931
+ "娯": 927,
932
+ "娼": 928,
933
+ "婆": 929,
934
+ "婚": 930,
935
+ "婦": 931,
936
+ "婿": 932,
937
+ "媒": 933,
938
+ "媚": 934,
939
+ "媛": 935,
940
+ "嫁": 936,
941
+ "嫉": 937,
942
+ "嫌": 938,
943
+ "嬉": 939,
944
+ "嬌": 940,
945
+ "嬢": 941,
946
+ "子": 942,
947
+ "孔": 943,
948
+ "字": 944,
949
+ "存": 945,
950
+ "孝": 946,
951
+ "孟": 947,
952
+ "季": 948,
953
+ "孤": 949,
954
+ "学": 950,
955
+ "孫": 951,
956
+ "孵": 952,
957
+ "宅": 953,
958
+ "宇": 954,
959
+ "守": 955,
960
+ "安": 956,
961
+ "完": 957,
962
+ "宍": 958,
963
+ "宏": 959,
964
+ "宕": 960,
965
+ "宗": 961,
966
+ "官": 962,
967
+ "宙": 963,
968
+ "定": 964,
969
+ "宛": 965,
970
+ "宜": 966,
971
+ "宝": 967,
972
+ "実": 968,
973
+ "客": 969,
974
+ "宣": 970,
975
+ "室": 971,
976
+ "宥": 972,
977
+ "宮": 973,
978
+ "宰": 974,
979
+ "害": 975,
980
+ "宴": 976,
981
+ "宵": 977,
982
+ "家": 978,
983
+ "容": 979,
984
+ "宿": 980,
985
+ "寂": 981,
986
+ "寄": 982,
987
+ "寅": 983,
988
+ "密": 984,
989
+ "富": 985,
990
+ "寒": 986,
991
+ "寓": 987,
992
+ "寛": 988,
993
+ "寝": 989,
994
+ "察": 990,
995
+ "寡": 991,
996
+ "實": 992,
997
+ "寧": 993,
998
+ "審": 994,
999
+ "寮": 995,
1000
+ "寸": 996,
1001
+ "寺": 997,
1002
+ "対": 998,
1003
+ "寿": 999,
1004
+ "封": 1000,
1005
+ "専": 1001,
1006
+ "射": 1002,
1007
+ "将": 1003,
1008
+ "專": 1004,
1009
+ "尊": 1005,
1010
+ "尋": 1006,
1011
+ "導": 1007,
1012
+ "小": 1008,
1013
+ "少": 1009,
1014
+ "尖": 1010,
1015
+ "尚": 1011,
1016
+ "就": 1012,
1017
+ "尺": 1013,
1018
+ "尻": 1014,
1019
+ "尽": 1015,
1020
+ "尾": 1016,
1021
+ "尿": 1017,
1022
+ "局": 1018,
1023
+ "屁": 1019,
1024
+ "居": 1020,
1025
+ "屈": 1021,
1026
+ "届": 1022,
1027
+ "屋": 1023,
1028
+ "屍": 1024,
1029
+ "屏": 1025,
1030
+ "屑": 1026,
1031
+ "屓": 1027,
1032
+ "展": 1028,
1033
+ "属": 1029,
1034
+ "屠": 1030,
1035
+ "層": 1031,
1036
+ "履": 1032,
1037
+ "屯": 1033,
1038
+ "山": 1034,
1039
+ "岐": 1035,
1040
+ "岡": 1036,
1041
+ "岩": 1037,
1042
+ "岬": 1038,
1043
+ "岳": 1039,
1044
+ "岸": 1040,
1045
+ "峙": 1041,
1046
+ "峠": 1042,
1047
+ "峡": 1043,
1048
+ "峯": 1044,
1049
+ "峰": 1045,
1050
+ "島": 1046,
1051
+ "崇": 1047,
1052
+ "崎": 1048,
1053
+ "崖": 1049,
1054
+ "崗": 1050,
1055
+ "崩": 1051,
1056
+ "嵌": 1052,
1057
+ "嵐": 1053,
1058
+ "嵜": 1054,
1059
+ "嵩": 1055,
1060
+ "嶋": 1056,
1061
+ "嶺": 1057,
1062
+ "嶽": 1058,
1063
+ "川": 1059,
1064
+ "州": 1060,
1065
+ "巡": 1061,
1066
+ "巣": 1062,
1067
+ "工": 1063,
1068
+ "左": 1064,
1069
+ "巧": 1065,
1070
+ "巨": 1066,
1071
+ "巫": 1067,
1072
+ "差": 1068,
1073
+ "己": 1069,
1074
+ "巴": 1070,
1075
+ "巷": 1071,
1076
+ "巻": 1072,
1077
+ "巾": 1073,
1078
+ "市": 1074,
1079
+ "布": 1075,
1080
+ "帆": 1076,
1081
+ "希": 1077,
1082
+ "帖": 1078,
1083
+ "帝": 1079,
1084
+ "師": 1080,
1085
+ "席": 1081,
1086
+ "帯": 1082,
1087
+ "帰": 1083,
1088
+ "帳": 1084,
1089
+ "帶": 1085,
1090
+ "常": 1086,
1091
+ "帽": 1087,
1092
+ "幅": 1088,
1093
+ "幌": 1089,
1094
+ "幕": 1090,
1095
+ "幡": 1091,
1096
+ "幣": 1092,
1097
+ "干": 1093,
1098
+ "平": 1094,
1099
+ "年": 1095,
1100
+ "幸": 1096,
1101
+ "幹": 1097,
1102
+ "幻": 1098,
1103
+ "幼": 1099,
1104
+ "幽": 1100,
1105
+ "幾": 1101,
1106
+ "庁": 1102,
1107
+ "広": 1103,
1108
+ "庄": 1104,
1109
+ "床": 1105,
1110
+ "序": 1106,
1111
+ "底": 1107,
1112
+ "店": 1108,
1113
+ "府": 1109,
1114
+ "度": 1110,
1115
+ "座": 1111,
1116
+ "庫": 1112,
1117
+ "庭": 1113,
1118
+ "庵": 1114,
1119
+ "庶": 1115,
1120
+ "康": 1116,
1121
+ "廃": 1117,
1122
+ "廉": 1118,
1123
+ "廊": 1119,
1124
+ "廚": 1120,
1125
+ "廟": 1121,
1126
+ "延": 1122,
1127
+ "廷": 1123,
1128
+ "建": 1124,
1129
+ "廻": 1125,
1130
+ "弁": 1126,
1131
+ "弄": 1127,
1132
+ "弊": 1128,
1133
+ "式": 1129,
1134
+ "弐": 1130,
1135
+ "弓": 1131,
1136
+ "引": 1132,
1137
+ "弘": 1133,
1138
+ "弛": 1134,
1139
+ "弟": 1135,
1140
+ "弥": 1136,
1141
+ "弦": 1137,
1142
+ "弧": 1138,
1143
+ "弱": 1139,
1144
+ "張": 1140,
1145
+ "強": 1141,
1146
+ "弾": 1142,
1147
+ "彅": 1143,
1148
+ "彊": 1144,
1149
+ "当": 1145,
1150
+ "彗": 1146,
1151
+ "彙": 1147,
1152
+ "形": 1148,
1153
+ "彦": 1149,
1154
+ "彩": 1150,
1155
+ "彫": 1151,
1156
+ "彰": 1152,
1157
+ "影": 1153,
1158
+ "彷": 1154,
1159
+ "役": 1155,
1160
+ "彼": 1156,
1161
+ "彿": 1157,
1162
+ "往": 1158,
1163
+ "征": 1159,
1164
+ "径": 1160,
1165
+ "待": 1161,
1166
+ "很": 1162,
1167
+ "徊": 1163,
1168
+ "律": 1164,
1169
+ "後": 1165,
1170
+ "徐": 1166,
1171
+ "徒": 1167,
1172
+ "従": 1168,
1173
+ "得": 1169,
1174
+ "徘": 1170,
1175
+ "御": 1171,
1176
+ "徨": 1172,
1177
+ "復": 1173,
1178
+ "循": 1174,
1179
+ "微": 1175,
1180
+ "徳": 1176,
1181
+ "徴": 1177,
1182
+ "徹": 1178,
1183
+ "心": 1179,
1184
+ "必": 1180,
1185
+ "忌": 1181,
1186
+ "忍": 1182,
1187
+ "忖": 1183,
1188
+ "志": 1184,
1189
+ "忘": 1185,
1190
+ "忙": 1186,
1191
+ "応": 1187,
1192
+ "忠": 1188,
1193
+ "快": 1189,
1194
+ "念": 1190,
1195
+ "怎": 1191,
1196
+ "怒": 1192,
1197
+ "怖": 1193,
1198
+ "怜": 1194,
1199
+ "思": 1195,
1200
+ "怠": 1196,
1201
+ "急": 1197,
1202
+ "性": 1198,
1203
+ "怨": 1199,
1204
+ "怪": 1200,
1205
+ "怯": 1201,
1206
+ "恋": 1202,
1207
+ "恐": 1203,
1208
+ "恒": 1204,
1209
+ "恥": 1205,
1210
+ "恨": 1206,
1211
+ "恩": 1207,
1212
+ "息": 1208,
1213
+ "恰": 1209,
1214
+ "恵": 1210,
1215
+ "悍": 1211,
1216
+ "悔": 1212,
1217
+ "悟": 1213,
1218
+ "悠": 1214,
1219
+ "患": 1215,
1220
+ "悦": 1216,
1221
+ "悩": 1217,
1222
+ "悪": 1218,
1223
+ "悲": 1219,
1224
+ "悶": 1220,
1225
+ "悼": 1221,
1226
+ "情": 1222,
1227
+ "惑": 1223,
1228
+ "惚": 1224,
1229
+ "惜": 1225,
1230
+ "惣": 1226,
1231
+ "惧": 1227,
1232
+ "惨": 1228,
1233
+ "惰": 1229,
1234
+ "想": 1230,
1235
+ "惹": 1231,
1236
+ "愁": 1232,
1237
+ "愉": 1233,
1238
+ "意": 1234,
1239
+ "愕": 1235,
1240
+ "愚": 1236,
1241
+ "愛": 1237,
1242
+ "感": 1238,
1243
+ "慄": 1239,
1244
+ "慈": 1240,
1245
+ "態": 1241,
1246
+ "慌": 1242,
1247
+ "慎": 1243,
1248
+ "慕": 1244,
1249
+ "慢": 1245,
1250
+ "慣": 1246,
1251
+ "慨": 1247,
1252
+ "慮": 1248,
1253
+ "慰": 1249,
1254
+ "慶": 1250,
1255
+ "憂": 1251,
1256
+ "憎": 1252,
1257
+ "憐": 1253,
1258
+ "憑": 1254,
1259
+ "憤": 1255,
1260
+ "憧": 1256,
1261
+ "憩": 1257,
1262
+ "憫": 1258,
1263
+ "憲": 1259,
1264
+ "憶": 1260,
1265
+ "憾": 1261,
1266
+ "懇": 1262,
1267
+ "應": 1263,
1268
+ "懐": 1264,
1269
+ "懲": 1265,
1270
+ "懸": 1266,
1271
+ "懺": 1267,
1272
+ "成": 1268,
1273
+ "我": 1269,
1274
+ "戒": 1270,
1275
+ "戚": 1271,
1276
+ "戦": 1272,
1277
+ "戯": 1273,
1278
+ "戴": 1274,
1279
+ "戸": 1275,
1280
+ "戻": 1276,
1281
+ "房": 1277,
1282
+ "所": 1278,
1283
+ "扁": 1279,
1284
+ "扇": 1280,
1285
+ "扉": 1281,
1286
+ "手": 1282,
1287
+ "才": 1283,
1288
+ "打": 1284,
1289
+ "払": 1285,
1290
+ "托": 1286,
1291
+ "扮": 1287,
1292
+ "扱": 1288,
1293
+ "扶": 1289,
1294
+ "批": 1290,
1295
+ "承": 1291,
1296
+ "技": 1292,
1297
+ "抉": 1293,
1298
+ "把": 1294,
1299
+ "抑": 1295,
1300
+ "投": 1296,
1301
+ "抗": 1297,
1302
+ "折": 1298,
1303
+ "抜": 1299,
1304
+ "択": 1300,
1305
+ "披": 1301,
1306
+ "抱": 1302,
1307
+ "抵": 1303,
1308
+ "抹": 1304,
1309
+ "押": 1305,
1310
+ "抽": 1306,
1311
+ "担": 1307,
1312
+ "拉": 1308,
1313
+ "拌": 1309,
1314
+ "拍": 1310,
1315
+ "拐": 1311,
1316
+ "拒": 1312,
1317
+ "拓": 1313,
1318
+ "拗": 1314,
1319
+ "拘": 1315,
1320
+ "拙": 1316,
1321
+ "招": 1317,
1322
+ "拝": 1318,
1323
+ "拠": 1319,
1324
+ "拡": 1320,
1325
+ "括": 1321,
1326
+ "拭": 1322,
1327
+ "拳": 1323,
1328
+ "拶": 1324,
1329
+ "拷": 1325,
1330
+ "拾": 1326,
1331
+ "持": 1327,
1332
+ "指": 1328,
1333
+ "按": 1329,
1334
+ "挑": 1330,
1335
+ "挙": 1331,
1336
+ "挟": 1332,
1337
+ "挨": 1333,
1338
+ "挫": 1334,
1339
+ "振": 1335,
1340
+ "挽": 1336,
1341
+ "挿": 1337,
1342
+ "捉": 1338,
1343
+ "捌": 1339,
1344
+ "捕": 1340,
1345
+ "捗": 1341,
1346
+ "捜": 1342,
1347
+ "捧": 1343,
1348
+ "捨": 1344,
1349
+ "据": 1345,
1350
+ "捲": 1346,
1351
+ "捻": 1347,
1352
+ "掃": 1348,
1353
+ "授": 1349,
1354
+ "掌": 1350,
1355
+ "掏": 1351,
1356
+ "排": 1352,
1357
+ "掘": 1353,
1358
+ "掛": 1354,
1359
+ "掠": 1355,
1360
+ "採": 1356,
1361
+ "探": 1357,
1362
+ "接": 1358,
1363
+ "控": 1359,
1364
+ "推": 1360,
1365
+ "措": 1361,
1366
+ "掲": 1362,
1367
+ "掴": 1363,
1368
+ "掻": 1364,
1369
+ "揃": 1365,
1370
+ "揉": 1366,
1371
+ "描": 1367,
1372
+ "提": 1368,
1373
+ "揚": 1369,
1374
+ "換": 1370,
1375
+ "握": 1371,
1376
+ "揮": 1372,
1377
+ "援": 1373,
1378
+ "揺": 1374,
1379
+ "損": 1375,
1380
+ "搔": 1376,
1381
+ "搬": 1377,
1382
+ "搭": 1378,
1383
+ "携": 1379,
1384
+ "搾": 1380,
1385
+ "摂": 1381,
1386
+ "摘": 1382,
1387
+ "摩": 1383,
1388
+ "摯": 1384,
1389
+ "摸": 1385,
1390
+ "摺": 1386,
1391
+ "撃": 1387,
1392
+ "撒": 1388,
1393
+ "撤": 1389,
1394
+ "撥": 1390,
1395
+ "撫": 1391,
1396
+ "播": 1392,
1397
+ "撮": 1393,
1398
+ "撲": 1394,
1399
+ "撹": 1395,
1400
+ "擁": 1396,
1401
+ "操": 1397,
1402
+ "擢": 1398,
1403
+ "擦": 1399,
1404
+ "擬": 1400,
1405
+ "擲": 1401,
1406
+ "攪": 1402,
1407
+ "攫": 1403,
1408
+ "支": 1404,
1409
+ "改": 1405,
1410
+ "攻": 1406,
1411
+ "放": 1407,
1412
+ "政": 1408,
1413
+ "故": 1409,
1414
+ "敏": 1410,
1415
+ "救": 1411,
1416
+ "敗": 1412,
1417
+ "教": 1413,
1418
+ "敢": 1414,
1419
+ "散": 1415,
1420
+ "敦": 1416,
1421
+ "敬": 1417,
1422
+ "数": 1418,
1423
+ "整": 1419,
1424
+ "敵": 1420,
1425
+ "敷": 1421,
1426
+ "文": 1422,
1427
+ "斉": 1423,
1428
+ "斎": 1424,
1429
+ "斐": 1425,
1430
+ "斑": 1426,
1431
+ "斗": 1427,
1432
+ "料": 1428,
1433
+ "斜": 1429,
1434
+ "斤": 1430,
1435
+ "斥": 1431,
1436
+ "斧": 1432,
1437
+ "斬": 1433,
1438
+ "断": 1434,
1439
+ "斯": 1435,
1440
+ "新": 1436,
1441
+ "方": 1437,
1442
+ "施": 1438,
1443
+ "旅": 1439,
1444
+ "旋": 1440,
1445
+ "族": 1441,
1446
+ "旗": 1442,
1447
+ "既": 1443,
1448
+ "日": 1444,
1449
+ "旦": 1445,
1450
+ "旧": 1446,
1451
+ "旨": 1447,
1452
+ "早": 1448,
1453
+ "旬": 1449,
1454
+ "旭": 1450,
1455
+ "旺": 1451,
1456
+ "昆": 1452,
1457
+ "昇": 1453,
1458
+ "昌": 1454,
1459
+ "明": 1455,
1460
+ "昏": 1456,
1461
+ "易": 1457,
1462
+ "昔": 1458,
1463
+ "星": 1459,
1464
+ "映": 1460,
1465
+ "春": 1461,
1466
+ "昧": 1462,
1467
+ "昨": 1463,
1468
+ "昭": 1464,
1469
+ "是": 1465,
1470
+ "昼": 1466,
1471
+ "時": 1467,
1472
+ "晄": 1468,
1473
+ "晋": 1469,
1474
+ "晒": 1470,
1475
+ "晦": 1471,
1476
+ "晩": 1472,
1477
+ "普": 1473,
1478
+ "景": 1474,
1479
+ "晴": 1475,
1480
+ "晶": 1476,
1481
+ "智": 1477,
1482
+ "暁": 1478,
1483
+ "暇": 1479,
1484
+ "暈": 1480,
1485
+ "暉": 1481,
1486
+ "暑": 1482,
1487
+ "暖": 1483,
1488
+ "暗": 1484,
1489
+ "暢": 1485,
1490
+ "暦": 1486,
1491
+ "暫": 1487,
1492
+ "暮": 1488,
1493
+ "暴": 1489,
1494
+ "曇": 1490,
1495
+ "曖": 1491,
1496
+ "曜": 1492,
1497
+ "曝": 1493,
1498
+ "曰": 1494,
1499
+ "曲": 1495,
1500
+ "更": 1496,
1501
+ "書": 1497,
1502
+ "曹": 1498,
1503
+ "曽": 1499,
1504
+ "曾": 1500,
1505
+ "替": 1501,
1506
+ "最": 1502,
1507
+ "會": 1503,
1508
+ "月": 1504,
1509
+ "有": 1505,
1510
+ "朋": 1506,
1511
+ "服": 1507,
1512
+ "朗": 1508,
1513
+ "望": 1509,
1514
+ "朝": 1510,
1515
+ "期": 1511,
1516
+ "朧": 1512,
1517
+ "木": 1513,
1518
+ "未": 1514,
1519
+ "末": 1515,
1520
+ "本": 1516,
1521
+ "札": 1517,
1522
+ "朱": 1518,
1523
+ "朴": 1519,
1524
+ "机": 1520,
1525
+ "朽": 1521,
1526
+ "杉": 1522,
1527
+ "李": 1523,
1528
+ "杏": 1524,
1529
+ "材": 1525,
1530
+ "村": 1526,
1531
+ "杖": 1527,
1532
+ "杜": 1528,
1533
+ "束": 1529,
1534
+ "条": 1530,
1535
+ "来": 1531,
1536
+ "杭": 1532,
1537
+ "杯": 1533,
1538
+ "東": 1534,
1539
+ "松": 1535,
1540
+ "板": 1536,
1541
+ "析": 1537,
1542
+ "枕": 1538,
1543
+ "林": 1539,
1544
+ "枚": 1540,
1545
+ "果": 1541,
1546
+ "枝": 1542,
1547
+ "枠": 1543,
1548
+ "枢": 1544,
1549
+ "枩": 1545,
1550
+ "枯": 1546,
1551
+ "架": 1547,
1552
+ "枷": 1548,
1553
+ "柄": 1549,
1554
+ "柏": 1550,
1555
+ "某": 1551,
1556
+ "柑": 1552,
1557
+ "染": 1553,
1558
+ "柔": 1554,
1559
+ "柚": 1555,
1560
+ "柱": 1556,
1561
+ "柳": 1557,
1562
+ "柴": 1558,
1563
+ "柵": 1559,
1564
+ "査": 1560,
1565
+ "柿": 1561,
1566
+ "栂": 1562,
1567
+ "栃": 1563,
1568
+ "栄": 1564,
1569
+ "栓": 1565,
1570
+ "栖": 1566,
1571
+ "栗": 1567,
1572
+ "校": 1568,
1573
+ "株": 1569,
1574
+ "核": 1570,
1575
+ "根": 1571,
1576
+ "格": 1572,
1577
+ "栽": 1573,
1578
+ "桁": 1574,
1579
+ "桂": 1575,
1580
+ "桃": 1576,
1581
+ "案": 1577,
1582
+ "桐": 1578,
1583
+ "桑": 1579,
1584
+ "桔": 1580,
1585
+ "桜": 1581,
1586
+ "桝": 1582,
1587
+ "桟": 1583,
1588
+ "桶": 1584,
1589
+ "梁": 1585,
1590
+ "梅": 1586,
1591
+ "梗": 1587,
1592
+ "條": 1588,
1593
+ "梟": 1589,
1594
+ "梨": 1590,
1595
+ "梯": 1591,
1596
+ "械": 1592,
1597
+ "梱": 1593,
1598
+ "梵": 1594,
1599
+ "梶": 1595,
1600
+ "棄": 1596,
1601
+ "棉": 1597,
1602
+ "棋": 1598,
1603
+ "棍": 1599,
1604
+ "棒": 1600,
1605
+ "棕": 1601,
1606
+ "棘": 1602,
1607
+ "棚": 1603,
1608
+ "棟": 1604,
1609
+ "森": 1605,
1610
+ "棲": 1606,
1611
+ "椀": 1607,
1612
+ "椄": 1608,
1613
+ "椅": 1609,
1614
+ "植": 1610,
1615
+ "椎": 1611,
1616
+ "椒": 1612,
1617
+ "検": 1613,
1618
+ "椿": 1614,
1619
+ "楊": 1615,
1620
+ "楓": 1616,
1621
+ "楕": 1617,
1622
+ "楚": 1618,
1623
+ "業": 1619,
1624
+ "楯": 1620,
1625
+ "極": 1621,
1626
+ "楼": 1622,
1627
+ "楽": 1623,
1628
+ "概": 1624,
1629
+ "榎": 1625,
1630
+ "榛": 1626,
1631
+ "榴": 1627,
1632
+ "槃": 1628,
1633
+ "構": 1629,
1634
+ "槌": 1630,
1635
+ "槍": 1631,
1636
+ "様": 1632,
1637
+ "槙": 1633,
1638
+ "槻": 1634,
1639
+ "槽": 1635,
1640
+ "樋": 1636,
1641
+ "標": 1637,
1642
+ "模": 1638,
1643
+ "樣": 1639,
1644
+ "権": 1640,
1645
+ "横": 1641,
1646
+ "樫": 1642,
1647
+ "樹": 1643,
1648
+ "樺": 1644,
1649
+ "樽": 1645,
1650
+ "橋": 1646,
1651
+ "橘": 1647,
1652
+ "機": 1648,
1653
+ "檀": 1649,
1654
+ "檎": 1650,
1655
+ "檜": 1651,
1656
+ "檬": 1652,
1657
+ "檳": 1653,
1658
+ "檸": 1654,
1659
+ "檻": 1655,
1660
+ "櫛": 1656,
1661
+ "櫻": 1657,
1662
+ "欄": 1658,
1663
+ "欅": 1659,
1664
+ "欒": 1660,
1665
+ "欠": 1661,
1666
+ "次": 1662,
1667
+ "欧": 1663,
1668
+ "欲": 1664,
1669
+ "欺": 1665,
1670
+ "欽": 1666,
1671
+ "歌": 1667,
1672
+ "歓": 1668,
1673
+ "止": 1669,
1674
+ "正": 1670,
1675
+ "步": 1671,
1676
+ "武": 1672,
1677
+ "歩": 1673,
1678
+ "歪": 1674,
1679
+ "歯": 1675,
1680
+ "歳": 1676,
1681
+ "歴": 1677,
1682
+ "死": 1678,
1683
+ "殆": 1679,
1684
+ "殊": 1680,
1685
+ "残": 1681,
1686
+ "殖": 1682,
1687
+ "殲": 1683,
1688
+ "殴": 1684,
1689
+ "段": 1685,
1690
+ "殺": 1686,
1691
+ "殻": 1687,
1692
+ "殿": 1688,
1693
+ "毀": 1689,
1694
+ "母": 1690,
1695
+ "毎": 1691,
1696
+ "毒": 1692,
1697
+ "比": 1693,
1698
+ "毛": 1694,
1699
+ "毯": 1695,
1700
+ "氏": 1696,
1701
+ "民": 1697,
1702
+ "気": 1698,
1703
+ "水": 1699,
1704
+ "氷": 1700,
1705
+ "永": 1701,
1706
+ "氾": 1702,
1707
+ "汁": 1703,
1708
+ "求": 1704,
1709
+ "汎": 1705,
1710
+ "汐": 1706,
1711
+ "汗": 1707,
1712
+ "汚": 1708,
1713
+ "汝": 1709,
1714
+ "江": 1710,
1715
+ "池": 1711,
1716
+ "汰": 1712,
1717
+ "汲": 1713,
1718
+ "決": 1714,
1719
+ "汽": 1715,
1720
+ "沈": 1716,
1721
+ "沌": 1717,
1722
+ "沐": 1718,
1723
+ "沖": 1719,
1724
+ "沙": 1720,
1725
+ "没": 1721,
1726
+ "沢": 1722,
1727
+ "沫": 1723,
1728
+ "河": 1724,
1729
+ "沸": 1725,
1730
+ "油": 1726,
1731
+ "治": 1727,
1732
+ "沼": 1728,
1733
+ "沿": 1729,
1734
+ "況": 1730,
1735
+ "泄": 1731,
1736
+ "泉": 1732,
1737
+ "泊": 1733,
1738
+ "泌": 1734,
1739
+ "法": 1735,
1740
+ "泡": 1736,
1741
+ "波": 1737,
1742
+ "泣": 1738,
1743
+ "泥": 1739,
1744
+ "注": 1740,
1745
+ "泰": 1741,
1746
+ "泳": 1742,
1747
+ "洋": 1743,
1748
+ "洒": 1744,
1749
+ "洗": 1745,
1750
+ "洞": 1746,
1751
+ "津": 1747,
1752
+ "洩": 1748,
1753
+ "洪": 1749,
1754
+ "洲": 1750,
1755
+ "活": 1751,
1756
+ "派": 1752,
1757
+ "流": 1753,
1758
+ "浄": 1754,
1759
+ "浅": 1755,
1760
+ "浜": 1756,
1761
+ "浦": 1757,
1762
+ "浩": 1758,
1763
+ "浪": 1759,
1764
+ "浮": 1760,
1765
+ "浴": 1761,
1766
+ "海": 1762,
1767
+ "浸": 1763,
1768
+ "涅": 1764,
1769
+ "消": 1765,
1770
+ "涌": 1766,
1771
+ "涙": 1767,
1772
+ "涛": 1768,
1773
+ "涜": 1769,
1774
+ "涯": 1770,
1775
+ "液": 1771,
1776
+ "涸": 1772,
1777
+ "涼": 1773,
1778
+ "淀": 1774,
1779
+ "淑": 1775,
1780
+ "淘": 1776,
1781
+ "淡": 1777,
1782
+ "深": 1778,
1783
+ "淵": 1779,
1784
+ "混": 1780,
1785
+ "淹": 1781,
1786
+ "添": 1782,
1787
+ "清": 1783,
1788
+ "渇": 1784,
1789
+ "済": 1785,
1790
+ "渉": 1786,
1791
+ "渋": 1787,
1792
+ "渓": 1788,
1793
+ "渕": 1789,
1794
+ "渚": 1790,
1795
+ "減": 1791,
1796
+ "渡": 1792,
1797
+ "渦": 1793,
1798
+ "温": 1794,
1799
+ "測": 1795,
1800
+ "港": 1796,
1801
+ "游": 1797,
1802
+ "渾": 1798,
1803
+ "湊": 1799,
1804
+ "湖": 1800,
1805
+ "湘": 1801,
1806
+ "湧": 1802,
1807
+ "湯": 1803,
1808
+ "湾": 1804,
1809
+ "湿": 1805,
1810
+ "満": 1806,
1811
+ "源": 1807,
1812
+ "準": 1808,
1813
+ "溜": 1809,
1814
+ "溝": 1810,
1815
+ "溢": 1811,
1816
+ "溶": 1812,
1817
+ "溺": 1813,
1818
+ "滅": 1814,
1819
+ "滋": 1815,
1820
+ "滑": 1816,
1821
+ "滝": 1817,
1822
+ "滞": 1818,
1823
+ "滲": 1819,
1824
+ "滴": 1820,
1825
+ "漁": 1821,
1826
+ "漂": 1822,
1827
+ "漆": 1823,
1828
+ "漏": 1824,
1829
+ "演": 1825,
1830
+ "漕": 1826,
1831
+ "漠": 1827,
1832
+ "漢": 1828,
1833
+ "漫": 1829,
1834
+ "漬": 1830,
1835
+ "漱": 1831,
1836
+ "潔": 1832,
1837
+ "潜": 1833,
1838
+ "潟": 1834,
1839
+ "潤": 1835,
1840
+ "潮": 1836,
1841
+ "潰": 1837,
1842
+ "澄": 1838,
1843
+ "澤": 1839,
1844
+ "澱": 1840,
1845
+ "激": 1841,
1846
+ "濁": 1842,
1847
+ "濃": 1843,
1848
+ "濡": 1844,
1849
+ "濫": 1845,
1850
+ "濯": 1846,
1851
+ "濱": 1847,
1852
+ "濾": 1848,
1853
+ "瀑": 1849,
1854
+ "瀕": 1850,
1855
+ "瀞": 1851,
1856
+ "瀧": 1852,
1857
+ "瀬": 1853,
1858
+ "灣": 1854,
1859
+ "火": 1855,
1860
+ "灯": 1856,
1861
+ "灰": 1857,
1862
+ "灸": 1858,
1863
+ "灼": 1859,
1864
+ "災": 1860,
1865
+ "炉": 1861,
1866
+ "炊": 1862,
1867
+ "炎": 1863,
1868
+ "炒": 1864,
1869
+ "炙": 1865,
1870
+ "炭": 1866,
1871
+ "炸": 1867,
1872
+ "点": 1868,
1873
+ "為": 1869,
1874
+ "烈": 1870,
1875
+ "烏": 1871,
1876
+ "烙": 1872,
1877
+ "烹": 1873,
1878
+ "焉": 1874,
1879
+ "焙": 1875,
1880
+ "焚": 1876,
1881
+ "無": 1877,
1882
+ "焦": 1878,
1883
+ "然": 1879,
1884
+ "焼": 1880,
1885
+ "煉": 1881,
1886
+ "煌": 1882,
1887
+ "煎": 1883,
1888
+ "煙": 1884,
1889
+ "照": 1885,
1890
+ "煩": 1886,
1891
+ "煮": 1887,
1892
+ "煽": 1888,
1893
+ "熄": 1889,
1894
+ "熊": 1890,
1895
+ "熟": 1891,
1896
+ "熱": 1892,
1897
+ "燃": 1893,
1898
+ "燈": 1894,
1899
+ "燕": 1895,
1900
+ "燗": 1896,
1901
+ "燥": 1897,
1902
+ "燧": 1898,
1903
+ "燭": 1899,
1904
+ "燻": 1900,
1905
+ "爆": 1901,
1906
+ "爪": 1902,
1907
+ "爬": 1903,
1908
+ "爵": 1904,
1909
+ "父": 1905,
1910
+ "爺": 1906,
1911
+ "爽": 1907,
1912
+ "牆": 1908,
1913
+ "片": 1909,
1914
+ "版": 1910,
1915
+ "牌": 1911,
1916
+ "牙": 1912,
1917
+ "牛": 1913,
1918
+ "牡": 1914,
1919
+ "牢": 1915,
1920
+ "牧": 1916,
1921
+ "物": 1917,
1922
+ "牲": 1918,
1923
+ "特": 1919,
1924
+ "牽": 1920,
1925
+ "犀": 1921,
1926
+ "犠": 1922,
1927
+ "犬": 1923,
1928
+ "犯": 1924,
1929
+ "状": 1925,
1930
+ "狂": 1926,
1931
+ "狐": 1927,
1932
+ "狗": 1928,
1933
+ "狙": 1929,
1934
+ "狡": 1930,
1935
+ "狩": 1931,
1936
+ "独": 1932,
1937
+ "狭": 1933,
1938
+ "狸": 1934,
1939
+ "狼": 1935,
1940
+ "猛": 1936,
1941
+ "猜": 1937,
1942
+ "猟": 1938,
1943
+ "猥": 1939,
1944
+ "猪": 1940,
1945
+ "猫": 1941,
1946
+ "献": 1942,
1947
+ "猶": 1943,
1948
+ "猾": 1944,
1949
+ "猿": 1945,
1950
+ "獄": 1946,
1951
+ "獅": 1947,
1952
+ "獣": 1948,
1953
+ "獲": 1949,
1954
+ "獺": 1950,
1955
+ "玄": 1951,
1956
+ "率": 1952,
1957
+ "玉": 1953,
1958
+ "王": 1954,
1959
+ "玲": 1955,
1960
+ "珀": 1956,
1961
+ "珈": 1957,
1962
+ "珍": 1958,
1963
+ "珠": 1959,
1964
+ "班": 1960,
1965
+ "現": 1961,
1966
+ "球": 1962,
1967
+ "理": 1963,
1968
+ "琉": 1964,
1969
+ "琥": 1965,
1970
+ "琲": 1966,
1971
+ "琳": 1967,
1972
+ "琴": 1968,
1973
+ "琵": 1969,
1974
+ "琶": 1970,
1975
+ "瑞": 1971,
1976
+ "瑠": 1972,
1977
+ "璧": 1973,
1978
+ "環": 1974,
1979
+ "瓢": 1975,
1980
+ "瓦": 1976,
1981
+ "瓶": 1977,
1982
+ "甘": 1978,
1983
+ "甚": 1979,
1984
+ "甜": 1980,
1985
+ "生": 1981,
1986
+ "産": 1982,
1987
+ "甥": 1983,
1988
+ "甦": 1984,
1989
+ "用": 1985,
1990
+ "田": 1986,
1991
+ "由": 1987,
1992
+ "甲": 1988,
1993
+ "申": 1989,
1994
+ "男": 1990,
1995
+ "町": 1991,
1996
+ "画": 1992,
1997
+ "界": 1993,
1998
+ "畏": 1994,
1999
+ "畑": 1995,
2000
+ "畔": 1996,
2001
+ "留": 1997,
2002
+ "畜": 1998,
2003
+ "畝": 1999,
2004
+ "略": 2000,
2005
+ "番": 2001,
2006
+ "異": 2002,
2007
+ "畳": 2003,
2008
+ "畿": 2004,
2009
+ "疆": 2005,
2010
+ "疇": 2006,
2011
+ "疎": 2007,
2012
+ "疑": 2008,
2013
+ "疫": 2009,
2014
+ "疱": 2010,
2015
+ "疲": 2011,
2016
+ "疹": 2012,
2017
+ "疼": 2013,
2018
+ "疾": 2014,
2019
+ "病": 2015,
2020
+ "症": 2016,
2021
+ "痍": 2017,
2022
+ "痒": 2018,
2023
+ "痔": 2019,
2024
+ "痕": 2020,
2025
+ "痛": 2021,
2026
+ "痢": 2022,
2027
+ "痣": 2023,
2028
+ "痩": 2024,
2029
+ "痰": 2025,
2030
+ "痱": 2026,
2031
+ "痴": 2027,
2032
+ "痺": 2028,
2033
+ "瘍": 2029,
2034
+ "瘡": 2030,
2035
+ "瘦": 2031,
2036
+ "瘴": 2032,
2037
+ "療": 2033,
2038
+ "癌": 2034,
2039
+ "癒": 2035,
2040
+ "癖": 2036,
2041
+ "癪": 2037,
2042
+ "発": 2038,
2043
+ "登": 2039,
2044
+ "白": 2040,
2045
+ "百": 2041,
2046
+ "的": 2042,
2047
+ "皆": 2043,
2048
+ "皇": 2044,
2049
+ "皮": 2045,
2050
+ "皺": 2046,
2051
+ "皿": 2047,
2052
+ "盂": 2048,
2053
+ "盃": 2049,
2054
+ "盆": 2050,
2055
+ "益": 2051,
2056
+ "盗": 2052,
2057
+ "盛": 2053,
2058
+ "盟": 2054,
2059
+ "監": 2055,
2060
+ "盤": 2056,
2061
+ "盪": 2057,
2062
+ "目": 2058,
2063
+ "盲": 2059,
2064
+ "直": 2060,
2065
+ "相": 2061,
2066
+ "盾": 2062,
2067
+ "省": 2063,
2068
+ "眉": 2064,
2069
+ "看": 2065,
2070
+ "県": 2066,
2071
+ "真": 2067,
2072
+ "眠": 2068,
2073
+ "眩": 2069,
2074
+ "眺": 2070,
2075
+ "眼": 2071,
2076
+ "着": 2072,
2077
+ "睡": 2073,
2078
+ "督": 2074,
2079
+ "睦": 2075,
2080
+ "睨": 2076,
2081
+ "瞑": 2077,
2082
+ "瞬": 2078,
2083
+ "瞭": 2079,
2084
+ "瞰": 2080,
2085
+ "瞳": 2081,
2086
+ "瞼": 2082,
2087
+ "矛": 2083,
2088
+ "矢": 2084,
2089
+ "知": 2085,
2090
+ "矩": 2086,
2091
+ "短": 2087,
2092
+ "矯": 2088,
2093
+ "石": 2089,
2094
+ "砂": 2090,
2095
+ "研": 2091,
2096
+ "砕": 2092,
2097
+ "砦": 2093,
2098
+ "砲": 2094,
2099
+ "破": 2095,
2100
+ "硫": 2096,
2101
+ "硬": 2097,
2102
+ "碁": 2098,
2103
+ "碇": 2099,
2104
+ "碑": 2100,
2105
+ "碕": 2101,
2106
+ "碗": 2102,
2107
+ "碧": 2103,
2108
+ "確": 2104,
2109
+ "碾": 2105,
2110
+ "磁": 2106,
2111
+ "磅": 2107,
2112
+ "磊": 2108,
2113
+ "磐": 2109,
2114
+ "磨": 2110,
2115
+ "磯": 2111,
2116
+ "礁": 2112,
2117
+ "礎": 2113,
2118
+ "示": 2114,
2119
+ "礼": 2115,
2120
+ "社": 2116,
2121
+ "祀": 2117,
2122
+ "祇": 2118,
2123
+ "祈": 2119,
2124
+ "祉": 2120,
2125
+ "祐": 2121,
2126
+ "祓": 2122,
2127
+ "祖": 2123,
2128
+ "祝": 2124,
2129
+ "神": 2125,
2130
+ "祠": 2126,
2131
+ "祥": 2127,
2132
+ "票": 2128,
2133
+ "祭": 2129,
2134
+ "禁": 2130,
2135
+ "禄": 2131,
2136
+ "禅": 2132,
2137
+ "禊": 2133,
2138
+ "禍": 2134,
2139
+ "福": 2135,
2140
+ "禰": 2136,
2141
+ "秀": 2137,
2142
+ "私": 2138,
2143
+ "秋": 2139,
2144
+ "科": 2140,
2145
+ "秒": 2141,
2146
+ "秘": 2142,
2147
+ "秤": 2143,
2148
+ "秦": 2144,
2149
+ "秩": 2145,
2150
+ "称": 2146,
2151
+ "移": 2147,
2152
+ "稀": 2148,
2153
+ "程": 2149,
2154
+ "税": 2150,
2155
+ "稚": 2151,
2156
+ "稜": 2152,
2157
+ "種": 2153,
2158
+ "稱": 2154,
2159
+ "稲": 2155,
2160
+ "稼": 2156,
2161
+ "稽": 2157,
2162
+ "稿": 2158,
2163
+ "穀": 2159,
2164
+ "穂": 2160,
2165
+ "積": 2161,
2166
+ "穏": 2162,
2167
+ "穢": 2163,
2168
+ "穫": 2164,
2169
+ "穴": 2165,
2170
+ "究": 2166,
2171
+ "空": 2167,
2172
+ "穿": 2168,
2173
+ "突": 2169,
2174
+ "窃": 2170,
2175
+ "窒": 2171,
2176
+ "窓": 2172,
2177
+ "窟": 2173,
2178
+ "窪": 2174,
2179
+ "窮": 2175,
2180
+ "窯": 2176,
2181
+ "立": 2177,
2182
+ "竜": 2178,
2183
+ "章": 2179,
2184
+ "童": 2180,
2185
+ "竦": 2181,
2186
+ "端": 2182,
2187
+ "競": 2183,
2188
+ "竹": 2184,
2189
+ "竺": 2185,
2190
+ "竿": 2186,
2191
+ "笑": 2187,
2192
+ "笘": 2188,
2193
+ "笛": 2189,
2194
+ "笠": 2190,
2195
+ "符": 2191,
2196
+ "第": 2192,
2197
+ "笹": 2193,
2198
+ "筆": 2194,
2199
+ "筈": 2195,
2200
+ "等": 2196,
2201
+ "筋": 2197,
2202
+ "筍": 2198,
2203
+ "筏": 2199,
2204
+ "筐": 2200,
2205
+ "筑": 2201,
2206
+ "筒": 2202,
2207
+ "答": 2203,
2208
+ "策": 2204,
2209
+ "箇": 2205,
2210
+ "箋": 2206,
2211
+ "箔": 2207,
2212
+ "箕": 2208,
2213
+ "算": 2209,
2214
+ "管": 2210,
2215
+ "箭": 2211,
2216
+ "箱": 2212,
2217
+ "箸": 2213,
2218
+ "節": 2214,
2219
+ "範": 2215,
2220
+ "築": 2216,
2221
+ "篝": 2217,
2222
+ "篠": 2218,
2223
+ "篭": 2219,
2224
+ "篷": 2220,
2225
+ "簀": 2221,
2226
+ "簡": 2222,
2227
+ "簾": 2223,
2228
+ "簿": 2224,
2229
+ "籍": 2225,
2230
+ "籠": 2226,
2231
+ "米": 2227,
2232
+ "粉": 2228,
2233
+ "粋": 2229,
2234
+ "粒": 2230,
2235
+ "粕": 2231,
2236
+ "粗": 2232,
2237
+ "粘": 2233,
2238
+ "粛": 2234,
2239
+ "粥": 2235,
2240
+ "粧": 2236,
2241
+ "精": 2237,
2242
+ "糊": 2238,
2243
+ "糖": 2239,
2244
+ "糞": 2240,
2245
+ "糧": 2241,
2246
+ "糸": 2242,
2247
+ "系": 2243,
2248
+ "紀": 2244,
2249
+ "約": 2245,
2250
+ "紅": 2246,
2251
+ "紋": 2247,
2252
+ "納": 2248,
2253
+ "紐": 2249,
2254
+ "純": 2250,
2255
+ "紗": 2251,
2256
+ "紙": 2252,
2257
+ "級": 2253,
2258
+ "紛": 2254,
2259
+ "素": 2255,
2260
+ "索": 2256,
2261
+ "紫": 2257,
2262
+ "累": 2258,
2263
+ "細": 2259,
2264
+ "紳": 2260,
2265
+ "紹": 2261,
2266
+ "紺": 2262,
2267
+ "終": 2263,
2268
+ "組": 2264,
2269
+ "絆": 2265,
2270
+ "経": 2266,
2271
+ "結": 2267,
2272
+ "絞": 2268,
2273
+ "絡": 2269,
2274
+ "給": 2270,
2275
+ "絨": 2271,
2276
+ "統": 2272,
2277
+ "絵": 2273,
2278
+ "絶": 2274,
2279
+ "絹": 2275,
2280
+ "継": 2276,
2281
+ "続": 2277,
2282
+ "綜": 2278,
2283
+ "維": 2279,
2284
+ "綱": 2280,
2285
+ "網": 2281,
2286
+ "綴": 2282,
2287
+ "綺": 2283,
2288
+ "綻": 2284,
2289
+ "綾": 2285,
2290
+ "綿": 2286,
2291
+ "緊": 2287,
2292
+ "総": 2288,
2293
+ "緑": 2289,
2294
+ "緒": 2290,
2295
+ "緘": 2291,
2296
+ "線": 2292,
2297
+ "締": 2293,
2298
+ "編": 2294,
2299
+ "緩": 2295,
2300
+ "緯": 2296,
2301
+ "練": 2297,
2302
+ "緻": 2298,
2303
+ "縁": 2299,
2304
+ "縄": 2300,
2305
+ "縋": 2301,
2306
+ "縛": 2302,
2307
+ "縞": 2303,
2308
+ "縢": 2304,
2309
+ "縦": 2305,
2310
+ "縫": 2306,
2311
+ "縮": 2307,
2312
+ "縱": 2308,
2313
+ "績": 2309,
2314
+ "繁": 2310,
2315
+ "繊": 2311,
2316
+ "繋": 2312,
2317
+ "繍": 2313,
2318
+ "織": 2314,
2319
+ "繕": 2315,
2320
+ "繚": 2316,
2321
+ "繡": 2317,
2322
+ "繫": 2318,
2323
+ "繭": 2319,
2324
+ "繰": 2320,
2325
+ "纏": 2321,
2326
+ "缶": 2322,
2327
+ "罠": 2323,
2328
+ "罪": 2324,
2329
+ "置": 2325,
2330
+ "罰": 2326,
2331
+ "署": 2327,
2332
+ "罵": 2328,
2333
+ "罹": 2329,
2334
+ "羅": 2330,
2335
+ "羊": 2331,
2336
+ "美": 2332,
2337
+ "羞": 2333,
2338
+ "群": 2334,
2339
+ "羨": 2335,
2340
+ "義": 2336,
2341
+ "羮": 2337,
2342
+ "羹": 2338,
2343
+ "羽": 2339,
2344
+ "翌": 2340,
2345
+ "習": 2341,
2346
+ "翔": 2342,
2347
+ "翠": 2343,
2348
+ "翻": 2344,
2349
+ "翼": 2345,
2350
+ "耀": 2346,
2351
+ "老": 2347,
2352
+ "考": 2348,
2353
+ "者": 2349,
2354
+ "耐": 2350,
2355
+ "耕": 2351,
2356
+ "耗": 2352,
2357
+ "耳": 2353,
2358
+ "耶": 2354,
2359
+ "聖": 2355,
2360
+ "聘": 2356,
2361
+ "聞": 2357,
2362
+ "聡": 2358,
2363
+ "聴": 2359,
2364
+ "職": 2360,
2365
+ "肉": 2361,
2366
+ "肋": 2362,
2367
+ "肌": 2363,
2368
+ "肖": 2364,
2369
+ "肘": 2365,
2370
+ "肝": 2366,
2371
+ "股": 2367,
2372
+ "肢": 2368,
2373
+ "肥": 2369,
2374
+ "肩": 2370,
2375
+ "肪": 2371,
2376
+ "肯": 2372,
2377
+ "育": 2373,
2378
+ "肴": 2374,
2379
+ "肺": 2375,
2380
+ "胃": 2376,
2381
+ "胆": 2377,
2382
+ "背": 2378,
2383
+ "胎": 2379,
2384
+ "胞": 2380,
2385
+ "胡": 2381,
2386
+ "胱": 2382,
2387
+ "胴": 2383,
2388
+ "胸": 2384,
2389
+ "能": 2385,
2390
+ "脂": 2386,
2391
+ "脅": 2387,
2392
+ "脆": 2388,
2393
+ "脇": 2389,
2394
+ "脈": 2390,
2395
+ "脊": 2391,
2396
+ "脚": 2392,
2397
+ "脱": 2393,
2398
+ "脳": 2394,
2399
+ "脹": 2395,
2400
+ "腎": 2396,
2401
+ "腐": 2397,
2402
+ "腑": 2398,
2403
+ "腔": 2399,
2404
+ "腕": 2400,
2405
+ "腫": 2401,
2406
+ "腰": 2402,
2407
+ "腱": 2403,
2408
+ "腸": 2404,
2409
+ "腹": 2405,
2410
+ "腺": 2406,
2411
+ "腿": 2407,
2412
+ "膀": 2408,
2413
+ "膏": 2409,
2414
+ "膚": 2410,
2415
+ "膜": 2411,
2416
+ "膝": 2412,
2417
+ "膠": 2413,
2418
+ "膨": 2414,
2419
+ "膳": 2415,
2420
+ "膵": 2416,
2421
+ "膿": 2417,
2422
+ "臆": 2418,
2423
+ "臓": 2419,
2424
+ "臣": 2420,
2425
+ "臨": 2421,
2426
+ "自": 2422,
2427
+ "臭": 2423,
2428
+ "至": 2424,
2429
+ "致": 2425,
2430
+ "臼": 2426,
2431
+ "興": 2427,
2432
+ "舌": 2428,
2433
+ "舎": 2429,
2434
+ "舐": 2430,
2435
+ "舗": 2431,
2436
+ "舞": 2432,
2437
+ "舟": 2433,
2438
+ "航": 2434,
2439
+ "般": 2435,
2440
+ "舵": 2436,
2441
+ "舶": 2437,
2442
+ "船": 2438,
2443
+ "艇": 2439,
2444
+ "艦": 2440,
2445
+ "良": 2441,
2446
+ "色": 2442,
2447
+ "艶": 2443,
2448
+ "芋": 2444,
2449
+ "芒": 2445,
2450
+ "芝": 2446,
2451
+ "芭": 2447,
2452
+ "芯": 2448,
2453
+ "花": 2449,
2454
+ "芳": 2450,
2455
+ "芸": 2451,
2456
+ "芻": 2452,
2457
+ "芽": 2453,
2458
+ "苑": 2454,
2459
+ "苔": 2455,
2460
+ "苗": 2456,
2461
+ "苛": 2457,
2462
+ "若": 2458,
2463
+ "苦": 2459,
2464
+ "苫": 2460,
2465
+ "英": 2461,
2466
+ "苺": 2462,
2467
+ "茂": 2463,
2468
+ "茄": 2464,
2469
+ "茅": 2465,
2470
+ "茎": 2466,
2471
+ "茜": 2467,
2472
+ "茨": 2468,
2473
+ "茶": 2469,
2474
+ "茸": 2470,
2475
+ "茹": 2471,
2476
+ "草": 2472,
2477
+ "荒": 2473,
2478
+ "荘": 2474,
2479
+ "荷": 2475,
2480
+ "荻": 2476,
2481
+ "莫": 2477,
2482
+ "菅": 2478,
2483
+ "菊": 2479,
2484
+ "菌": 2480,
2485
+ "菓": 2481,
2486
+ "菜": 2482,
2487
+ "菩": 2483,
2488
+ "華": 2484,
2489
+ "菱": 2485,
2490
+ "萄": 2486,
2491
+ "萌": 2487,
2492
+ "萎": 2488,
2493
+ "萩": 2489,
2494
+ "萬": 2490,
2495
+ "落": 2491,
2496
+ "葉": 2492,
2497
+ "著": 2493,
2498
+ "葛": 2494,
2499
+ "葡": 2495,
2500
+ "葩": 2496,
2501
+ "葬": 2497,
2502
+ "葵": 2498,
2503
+ "蒙": 2499,
2504
+ "蒲": 2500,
2505
+ "蒸": 2501,
2506
+ "蒼": 2502,
2507
+ "蓄": 2503,
2508
+ "蓋": 2504,
2509
+ "蓑": 2505,
2510
+ "蓮": 2506,
2511
+ "蓼": 2507,
2512
+ "蔑": 2508,
2513
+ "蔓": 2509,
2514
+ "蔬": 2510,
2515
+ "蔵": 2511,
2516
+ "蔽": 2512,
2517
+ "蕁": 2513,
2518
+ "蕉": 2514,
2519
+ "蕎": 2515,
2520
+ "蕞": 2516,
2521
+ "蕩": 2517,
2522
+ "蕪": 2518,
2523
+ "蕾": 2519,
2524
+ "薄": 2520,
2525
+ "薇": 2521,
2526
+ "薔": 2522,
2527
+ "薙": 2523,
2528
+ "薦": 2524,
2529
+ "薩": 2525,
2530
+ "薪": 2526,
2531
+ "薫": 2527,
2532
+ "薬": 2528,
2533
+ "薮": 2529,
2534
+ "藁": 2530,
2535
+ "藤": 2531,
2536
+ "藩": 2532,
2537
+ "藻": 2533,
2538
+ "蘇": 2534,
2539
+ "蘭": 2535,
2540
+ "虎": 2536,
2541
+ "虐": 2537,
2542
+ "虔": 2538,
2543
+ "虚": 2539,
2544
+ "虜": 2540,
2545
+ "虫": 2541,
2546
+ "虹": 2542,
2547
+ "蚊": 2543,
2548
+ "蚕": 2544,
2549
+ "蚤": 2545,
2550
+ "蛇": 2546,
2551
+ "蛋": 2547,
2552
+ "蛍": 2548,
2553
+ "蛙": 2549,
2554
+ "蛛": 2550,
2555
+ "蛭": 2551,
2556
+ "蛮": 2552,
2557
+ "蛾": 2553,
2558
+ "蜂": 2554,
2559
+ "蜘": 2555,
2560
+ "蜜": 2556,
2561
+ "蝉": 2557,
2562
+ "蝋": 2558,
2563
+ "蝎": 2559,
2564
+ "蝕": 2560,
2565
+ "蝦": 2561,
2566
+ "蝶": 2562,
2567
+ "融": 2563,
2568
+ "螺": 2564,
2569
+ "蟹": 2565,
2570
+ "蠣": 2566,
2571
+ "血": 2567,
2572
+ "衆": 2568,
2573
+ "行": 2569,
2574
+ "術": 2570,
2575
+ "街": 2571,
2576
+ "衛": 2572,
2577
+ "衝": 2573,
2578
+ "衡": 2574,
2579
+ "衣": 2575,
2580
+ "表": 2576,
2581
+ "衰": 2577,
2582
+ "衿": 2578,
2583
+ "袈": 2579,
2584
+ "袋": 2580,
2585
+ "袖": 2581,
2586
+ "被": 2582,
2587
+ "袴": 2583,
2588
+ "裁": 2584,
2589
+ "裂": 2585,
2590
+ "装": 2586,
2591
+ "裏": 2587,
2592
+ "裔": 2588,
2593
+ "裕": 2589,
2594
+ "裙": 2590,
2595
+ "補": 2591,
2596
+ "裟": 2592,
2597
+ "裸": 2593,
2598
+ "製": 2594,
2599
+ "裾": 2595,
2600
+ "褄": 2596,
2601
+ "複": 2597,
2602
+ "褐": 2598,
2603
+ "褒": 2599,
2604
+ "褪": 2600,
2605
+ "襖": 2601,
2606
+ "襟": 2602,
2607
+ "襲": 2603,
2608
+ "西": 2604,
2609
+ "要": 2605,
2610
+ "覆": 2606,
2611
+ "覇": 2607,
2612
+ "見": 2608,
2613
+ "規": 2609,
2614
+ "視": 2610,
2615
+ "覗": 2611,
2616
+ "覚": 2612,
2617
+ "覧": 2613,
2618
+ "親": 2614,
2619
+ "観": 2615,
2620
+ "角": 2616,
2621
+ "解": 2617,
2622
+ "触": 2618,
2623
+ "言": 2619,
2624
+ "訂": 2620,
2625
+ "訃": 2621,
2626
+ "計": 2622,
2627
+ "討": 2623,
2628
+ "訓": 2624,
2629
+ "託": 2625,
2630
+ "記": 2626,
2631
+ "訛": 2627,
2632
+ "訝": 2628,
2633
+ "訟": 2629,
2634
+ "訣": 2630,
2635
+ "訪": 2631,
2636
+ "設": 2632,
2637
+ "許": 2633,
2638
+ "訳": 2634,
2639
+ "訴": 2635,
2640
+ "診": 2636,
2641
+ "証": 2637,
2642
+ "詐": 2638,
2643
+ "評": 2639,
2644
+ "詞": 2640,
2645
+ "詠": 2641,
2646
+ "詣": 2642,
2647
+ "試": 2643,
2648
+ "詩": 2644,
2649
+ "詫": 2645,
2650
+ "詮": 2646,
2651
+ "詰": 2647,
2652
+ "話": 2648,
2653
+ "該": 2649,
2654
+ "詳": 2650,
2655
+ "誇": 2651,
2656
+ "誉": 2652,
2657
+ "誌": 2653,
2658
+ "認": 2654,
2659
+ "誓": 2655,
2660
+ "誕": 2656,
2661
+ "誘": 2657,
2662
+ "語": 2658,
2663
+ "誠": 2659,
2664
+ "誤": 2660,
2665
+ "説": 2661,
2666
+ "読": 2662,
2667
+ "誰": 2663,
2668
+ "課": 2664,
2669
+ "誹": 2665,
2670
+ "調": 2666,
2671
+ "談": 2667,
2672
+ "請": 2668,
2673
+ "諏": 2669,
2674
+ "論": 2670,
2675
+ "諜": 2671,
2676
+ "諦": 2672,
2677
+ "諭": 2673,
2678
+ "諸": 2674,
2679
+ "諾": 2675,
2680
+ "謀": 2676,
2681
+ "謎": 2677,
2682
+ "謗": 2678,
2683
+ "謙": 2679,
2684
+ "講": 2680,
2685
+ "謝": 2681,
2686
+ "謡": 2682,
2687
+ "謳": 2683,
2688
+ "謹": 2684,
2689
+ "識": 2685,
2690
+ "譜": 2686,
2691
+ "警": 2687,
2692
+ "議": 2688,
2693
+ "譲": 2689,
2694
+ "護": 2690,
2695
+ "讐": 2691,
2696
+ "讓": 2692,
2697
+ "认": 2693,
2698
+ "识": 2694,
2699
+ "谷": 2695,
2700
+ "豆": 2696,
2701
+ "豊": 2697,
2702
+ "豚": 2698,
2703
+ "象": 2699,
2704
+ "豪": 2700,
2705
+ "豹": 2701,
2706
+ "貌": 2702,
2707
+ "貝": 2703,
2708
+ "貞": 2704,
2709
+ "負": 2705,
2710
+ "財": 2706,
2711
+ "貢": 2707,
2712
+ "貧": 2708,
2713
+ "貨": 2709,
2714
+ "販": 2710,
2715
+ "貪": 2711,
2716
+ "貫": 2712,
2717
+ "責": 2713,
2718
+ "貯": 2714,
2719
+ "貰": 2715,
2720
+ "貴": 2716,
2721
+ "貶": 2717,
2722
+ "買": 2718,
2723
+ "貸": 2719,
2724
+ "費": 2720,
2725
+ "貼": 2721,
2726
+ "貿": 2722,
2727
+ "賀": 2723,
2728
+ "賃": 2724,
2729
+ "賄": 2725,
2730
+ "資": 2726,
2731
+ "賊": 2727,
2732
+ "賑": 2728,
2733
+ "賓": 2729,
2734
+ "賛": 2730,
2735
+ "賜": 2731,
2736
+ "賞": 2732,
2737
+ "賠": 2733,
2738
+ "賢": 2734,
2739
+ "質": 2735,
2740
+ "賭": 2736,
2741
+ "購": 2737,
2742
+ "賽": 2738,
2743
+ "贄": 2739,
2744
+ "贅": 2740,
2745
+ "贈": 2741,
2746
+ "贔": 2742,
2747
+ "赤": 2743,
2748
+ "赦": 2744,
2749
+ "走": 2745,
2750
+ "赴": 2746,
2751
+ "起": 2747,
2752
+ "超": 2748,
2753
+ "越": 2749,
2754
+ "趙": 2750,
2755
+ "趣": 2751,
2756
+ "足": 2752,
2757
+ "趾": 2753,
2758
+ "距": 2754,
2759
+ "跟": 2755,
2760
+ "跡": 2756,
2761
+ "跨": 2757,
2762
+ "路": 2758,
2763
+ "跳": 2759,
2764
+ "践": 2760,
2765
+ "踊": 2761,
2766
+ "踏": 2762,
2767
+ "踪": 2763,
2768
+ "蹄": 2764,
2769
+ "蹴": 2765,
2770
+ "躇": 2766,
2771
+ "躊": 2767,
2772
+ "躍": 2768,
2773
+ "躓": 2769,
2774
+ "身": 2770,
2775
+ "躯": 2771,
2776
+ "躰": 2772,
2777
+ "躾": 2773,
2778
+ "車": 2774,
2779
+ "軌": 2775,
2780
+ "軍": 2776,
2781
+ "軒": 2777,
2782
+ "軟": 2778,
2783
+ "転": 2779,
2784
+ "軸": 2780,
2785
+ "軽": 2781,
2786
+ "較": 2782,
2787
+ "載": 2783,
2788
+ "輊": 2784,
2789
+ "輔": 2785,
2790
+ "輝": 2786,
2791
+ "輩": 2787,
2792
+ "輪": 2788,
2793
+ "輯": 2789,
2794
+ "輸": 2790,
2795
+ "輿": 2791,
2796
+ "轄": 2792,
2797
+ "轟": 2793,
2798
+ "轢": 2794,
2799
+ "辛": 2795,
2800
+ "辞": 2796,
2801
+ "辣": 2797,
2802
+ "辰": 2798,
2803
+ "辱": 2799,
2804
+ "農": 2800,
2805
+ "辺": 2801,
2806
+ "辻": 2802,
2807
+ "込": 2803,
2808
+ "辿": 2804,
2809
+ "迂": 2805,
2810
+ "迅": 2806,
2811
+ "迎": 2807,
2812
+ "近": 2808,
2813
+ "返": 2809,
2814
+ "迦": 2810,
2815
+ "迫": 2811,
2816
+ "述": 2812,
2817
+ "迷": 2813,
2818
+ "追": 2814,
2819
+ "退": 2815,
2820
+ "送": 2816,
2821
+ "逃": 2817,
2822
+ "逆": 2818,
2823
+ "透": 2819,
2824
+ "逐": 2820,
2825
+ "途": 2821,
2826
+ "這": 2822,
2827
+ "通": 2823,
2828
+ "逝": 2824,
2829
+ "逞": 2825,
2830
+ "速": 2826,
2831
+ "造": 2827,
2832
+ "逢": 2828,
2833
+ "連": 2829,
2834
+ "逮": 2830,
2835
+ "週": 2831,
2836
+ "進": 2832,
2837
+ "逸": 2833,
2838
+ "遁": 2834,
2839
+ "遂": 2835,
2840
+ "遅": 2836,
2841
+ "遇": 2837,
2842
+ "遊": 2838,
2843
+ "運": 2839,
2844
+ "遍": 2840,
2845
+ "過": 2841,
2846
+ "道": 2842,
2847
+ "達": 2843,
2848
+ "違": 2844,
2849
+ "遜": 2845,
2850
+ "遠": 2846,
2851
+ "遡": 2847,
2852
+ "遣": 2848,
2853
+ "遥": 2849,
2854
+ "適": 2850,
2855
+ "遭": 2851,
2856
+ "遮": 2852,
2857
+ "遲": 2853,
2858
+ "遵": 2854,
2859
+ "遷": 2855,
2860
+ "選": 2856,
2861
+ "遺": 2857,
2862
+ "遼": 2858,
2863
+ "遽": 2859,
2864
+ "避": 2860,
2865
+ "還": 2861,
2866
+ "邑": 2862,
2867
+ "那": 2863,
2868
+ "邦": 2864,
2869
+ "邪": 2865,
2870
+ "邸": 2866,
2871
+ "郁": 2867,
2872
+ "郊": 2868,
2873
+ "郎": 2869,
2874
+ "郞": 2870,
2875
+ "郡": 2871,
2876
+ "部": 2872,
2877
+ "郭": 2873,
2878
+ "郵": 2874,
2879
+ "郷": 2875,
2880
+ "都": 2876,
2881
+ "酉": 2877,
2882
+ "酌": 2878,
2883
+ "配": 2879,
2884
+ "酎": 2880,
2885
+ "酒": 2881,
2886
+ "酔": 2882,
2887
+ "酛": 2883,
2888
+ "酢": 2884,
2889
+ "酬": 2885,
2890
+ "酵": 2886,
2891
+ "酷": 2887,
2892
+ "酸": 2888,
2893
+ "醇": 2889,
2894
+ "醍": 2890,
2895
+ "醐": 2891,
2896
+ "醒": 2892,
2897
+ "醜": 2893,
2898
+ "醤": 2894,
2899
+ "醬": 2895,
2900
+ "醸": 2896,
2901
+ "采": 2897,
2902
+ "釈": 2898,
2903
+ "里": 2899,
2904
+ "重": 2900,
2905
+ "野": 2901,
2906
+ "量": 2902,
2907
+ "金": 2903,
2908
+ "釘": 2904,
2909
+ "釜": 2905,
2910
+ "針": 2906,
2911
+ "釣": 2907,
2912
+ "釧": 2908,
2913
+ "鈍": 2909,
2914
+ "鈴": 2910,
2915
+ "鈿": 2911,
2916
+ "鉄": 2912,
2917
+ "鉛": 2913,
2918
+ "鉢": 2914,
2919
+ "鉤": 2915,
2920
+ "鉱": 2916,
2921
+ "鉾": 2917,
2922
+ "銀": 2918,
2923
+ "銃": 2919,
2924
+ "銅": 2920,
2925
+ "銘": 2921,
2926
+ "銚": 2922,
2927
+ "銭": 2923,
2928
+ "鋏": 2924,
2929
+ "鋭": 2925,
2930
+ "鋲": 2926,
2931
+ "鋸": 2927,
2932
+ "鋼": 2928,
2933
+ "錆": 2929,
2934
+ "錘": 2930,
2935
+ "錠": 2931,
2936
+ "錦": 2932,
2937
+ "錬": 2933,
2938
+ "錯": 2934,
2939
+ "録": 2935,
2940
+ "鍋": 2936,
2941
+ "鍔": 2937,
2942
+ "鍛": 2938,
2943
+ "鍮": 2939,
2944
+ "鍵": 2940,
2945
+ "鍼": 2941,
2946
+ "鍾": 2942,
2947
+ "鎌": 2943,
2948
+ "鎖": 2944,
2949
+ "鎗": 2945,
2950
+ "鎚": 2946,
2951
+ "鎧": 2947,
2952
+ "鎮": 2948,
2953
+ "鏡": 2949,
2954
+ "鐘": 2950,
2955
+ "鑑": 2951,
2956
+ "鑓": 2952,
2957
+ "長": 2953,
2958
+ "門": 2954,
2959
+ "閃": 2955,
2960
+ "閉": 2956,
2961
+ "開": 2957,
2962
+ "閑": 2958,
2963
+ "間": 2959,
2964
+ "関": 2960,
2965
+ "閣": 2961,
2966
+ "閥": 2962,
2967
+ "閲": 2963,
2968
+ "闇": 2964,
2969
+ "闍": 2965,
2970
+ "闘": 2966,
2971
+ "阜": 2967,
2972
+ "阪": 2968,
2973
+ "防": 2969,
2974
+ "阻": 2970,
2975
+ "阿": 2971,
2976
+ "陀": 2972,
2977
+ "降": 2973,
2978
+ "限": 2974,
2979
+ "陛": 2975,
2980
+ "院": 2976,
2981
+ "陣": 2977,
2982
+ "除": 2978,
2983
+ "陥": 2979,
2984
+ "陰": 2980,
2985
+ "陳": 2981,
2986
+ "陵": 2982,
2987
+ "陶": 2983,
2988
+ "陸": 2984,
2989
+ "険": 2985,
2990
+ "陽": 2986,
2991
+ "隅": 2987,
2992
+ "隆": 2988,
2993
+ "隈": 2989,
2994
+ "隊": 2990,
2995
+ "階": 2991,
2996
+ "随": 2992,
2997
+ "隔": 2993,
2998
+ "隕": 2994,
2999
+ "隙": 2995,
3000
+ "際": 2996,
3001
+ "障": 2997,
3002
+ "隠": 2998,
3003
+ "隣": 2999,
3004
+ "隷": 3000,
3005
+ "雀": 3001,
3006
+ "雄": 3002,
3007
+ "雅": 3003,
3008
+ "集": 3004,
3009
+ "雇": 3005,
3010
+ "雉": 3006,
3011
+ "雌": 3007,
3012
+ "雑": 3008,
3013
+ "雛": 3009,
3014
+ "離": 3010,
3015
+ "難": 3011,
3016
+ "雨": 3012,
3017
+ "雪": 3013,
3018
+ "雫": 3014,
3019
+ "雰": 3015,
3020
+ "雲": 3016,
3021
+ "零": 3017,
3022
+ "雷": 3018,
3023
+ "電": 3019,
3024
+ "需": 3020,
3025
+ "震": 3021,
3026
+ "霊": 3022,
3027
+ "霜": 3023,
3028
+ "霞": 3024,
3029
+ "霧": 3025,
3030
+ "露": 3026,
3031
+ "霹": 3027,
3032
+ "靂": 3028,
3033
+ "靄": 3029,
3034
+ "青": 3030,
3035
+ "靖": 3031,
3036
+ "静": 3032,
3037
+ "靜": 3033,
3038
+ "非": 3034,
3039
+ "靡": 3035,
3040
+ "面": 3036,
3041
+ "革": 3037,
3042
+ "靭": 3038,
3043
+ "靴": 3039,
3044
+ "鞄": 3040,
3045
+ "鞍": 3041,
3046
+ "鞘": 3042,
3047
+ "鞭": 3043,
3048
+ "韓": 3044,
3049
+ "韮": 3045,
3050
+ "音": 3046,
3051
+ "韻": 3047,
3052
+ "響": 3048,
3053
+ "頂": 3049,
3054
+ "頃": 3050,
3055
+ "項": 3051,
3056
+ "順": 3052,
3057
+ "須": 3053,
3058
+ "預": 3054,
3059
+ "頑": 3055,
3060
+ "頓": 3056,
3061
+ "領": 3057,
3062
+ "頬": 3058,
3063
+ "頭": 3059,
3064
+ "頷": 3060,
3065
+ "頻": 3061,
3066
+ "頼": 3062,
3067
+ "顆": 3063,
3068
+ "題": 3064,
3069
+ "額": 3065,
3070
+ "顎": 3066,
3071
+ "顔": 3067,
3072
+ "顕": 3068,
3073
+ "願": 3069,
3074
+ "類": 3070,
3075
+ "顧": 3071,
3076
+ "風": 3072,
3077
+ "颯": 3073,
3078
+ "飛": 3074,
3079
+ "食": 3075,
3080
+ "飢": 3076,
3081
+ "飯": 3077,
3082
+ "飲": 3078,
3083
+ "飴": 3079,
3084
+ "飼": 3080,
3085
+ "飽": 3081,
3086
+ "飾": 3082,
3087
+ "餃": 3083,
3088
+ "餅": 3084,
3089
+ "養": 3085,
3090
+ "餌": 3086,
3091
+ "餐": 3087,
3092
+ "餓": 3088,
3093
+ "餞": 3089,
3094
+ "餡": 3090,
3095
+ "館": 3091,
3096
+ "饅": 3092,
3097
+ "饒": 3093,
3098
+ "首": 3094,
3099
+ "香": 3095,
3100
+ "馬": 3096,
3101
+ "馳": 3097,
3102
+ "馴": 3098,
3103
+ "駄": 3099,
3104
+ "駅": 3100,
3105
+ "駆": 3101,
3106
+ "駐": 3102,
3107
+ "駒": 3103,
3108
+ "駕": 3104,
3109
+ "駿": 3105,
3110
+ "騎": 3106,
3111
+ "騒": 3107,
3112
+ "験": 3108,
3113
+ "騙": 3109,
3114
+ "騨": 3110,
3115
+ "騰": 3111,
3116
+ "驚": 3112,
3117
+ "骨": 3113,
3118
+ "骸": 3114,
3119
+ "髄": 3115,
3120
+ "高": 3116,
3121
+ "髪": 3117,
3122
+ "髭": 3118,
3123
+ "鬱": 3119,
3124
+ "鬼": 3120,
3125
+ "魁": 3121,
3126
+ "魂": 3122,
3127
+ "魄": 3123,
3128
+ "魅": 3124,
3129
+ "魔": 3125,
3130
+ "魚": 3126,
3131
+ "鮎": 3127,
3132
+ "鮑": 3128,
3133
+ "鮪": 3129,
3134
+ "鮫": 3130,
3135
+ "鮭": 3131,
3136
+ "鮮": 3132,
3137
+ "鯉": 3133,
3138
+ "鯖": 3134,
3139
+ "鯛": 3135,
3140
+ "鯨": 3136,
3141
+ "鰐": 3137,
3142
+ "鰹": 3138,
3143
+ "鱈": 3139,
3144
+ "鱗": 3140,
3145
+ "鲁": 3141,
3146
+ "鳥": 3142,
3147
+ "鳩": 3143,
3148
+ "鳳": 3144,
3149
+ "鳴": 3145,
3150
+ "鴨": 3146,
3151
+ "鴻": 3147,
3152
+ "鵜": 3148,
3153
+ "鵡": 3149,
3154
+ "鶏": 3150,
3155
+ "鶯": 3151,
3156
+ "鶴": 3152,
3157
+ "鷲": 3153,
3158
+ "鷹": 3154,
3159
+ "鷺": 3155,
3160
+ "鸚": 3156,
3161
+ "鹸": 3157,
3162
+ "鹿": 3158,
3163
+ "麒": 3159,
3164
+ "麓": 3160,
3165
+ "麗": 3161,
3166
+ "麟": 3162,
3167
+ "麦": 3163,
3168
+ "麩": 3164,
3169
+ "麵": 3165,
3170
+ "麹": 3166,
3171
+ "麺": 3167,
3172
+ "麻": 3168,
3173
+ "麼": 3169,
3174
+ "黄": 3170,
3175
+ "黑": 3171,
3176
+ "黒": 3172,
3177
+ "黙": 3173,
3178
+ "點": 3174,
3179
+ "鼈": 3175,
3180
+ "鼓": 3176,
3181
+ "鼻": 3177,
3182
+ "鼾": 3178,
3183
+ "齋": 3179,
3184
+ "齎": 3180,
3185
+ "齟": 3181,
3186
+ "齢": 3182,
3187
+ "齧": 3183,
3188
+ "齬": 3184,
3189
+ "龍": 3185,
3190
+ "각": 3186,
3191
+ "걸": 3187,
3192
+ "검": 3188,
3193
+ "과": 3189,
3194
+ "귀": 3190,
3195
+ "급": 3191,
3196
+ "기": 3192,
3197
+ "는": 3193,
3198
+ "니": 3194,
3199
+ "님": 3195,
3200
+ "다": 3196,
3201
+ "됩": 3197,
3202
+ "두": 3198,
3203
+ "로": 3199,
3204
+ "름": 3200,
3205
+ "마": 3201,
3206
+ "모": 3202,
3207
+ "문": 3203,
3208
+ "받": 3204,
3209
+ "부": 3205,
3210
+ "사": 3206,
3211
+ "생": 3207,
3212
+ "스": 3208,
3213
+ "안": 3209,
3214
+ "알": 3210,
3215
+ "았": 3211,
3216
+ "앞": 3212,
3217
+ "어": 3213,
3218
+ "었": 3214,
3219
+ "에": 3215,
3220
+ "요": 3216,
3221
+ "은": 3217,
3222
+ "이": 3218,
3223
+ "입": 3219,
3224
+ "장": 3220,
3225
+ "정": 3221,
3226
+ "제": 3222,
3227
+ "중": 3223,
3228
+ "초": 3224,
3229
+ "출": 3225,
3230
+ "치": 3226,
3231
+ "카": 3227,
3232
+ "커": 3228,
3233
+ "하": 3229,
3234
+ "합": 3230,
3235
+ "효": 3231,
3236
+ "行": 3232,
3237
+ "️": 3233,
3238
+ "!": 3234,
3239
+ "%": 3235,
3240
+ "&": 3236,
3241
+ "(": 3237,
3242
+ ")": 3238,
3243
+ "+": 3239,
3244
+ ",": 3240,
3245
+ "-": 3241,
3246
+ ".": 3242,
3247
+ "/": 3243,
3248
+ "0": 3244,
3249
+ "1": 3245,
3250
+ "2": 3246,
3251
+ "3": 3247,
3252
+ "4": 3248,
3253
+ "5": 3249,
3254
+ "6": 3250,
3255
+ "7": 3251,
3256
+ "8": 3252,
3257
+ "9": 3253,
3258
+ ":": 3254,
3259
+ "=": 3255,
3260
+ ">": 3256,
3261
+ "?": 3257,
3262
+ "@": 3258,
3263
+ "_": 3259,
3264
+ "a": 3260,
3265
+ "b": 3261,
3266
+ "c": 3262,
3267
+ "d": 3263,
3268
+ "f": 3264,
3269
+ "g": 3265,
3270
+ "h": 3266,
3271
+ "j": 3267,
3272
+ "k": 3268,
3273
+ "l": 3269,
3274
+ "m": 3270,
3275
+ "n": 3271,
3276
+ "o": 3272,
3277
+ "p": 3273,
3278
+ "r": 3274,
3279
+ "s": 3275,
3280
+ "t": 3276,
3281
+ "u": 3277,
3282
+ "v": 3278,
3283
+ "w": 3279,
3284
+ "x": 3280,
3285
+ "z": 3281,
3286
+ "~": 3282,
3287
+ "、": 3283,
3288
+ "ア": 3284,
3289
+ "オ": 3285,
3290
+ "ト": 3286,
3291
+ "ネ": 3287,
3292
+ "ル": 3288,
3293
+ "゙": 3289,
3294
+ "¥": 3290,
3295
+ "�": 3291,
3296
+ "🌵": 3292,
3297
+ "🍻": 3293,
3298
+ "🐼": 3294,
3299
+ "📢": 3295,
3300
+ "🔥": 3296,
3301
+ "🖥": 3297,
3302
+ "𠮟": 3298
3303
+ }
checkpoint-837650/added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "</s>": 3302,
3
+ "<s>": 3301
4
+ }
checkpoint-837650/config.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jako_xlsr_100p_run1",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForCTC"
11
+ ],
12
+ "attention_dropout": 0.05,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 768,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "mean",
46
+ "ctc_zero_infinity": true,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.05,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "gradient_checkpointing": false,
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.05,
59
+ "hidden_size": 1024,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 4096,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.05,
64
+ "mask_channel_length": 10,
65
+ "mask_channel_min_space": 1,
66
+ "mask_channel_other": 0.0,
67
+ "mask_channel_prob": 0.0,
68
+ "mask_channel_selection": "static",
69
+ "mask_feature_length": 10,
70
+ "mask_feature_min_masks": 0,
71
+ "mask_feature_prob": 0.0,
72
+ "mask_time_length": 10,
73
+ "mask_time_min_masks": 2,
74
+ "mask_time_min_space": 1,
75
+ "mask_time_other": 0.0,
76
+ "mask_time_prob": 0.05,
77
+ "mask_time_selection": "static",
78
+ "model_type": "wav2vec2",
79
+ "num_adapter_layers": 3,
80
+ "num_attention_heads": 16,
81
+ "num_codevector_groups": 2,
82
+ "num_codevectors_per_group": 320,
83
+ "num_conv_pos_embedding_groups": 16,
84
+ "num_conv_pos_embeddings": 128,
85
+ "num_feat_extract_layers": 7,
86
+ "num_hidden_layers": 24,
87
+ "num_negatives": 100,
88
+ "output_hidden_size": 1024,
89
+ "pad_token_id": 3300,
90
+ "proj_codevector_dim": 768,
91
+ "tdnn_dilation": [
92
+ 1,
93
+ 2,
94
+ 3,
95
+ 1,
96
+ 1
97
+ ],
98
+ "tdnn_dim": [
99
+ 512,
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 1500
104
+ ],
105
+ "tdnn_kernel": [
106
+ 5,
107
+ 3,
108
+ 3,
109
+ 1,
110
+ 1
111
+ ],
112
+ "torch_dtype": "float32",
113
+ "transformers_version": "4.35.2",
114
+ "use_weighted_layer_sum": false,
115
+ "vocab_size": 3303,
116
+ "xvector_output_dim": 512
117
+ }
checkpoint-837650/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6703defd6ff1b4ce50eef71f2ed507af8a6b2c033200352b72a636a1ed87f4a0
3
+ size 1275349820
checkpoint-837650/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28c100e002ece11e5b871e5e66f822cde102a21d0a5cea743b4c3a486dc92174
3
+ size 2517244342
checkpoint-837650/preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
checkpoint-837650/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42e0e1970d50f943b45ec962416ff57145a8dad895ad92ac41fbf2f985773b56
3
+ size 15024
checkpoint-837650/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:180d271e31a23e2586bab9a7531362723e7360467f6c63f408bffde677da4b5d
3
+ size 15024
checkpoint-837650/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e68b4c5fcfcb437b2e59dbf0d34eb82b437c4631a98ce60ea944686a57e00606
3
+ size 15024
checkpoint-837650/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53780318c9cbf5c49cdbf4de2bd3d7ed1f7fe5d44b4dffdcb2f8bc1da9594cd8
3
+ size 15024
checkpoint-837650/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4003af8110eba856c489d59c71007b865708f257d6ef1bcecfd6c3b8bd748576
3
+ size 1064
checkpoint-837650/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "[UNK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": true,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-837650/tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "3299": {
4
+ "content": "[UNK]",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "3300": {
12
+ "content": "[PAD]",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "3301": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3302": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": true,
38
+ "config": null,
39
+ "do_lower_case": false,
40
+ "eos_token": "</s>",
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "[PAD]",
43
+ "processor_class": "Wav2Vec2Processor",
44
+ "replace_word_delimiter_char": " ",
45
+ "target_lang": null,
46
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
47
+ "tokenizer_type": "wav2vec2",
48
+ "trust_remote_code": false,
49
+ "unk_token": "[UNK]",
50
+ "word_delimiter_token": "|"
51
+ }
checkpoint-837650/trainer_state.json ADDED
@@ -0,0 +1,1702 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 24.99992538761136,
5
+ "eval_steps": 500,
6
+ "global_step": 837650,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.09,
13
+ "learning_rate": 0.0001342882721575649,
14
+ "loss": 12.1916,
15
+ "step": 3000
16
+ },
17
+ {
18
+ "epoch": 0.18,
19
+ "learning_rate": 0.0002685765443151298,
20
+ "loss": 2.3149,
21
+ "step": 6000
22
+ },
23
+ {
24
+ "epoch": 0.27,
25
+ "learning_rate": 0.00029896083615458125,
26
+ "loss": 1.9954,
27
+ "step": 9000
28
+ },
29
+ {
30
+ "epoch": 0.36,
31
+ "learning_rate": 0.00029760422539032704,
32
+ "loss": 1.8429,
33
+ "step": 12000
34
+ },
35
+ {
36
+ "epoch": 0.45,
37
+ "learning_rate": 0.0002962476146260728,
38
+ "loss": 1.7657,
39
+ "step": 15000
40
+ },
41
+ {
42
+ "epoch": 0.54,
43
+ "learning_rate": 0.0002948910038618186,
44
+ "loss": 1.6944,
45
+ "step": 18000
46
+ },
47
+ {
48
+ "epoch": 0.63,
49
+ "learning_rate": 0.0002935343930975644,
50
+ "loss": 1.6484,
51
+ "step": 21000
52
+ },
53
+ {
54
+ "epoch": 0.72,
55
+ "learning_rate": 0.0002921777823333102,
56
+ "loss": 1.6187,
57
+ "step": 24000
58
+ },
59
+ {
60
+ "epoch": 0.81,
61
+ "learning_rate": 0.00029082117156905597,
62
+ "loss": 1.5982,
63
+ "step": 27000
64
+ },
65
+ {
66
+ "epoch": 0.9,
67
+ "learning_rate": 0.00028946456080480176,
68
+ "loss": 1.5673,
69
+ "step": 30000
70
+ },
71
+ {
72
+ "epoch": 0.98,
73
+ "learning_rate": 0.00028810795004054755,
74
+ "loss": 1.5474,
75
+ "step": 33000
76
+ },
77
+ {
78
+ "epoch": 1.07,
79
+ "learning_rate": 0.0002867513392762934,
80
+ "loss": 1.4948,
81
+ "step": 36000
82
+ },
83
+ {
84
+ "epoch": 1.16,
85
+ "learning_rate": 0.0002853947285120391,
86
+ "loss": 1.4913,
87
+ "step": 39000
88
+ },
89
+ {
90
+ "epoch": 1.25,
91
+ "learning_rate": 0.00028403811774778496,
92
+ "loss": 1.4821,
93
+ "step": 42000
94
+ },
95
+ {
96
+ "epoch": 1.34,
97
+ "learning_rate": 0.0002826815069835307,
98
+ "loss": 1.4474,
99
+ "step": 45000
100
+ },
101
+ {
102
+ "epoch": 1.43,
103
+ "learning_rate": 0.00028132489621927653,
104
+ "loss": 1.4602,
105
+ "step": 48000
106
+ },
107
+ {
108
+ "epoch": 1.52,
109
+ "learning_rate": 0.00027996828545502226,
110
+ "loss": 1.456,
111
+ "step": 51000
112
+ },
113
+ {
114
+ "epoch": 1.61,
115
+ "learning_rate": 0.0002786116746907681,
116
+ "loss": 1.4377,
117
+ "step": 54000
118
+ },
119
+ {
120
+ "epoch": 1.7,
121
+ "learning_rate": 0.0002772550639265139,
122
+ "loss": 1.4301,
123
+ "step": 57000
124
+ },
125
+ {
126
+ "epoch": 1.79,
127
+ "learning_rate": 0.0002758984531622597,
128
+ "loss": 1.425,
129
+ "step": 60000
130
+ },
131
+ {
132
+ "epoch": 1.88,
133
+ "learning_rate": 0.00027454184239800546,
134
+ "loss": 1.4153,
135
+ "step": 63000
136
+ },
137
+ {
138
+ "epoch": 1.97,
139
+ "learning_rate": 0.00027318523163375125,
140
+ "loss": 1.4046,
141
+ "step": 66000
142
+ },
143
+ {
144
+ "epoch": 2.06,
145
+ "learning_rate": 0.00027182862086949704,
146
+ "loss": 1.3565,
147
+ "step": 69000
148
+ },
149
+ {
150
+ "epoch": 2.15,
151
+ "learning_rate": 0.0002704720101052428,
152
+ "loss": 1.3488,
153
+ "step": 72000
154
+ },
155
+ {
156
+ "epoch": 2.24,
157
+ "learning_rate": 0.0002691153993409886,
158
+ "loss": 1.339,
159
+ "step": 75000
160
+ },
161
+ {
162
+ "epoch": 2.33,
163
+ "learning_rate": 0.0002677587885767344,
164
+ "loss": 1.3513,
165
+ "step": 78000
166
+ },
167
+ {
168
+ "epoch": 2.42,
169
+ "learning_rate": 0.0002664021778124802,
170
+ "loss": 1.3491,
171
+ "step": 81000
172
+ },
173
+ {
174
+ "epoch": 2.51,
175
+ "learning_rate": 0.00026504556704822597,
176
+ "loss": 1.3345,
177
+ "step": 84000
178
+ },
179
+ {
180
+ "epoch": 2.6,
181
+ "learning_rate": 0.00026368895628397175,
182
+ "loss": 1.3313,
183
+ "step": 87000
184
+ },
185
+ {
186
+ "epoch": 2.69,
187
+ "learning_rate": 0.00026233234551971754,
188
+ "loss": 1.3319,
189
+ "step": 90000
190
+ },
191
+ {
192
+ "epoch": 2.78,
193
+ "learning_rate": 0.00026097573475546333,
194
+ "loss": 1.3185,
195
+ "step": 93000
196
+ },
197
+ {
198
+ "epoch": 2.87,
199
+ "learning_rate": 0.00025961912399120917,
200
+ "loss": 1.325,
201
+ "step": 96000
202
+ },
203
+ {
204
+ "epoch": 2.95,
205
+ "learning_rate": 0.0002582625132269549,
206
+ "loss": 1.3048,
207
+ "step": 99000
208
+ },
209
+ {
210
+ "epoch": 3.04,
211
+ "learning_rate": 0.00025690590246270074,
212
+ "loss": 1.2797,
213
+ "step": 102000
214
+ },
215
+ {
216
+ "epoch": 3.13,
217
+ "learning_rate": 0.00025554929169844653,
218
+ "loss": 1.2646,
219
+ "step": 105000
220
+ },
221
+ {
222
+ "epoch": 3.22,
223
+ "learning_rate": 0.0002541926809341923,
224
+ "loss": 1.2595,
225
+ "step": 108000
226
+ },
227
+ {
228
+ "epoch": 3.31,
229
+ "learning_rate": 0.0002528360701699381,
230
+ "loss": 1.2574,
231
+ "step": 111000
232
+ },
233
+ {
234
+ "epoch": 3.4,
235
+ "learning_rate": 0.0002514794594056839,
236
+ "loss": 1.2623,
237
+ "step": 114000
238
+ },
239
+ {
240
+ "epoch": 3.49,
241
+ "learning_rate": 0.0002501228486414297,
242
+ "loss": 1.2548,
243
+ "step": 117000
244
+ },
245
+ {
246
+ "epoch": 3.58,
247
+ "learning_rate": 0.00024876623787717546,
248
+ "loss": 1.2615,
249
+ "step": 120000
250
+ },
251
+ {
252
+ "epoch": 3.67,
253
+ "learning_rate": 0.00024740962711292125,
254
+ "loss": 1.2558,
255
+ "step": 123000
256
+ },
257
+ {
258
+ "epoch": 3.76,
259
+ "learning_rate": 0.00024605301634866703,
260
+ "loss": 1.2537,
261
+ "step": 126000
262
+ },
263
+ {
264
+ "epoch": 3.85,
265
+ "learning_rate": 0.0002446964055844128,
266
+ "loss": 1.2393,
267
+ "step": 129000
268
+ },
269
+ {
270
+ "epoch": 3.94,
271
+ "learning_rate": 0.0002433397948201586,
272
+ "loss": 1.2438,
273
+ "step": 132000
274
+ },
275
+ {
276
+ "epoch": 4.03,
277
+ "learning_rate": 0.00024198318405590442,
278
+ "loss": 1.2277,
279
+ "step": 135000
280
+ },
281
+ {
282
+ "epoch": 4.12,
283
+ "learning_rate": 0.00024062657329165018,
284
+ "loss": 1.1934,
285
+ "step": 138000
286
+ },
287
+ {
288
+ "epoch": 4.21,
289
+ "learning_rate": 0.000239269962527396,
290
+ "loss": 1.1857,
291
+ "step": 141000
292
+ },
293
+ {
294
+ "epoch": 4.3,
295
+ "learning_rate": 0.00023791335176314175,
296
+ "loss": 1.1902,
297
+ "step": 144000
298
+ },
299
+ {
300
+ "epoch": 4.39,
301
+ "learning_rate": 0.00023655674099888756,
302
+ "loss": 1.1901,
303
+ "step": 147000
304
+ },
305
+ {
306
+ "epoch": 4.48,
307
+ "learning_rate": 0.00023520013023463332,
308
+ "loss": 1.1948,
309
+ "step": 150000
310
+ },
311
+ {
312
+ "epoch": 4.57,
313
+ "learning_rate": 0.00023384351947037914,
314
+ "loss": 1.1941,
315
+ "step": 153000
316
+ },
317
+ {
318
+ "epoch": 4.66,
319
+ "learning_rate": 0.00023248690870612495,
320
+ "loss": 1.1903,
321
+ "step": 156000
322
+ },
323
+ {
324
+ "epoch": 4.75,
325
+ "learning_rate": 0.0002311302979418707,
326
+ "loss": 1.1877,
327
+ "step": 159000
328
+ },
329
+ {
330
+ "epoch": 4.83,
331
+ "learning_rate": 0.00022977368717761652,
332
+ "loss": 1.1974,
333
+ "step": 162000
334
+ },
335
+ {
336
+ "epoch": 4.92,
337
+ "learning_rate": 0.00022841707641336228,
338
+ "loss": 1.189,
339
+ "step": 165000
340
+ },
341
+ {
342
+ "epoch": 5.01,
343
+ "learning_rate": 0.0002270604656491081,
344
+ "loss": 1.1851,
345
+ "step": 168000
346
+ },
347
+ {
348
+ "epoch": 5.1,
349
+ "learning_rate": 0.00022570385488485386,
350
+ "loss": 1.1479,
351
+ "step": 171000
352
+ },
353
+ {
354
+ "epoch": 5.19,
355
+ "learning_rate": 0.00022434724412059967,
356
+ "loss": 1.1374,
357
+ "step": 174000
358
+ },
359
+ {
360
+ "epoch": 5.28,
361
+ "learning_rate": 0.00022299063335634543,
362
+ "loss": 1.1343,
363
+ "step": 177000
364
+ },
365
+ {
366
+ "epoch": 5.37,
367
+ "learning_rate": 0.00022163402259209124,
368
+ "loss": 1.1306,
369
+ "step": 180000
370
+ },
371
+ {
372
+ "epoch": 5.46,
373
+ "learning_rate": 0.00022027741182783706,
374
+ "loss": 1.1399,
375
+ "step": 183000
376
+ },
377
+ {
378
+ "epoch": 5.55,
379
+ "learning_rate": 0.00021892080106358282,
380
+ "loss": 1.1457,
381
+ "step": 186000
382
+ },
383
+ {
384
+ "epoch": 5.64,
385
+ "learning_rate": 0.00021756419029932863,
386
+ "loss": 1.1469,
387
+ "step": 189000
388
+ },
389
+ {
390
+ "epoch": 5.73,
391
+ "learning_rate": 0.0002162075795350744,
392
+ "loss": 1.1448,
393
+ "step": 192000
394
+ },
395
+ {
396
+ "epoch": 5.82,
397
+ "learning_rate": 0.0002148509687708202,
398
+ "loss": 1.1397,
399
+ "step": 195000
400
+ },
401
+ {
402
+ "epoch": 5.91,
403
+ "learning_rate": 0.00021349435800656596,
404
+ "loss": 1.1441,
405
+ "step": 198000
406
+ },
407
+ {
408
+ "epoch": 6.0,
409
+ "learning_rate": 0.00021213774724231177,
410
+ "loss": 1.1453,
411
+ "step": 201000
412
+ },
413
+ {
414
+ "epoch": 6.09,
415
+ "learning_rate": 0.00021078113647805753,
416
+ "loss": 1.0897,
417
+ "step": 204000
418
+ },
419
+ {
420
+ "epoch": 6.18,
421
+ "learning_rate": 0.00020942452571380335,
422
+ "loss": 1.0956,
423
+ "step": 207000
424
+ },
425
+ {
426
+ "epoch": 6.27,
427
+ "learning_rate": 0.0002080679149495491,
428
+ "loss": 1.0947,
429
+ "step": 210000
430
+ },
431
+ {
432
+ "epoch": 6.36,
433
+ "learning_rate": 0.00020671130418529492,
434
+ "loss": 1.0961,
435
+ "step": 213000
436
+ },
437
+ {
438
+ "epoch": 6.45,
439
+ "learning_rate": 0.00020535469342104073,
440
+ "loss": 1.1117,
441
+ "step": 216000
442
+ },
443
+ {
444
+ "epoch": 6.54,
445
+ "learning_rate": 0.0002039980826567865,
446
+ "loss": 1.1032,
447
+ "step": 219000
448
+ },
449
+ {
450
+ "epoch": 6.63,
451
+ "learning_rate": 0.0002026414718925323,
452
+ "loss": 1.0983,
453
+ "step": 222000
454
+ },
455
+ {
456
+ "epoch": 6.72,
457
+ "learning_rate": 0.00020128486112827807,
458
+ "loss": 1.0885,
459
+ "step": 225000
460
+ },
461
+ {
462
+ "epoch": 6.8,
463
+ "learning_rate": 0.00019992825036402388,
464
+ "loss": 1.0867,
465
+ "step": 228000
466
+ },
467
+ {
468
+ "epoch": 6.89,
469
+ "learning_rate": 0.00019857163959976964,
470
+ "loss": 1.0993,
471
+ "step": 231000
472
+ },
473
+ {
474
+ "epoch": 6.98,
475
+ "learning_rate": 0.00019721502883551545,
476
+ "loss": 1.1021,
477
+ "step": 234000
478
+ },
479
+ {
480
+ "epoch": 7.07,
481
+ "learning_rate": 0.00019585841807126124,
482
+ "loss": 1.0519,
483
+ "step": 237000
484
+ },
485
+ {
486
+ "epoch": 7.16,
487
+ "learning_rate": 0.00019450180730700702,
488
+ "loss": 1.0594,
489
+ "step": 240000
490
+ },
491
+ {
492
+ "epoch": 7.25,
493
+ "learning_rate": 0.00019314519654275284,
494
+ "loss": 1.0555,
495
+ "step": 243000
496
+ },
497
+ {
498
+ "epoch": 7.34,
499
+ "learning_rate": 0.0001917885857784986,
500
+ "loss": 1.057,
501
+ "step": 246000
502
+ },
503
+ {
504
+ "epoch": 7.43,
505
+ "learning_rate": 0.0001904319750142444,
506
+ "loss": 1.0585,
507
+ "step": 249000
508
+ },
509
+ {
510
+ "epoch": 7.52,
511
+ "learning_rate": 0.00018907536424999017,
512
+ "loss": 1.0534,
513
+ "step": 252000
514
+ },
515
+ {
516
+ "epoch": 7.61,
517
+ "learning_rate": 0.00018771875348573598,
518
+ "loss": 1.0655,
519
+ "step": 255000
520
+ },
521
+ {
522
+ "epoch": 7.7,
523
+ "learning_rate": 0.00018636214272148174,
524
+ "loss": 1.056,
525
+ "step": 258000
526
+ },
527
+ {
528
+ "epoch": 7.79,
529
+ "learning_rate": 0.00018500553195722756,
530
+ "loss": 1.0638,
531
+ "step": 261000
532
+ },
533
+ {
534
+ "epoch": 7.88,
535
+ "learning_rate": 0.00018364892119297334,
536
+ "loss": 1.0521,
537
+ "step": 264000
538
+ },
539
+ {
540
+ "epoch": 7.97,
541
+ "learning_rate": 0.00018229231042871913,
542
+ "loss": 1.0633,
543
+ "step": 267000
544
+ },
545
+ {
546
+ "epoch": 8.06,
547
+ "learning_rate": 0.00018093569966446492,
548
+ "loss": 1.0345,
549
+ "step": 270000
550
+ },
551
+ {
552
+ "epoch": 8.15,
553
+ "learning_rate": 0.0001795790889002107,
554
+ "loss": 1.0186,
555
+ "step": 273000
556
+ },
557
+ {
558
+ "epoch": 8.24,
559
+ "learning_rate": 0.00017822247813595652,
560
+ "loss": 1.0141,
561
+ "step": 276000
562
+ },
563
+ {
564
+ "epoch": 8.33,
565
+ "learning_rate": 0.00017686586737170228,
566
+ "loss": 1.0184,
567
+ "step": 279000
568
+ },
569
+ {
570
+ "epoch": 8.42,
571
+ "learning_rate": 0.0001755092566074481,
572
+ "loss": 1.0184,
573
+ "step": 282000
574
+ },
575
+ {
576
+ "epoch": 8.51,
577
+ "learning_rate": 0.00017415264584319385,
578
+ "loss": 1.0222,
579
+ "step": 285000
580
+ },
581
+ {
582
+ "epoch": 8.6,
583
+ "learning_rate": 0.00017279603507893966,
584
+ "loss": 1.0176,
585
+ "step": 288000
586
+ },
587
+ {
588
+ "epoch": 8.68,
589
+ "learning_rate": 0.00017143942431468545,
590
+ "loss": 1.0236,
591
+ "step": 291000
592
+ },
593
+ {
594
+ "epoch": 8.77,
595
+ "learning_rate": 0.00017008281355043123,
596
+ "loss": 1.0278,
597
+ "step": 294000
598
+ },
599
+ {
600
+ "epoch": 8.86,
601
+ "learning_rate": 0.00016872620278617702,
602
+ "loss": 1.0076,
603
+ "step": 297000
604
+ },
605
+ {
606
+ "epoch": 8.95,
607
+ "learning_rate": 0.0001673695920219228,
608
+ "loss": 1.0248,
609
+ "step": 300000
610
+ },
611
+ {
612
+ "epoch": 9.04,
613
+ "learning_rate": 0.00016601298125766862,
614
+ "loss": 0.9915,
615
+ "step": 303000
616
+ },
617
+ {
618
+ "epoch": 9.13,
619
+ "learning_rate": 0.00016465637049341438,
620
+ "loss": 0.9759,
621
+ "step": 306000
622
+ },
623
+ {
624
+ "epoch": 9.22,
625
+ "learning_rate": 0.0001632997597291602,
626
+ "loss": 0.9813,
627
+ "step": 309000
628
+ },
629
+ {
630
+ "epoch": 9.31,
631
+ "learning_rate": 0.00016194314896490595,
632
+ "loss": 0.9853,
633
+ "step": 312000
634
+ },
635
+ {
636
+ "epoch": 9.4,
637
+ "learning_rate": 0.00016058653820065177,
638
+ "loss": 0.9808,
639
+ "step": 315000
640
+ },
641
+ {
642
+ "epoch": 9.49,
643
+ "learning_rate": 0.00015922992743639755,
644
+ "loss": 0.9759,
645
+ "step": 318000
646
+ },
647
+ {
648
+ "epoch": 9.58,
649
+ "learning_rate": 0.00015787331667214334,
650
+ "loss": 0.9852,
651
+ "step": 321000
652
+ },
653
+ {
654
+ "epoch": 9.67,
655
+ "learning_rate": 0.00015651670590788913,
656
+ "loss": 0.9796,
657
+ "step": 324000
658
+ },
659
+ {
660
+ "epoch": 9.76,
661
+ "learning_rate": 0.0001551600951436349,
662
+ "loss": 0.9871,
663
+ "step": 327000
664
+ },
665
+ {
666
+ "epoch": 9.85,
667
+ "learning_rate": 0.0001538034843793807,
668
+ "loss": 0.9953,
669
+ "step": 330000
670
+ },
671
+ {
672
+ "epoch": 9.94,
673
+ "learning_rate": 0.00015244687361512649,
674
+ "loss": 0.9883,
675
+ "step": 333000
676
+ },
677
+ {
678
+ "epoch": 10.03,
679
+ "learning_rate": 0.0001510902628508723,
680
+ "loss": 0.9735,
681
+ "step": 336000
682
+ },
683
+ {
684
+ "epoch": 10.12,
685
+ "learning_rate": 0.00014973365208661809,
686
+ "loss": 0.9509,
687
+ "step": 339000
688
+ },
689
+ {
690
+ "epoch": 10.21,
691
+ "learning_rate": 0.00014837704132236387,
692
+ "loss": 0.9448,
693
+ "step": 342000
694
+ },
695
+ {
696
+ "epoch": 10.3,
697
+ "learning_rate": 0.00014702043055810966,
698
+ "loss": 0.9395,
699
+ "step": 345000
700
+ },
701
+ {
702
+ "epoch": 10.39,
703
+ "learning_rate": 0.00014566381979385544,
704
+ "loss": 0.9438,
705
+ "step": 348000
706
+ },
707
+ {
708
+ "epoch": 10.48,
709
+ "learning_rate": 0.00014430720902960123,
710
+ "loss": 0.9498,
711
+ "step": 351000
712
+ },
713
+ {
714
+ "epoch": 10.57,
715
+ "learning_rate": 0.00014295059826534702,
716
+ "loss": 0.9481,
717
+ "step": 354000
718
+ },
719
+ {
720
+ "epoch": 10.65,
721
+ "learning_rate": 0.0001415939875010928,
722
+ "loss": 0.9509,
723
+ "step": 357000
724
+ },
725
+ {
726
+ "epoch": 10.74,
727
+ "learning_rate": 0.0001402373767368386,
728
+ "loss": 0.9527,
729
+ "step": 360000
730
+ },
731
+ {
732
+ "epoch": 10.83,
733
+ "learning_rate": 0.0001388807659725844,
734
+ "loss": 0.944,
735
+ "step": 363000
736
+ },
737
+ {
738
+ "epoch": 10.92,
739
+ "learning_rate": 0.0001375241552083302,
740
+ "loss": 0.9427,
741
+ "step": 366000
742
+ },
743
+ {
744
+ "epoch": 11.01,
745
+ "learning_rate": 0.00013616754444407598,
746
+ "loss": 0.9511,
747
+ "step": 369000
748
+ },
749
+ {
750
+ "epoch": 11.1,
751
+ "learning_rate": 0.00013481093367982176,
752
+ "loss": 0.901,
753
+ "step": 372000
754
+ },
755
+ {
756
+ "epoch": 11.19,
757
+ "learning_rate": 0.00013345432291556755,
758
+ "loss": 0.9175,
759
+ "step": 375000
760
+ },
761
+ {
762
+ "epoch": 11.28,
763
+ "learning_rate": 0.00013209771215131334,
764
+ "loss": 0.9061,
765
+ "step": 378000
766
+ },
767
+ {
768
+ "epoch": 11.37,
769
+ "learning_rate": 0.00013074110138705912,
770
+ "loss": 0.9175,
771
+ "step": 381000
772
+ },
773
+ {
774
+ "epoch": 11.46,
775
+ "learning_rate": 0.0001293844906228049,
776
+ "loss": 0.9175,
777
+ "step": 384000
778
+ },
779
+ {
780
+ "epoch": 11.55,
781
+ "learning_rate": 0.0001280278798585507,
782
+ "loss": 0.9149,
783
+ "step": 387000
784
+ },
785
+ {
786
+ "epoch": 11.64,
787
+ "learning_rate": 0.0001266712690942965,
788
+ "loss": 0.9155,
789
+ "step": 390000
790
+ },
791
+ {
792
+ "epoch": 11.73,
793
+ "learning_rate": 0.0001253146583300423,
794
+ "loss": 0.9129,
795
+ "step": 393000
796
+ },
797
+ {
798
+ "epoch": 11.82,
799
+ "learning_rate": 0.00012395804756578808,
800
+ "loss": 0.9178,
801
+ "step": 396000
802
+ },
803
+ {
804
+ "epoch": 11.91,
805
+ "learning_rate": 0.00012260143680153387,
806
+ "loss": 0.912,
807
+ "step": 399000
808
+ },
809
+ {
810
+ "epoch": 12.0,
811
+ "learning_rate": 0.00012124482603727964,
812
+ "loss": 0.9217,
813
+ "step": 402000
814
+ },
815
+ {
816
+ "epoch": 12.09,
817
+ "learning_rate": 0.00011988821527302545,
818
+ "loss": 0.8778,
819
+ "step": 405000
820
+ },
821
+ {
822
+ "epoch": 12.18,
823
+ "learning_rate": 0.00011853160450877124,
824
+ "loss": 0.8741,
825
+ "step": 408000
826
+ },
827
+ {
828
+ "epoch": 12.27,
829
+ "learning_rate": 0.00011717499374451703,
830
+ "loss": 0.8786,
831
+ "step": 411000
832
+ },
833
+ {
834
+ "epoch": 12.36,
835
+ "learning_rate": 0.00011581838298026281,
836
+ "loss": 0.8837,
837
+ "step": 414000
838
+ },
839
+ {
840
+ "epoch": 12.45,
841
+ "learning_rate": 0.0001144617722160086,
842
+ "loss": 0.883,
843
+ "step": 417000
844
+ },
845
+ {
846
+ "epoch": 12.53,
847
+ "learning_rate": 0.00011310516145175439,
848
+ "loss": 0.8764,
849
+ "step": 420000
850
+ },
851
+ {
852
+ "epoch": 12.62,
853
+ "learning_rate": 0.00011174855068750017,
854
+ "loss": 0.8881,
855
+ "step": 423000
856
+ },
857
+ {
858
+ "epoch": 12.71,
859
+ "learning_rate": 0.00011039193992324596,
860
+ "loss": 0.8844,
861
+ "step": 426000
862
+ },
863
+ {
864
+ "epoch": 12.8,
865
+ "learning_rate": 0.00010903532915899175,
866
+ "loss": 0.8838,
867
+ "step": 429000
868
+ },
869
+ {
870
+ "epoch": 12.89,
871
+ "learning_rate": 0.00010767871839473755,
872
+ "loss": 0.8799,
873
+ "step": 432000
874
+ },
875
+ {
876
+ "epoch": 12.98,
877
+ "learning_rate": 0.00010632210763048335,
878
+ "loss": 0.8766,
879
+ "step": 435000
880
+ },
881
+ {
882
+ "epoch": 13.07,
883
+ "learning_rate": 0.00010496549686622913,
884
+ "loss": 0.8562,
885
+ "step": 438000
886
+ },
887
+ {
888
+ "epoch": 13.16,
889
+ "learning_rate": 0.00010360888610197492,
890
+ "loss": 0.8445,
891
+ "step": 441000
892
+ },
893
+ {
894
+ "epoch": 13.25,
895
+ "learning_rate": 0.0001022522753377207,
896
+ "loss": 0.8422,
897
+ "step": 444000
898
+ },
899
+ {
900
+ "epoch": 13.34,
901
+ "learning_rate": 0.00010089566457346649,
902
+ "loss": 0.8405,
903
+ "step": 447000
904
+ },
905
+ {
906
+ "epoch": 13.43,
907
+ "learning_rate": 9.953905380921228e-05,
908
+ "loss": 0.8456,
909
+ "step": 450000
910
+ },
911
+ {
912
+ "epoch": 13.52,
913
+ "learning_rate": 9.818244304495806e-05,
914
+ "loss": 0.8516,
915
+ "step": 453000
916
+ },
917
+ {
918
+ "epoch": 13.61,
919
+ "learning_rate": 9.682583228070386e-05,
920
+ "loss": 0.8514,
921
+ "step": 456000
922
+ },
923
+ {
924
+ "epoch": 13.7,
925
+ "learning_rate": 9.546922151644965e-05,
926
+ "loss": 0.8465,
927
+ "step": 459000
928
+ },
929
+ {
930
+ "epoch": 13.79,
931
+ "learning_rate": 9.411261075219544e-05,
932
+ "loss": 0.8499,
933
+ "step": 462000
934
+ },
935
+ {
936
+ "epoch": 13.88,
937
+ "learning_rate": 9.275599998794124e-05,
938
+ "loss": 0.8582,
939
+ "step": 465000
940
+ },
941
+ {
942
+ "epoch": 13.97,
943
+ "learning_rate": 9.139938922368702e-05,
944
+ "loss": 0.8544,
945
+ "step": 468000
946
+ },
947
+ {
948
+ "epoch": 14.06,
949
+ "learning_rate": 9.004277845943281e-05,
950
+ "loss": 0.8226,
951
+ "step": 471000
952
+ },
953
+ {
954
+ "epoch": 14.15,
955
+ "learning_rate": 8.86861676951786e-05,
956
+ "loss": 0.8132,
957
+ "step": 474000
958
+ },
959
+ {
960
+ "epoch": 14.24,
961
+ "learning_rate": 8.732955693092438e-05,
962
+ "loss": 0.8196,
963
+ "step": 477000
964
+ },
965
+ {
966
+ "epoch": 14.33,
967
+ "learning_rate": 8.597294616667018e-05,
968
+ "loss": 0.8221,
969
+ "step": 480000
970
+ },
971
+ {
972
+ "epoch": 14.42,
973
+ "learning_rate": 8.461633540241597e-05,
974
+ "loss": 0.8155,
975
+ "step": 483000
976
+ },
977
+ {
978
+ "epoch": 14.5,
979
+ "learning_rate": 8.325972463816176e-05,
980
+ "loss": 0.8219,
981
+ "step": 486000
982
+ },
983
+ {
984
+ "epoch": 14.59,
985
+ "learning_rate": 8.190311387390754e-05,
986
+ "loss": 0.8171,
987
+ "step": 489000
988
+ },
989
+ {
990
+ "epoch": 14.68,
991
+ "learning_rate": 8.054650310965333e-05,
992
+ "loss": 0.8116,
993
+ "step": 492000
994
+ },
995
+ {
996
+ "epoch": 14.77,
997
+ "learning_rate": 7.918989234539913e-05,
998
+ "loss": 0.8213,
999
+ "step": 495000
1000
+ },
1001
+ {
1002
+ "epoch": 14.86,
1003
+ "learning_rate": 7.783328158114491e-05,
1004
+ "loss": 0.8154,
1005
+ "step": 498000
1006
+ },
1007
+ {
1008
+ "epoch": 14.95,
1009
+ "learning_rate": 7.64766708168907e-05,
1010
+ "loss": 0.824,
1011
+ "step": 501000
1012
+ },
1013
+ {
1014
+ "epoch": 15.04,
1015
+ "learning_rate": 7.512006005263649e-05,
1016
+ "loss": 0.8068,
1017
+ "step": 504000
1018
+ },
1019
+ {
1020
+ "epoch": 15.13,
1021
+ "learning_rate": 7.376344928838229e-05,
1022
+ "loss": 0.7813,
1023
+ "step": 507000
1024
+ },
1025
+ {
1026
+ "epoch": 15.22,
1027
+ "learning_rate": 7.240683852412807e-05,
1028
+ "loss": 0.7947,
1029
+ "step": 510000
1030
+ },
1031
+ {
1032
+ "epoch": 15.31,
1033
+ "learning_rate": 7.105022775987386e-05,
1034
+ "loss": 0.7899,
1035
+ "step": 513000
1036
+ },
1037
+ {
1038
+ "epoch": 15.4,
1039
+ "learning_rate": 6.969361699561965e-05,
1040
+ "loss": 0.7885,
1041
+ "step": 516000
1042
+ },
1043
+ {
1044
+ "epoch": 15.49,
1045
+ "learning_rate": 6.833700623136545e-05,
1046
+ "loss": 0.7963,
1047
+ "step": 519000
1048
+ },
1049
+ {
1050
+ "epoch": 15.58,
1051
+ "learning_rate": 6.698039546711123e-05,
1052
+ "loss": 0.787,
1053
+ "step": 522000
1054
+ },
1055
+ {
1056
+ "epoch": 15.67,
1057
+ "learning_rate": 6.562378470285702e-05,
1058
+ "loss": 0.7877,
1059
+ "step": 525000
1060
+ },
1061
+ {
1062
+ "epoch": 15.76,
1063
+ "learning_rate": 6.42671739386028e-05,
1064
+ "loss": 0.7949,
1065
+ "step": 528000
1066
+ },
1067
+ {
1068
+ "epoch": 15.85,
1069
+ "learning_rate": 6.291056317434859e-05,
1070
+ "loss": 0.7835,
1071
+ "step": 531000
1072
+ },
1073
+ {
1074
+ "epoch": 15.94,
1075
+ "learning_rate": 6.155395241009439e-05,
1076
+ "loss": 0.7904,
1077
+ "step": 534000
1078
+ },
1079
+ {
1080
+ "epoch": 16.03,
1081
+ "learning_rate": 6.019734164584017e-05,
1082
+ "loss": 0.7797,
1083
+ "step": 537000
1084
+ },
1085
+ {
1086
+ "epoch": 16.12,
1087
+ "learning_rate": 5.8840730881585965e-05,
1088
+ "loss": 0.7606,
1089
+ "step": 540000
1090
+ },
1091
+ {
1092
+ "epoch": 16.21,
1093
+ "learning_rate": 5.748412011733175e-05,
1094
+ "loss": 0.7671,
1095
+ "step": 543000
1096
+ },
1097
+ {
1098
+ "epoch": 16.3,
1099
+ "learning_rate": 5.6127509353077545e-05,
1100
+ "loss": 0.764,
1101
+ "step": 546000
1102
+ },
1103
+ {
1104
+ "epoch": 16.38,
1105
+ "learning_rate": 5.477089858882333e-05,
1106
+ "loss": 0.758,
1107
+ "step": 549000
1108
+ },
1109
+ {
1110
+ "epoch": 16.47,
1111
+ "learning_rate": 5.3414287824569124e-05,
1112
+ "loss": 0.7518,
1113
+ "step": 552000
1114
+ },
1115
+ {
1116
+ "epoch": 16.56,
1117
+ "learning_rate": 5.205767706031491e-05,
1118
+ "loss": 0.7644,
1119
+ "step": 555000
1120
+ },
1121
+ {
1122
+ "epoch": 16.65,
1123
+ "learning_rate": 5.07010662960607e-05,
1124
+ "loss": 0.7577,
1125
+ "step": 558000
1126
+ },
1127
+ {
1128
+ "epoch": 16.74,
1129
+ "learning_rate": 4.934445553180649e-05,
1130
+ "loss": 0.762,
1131
+ "step": 561000
1132
+ },
1133
+ {
1134
+ "epoch": 16.83,
1135
+ "learning_rate": 4.7987844767552283e-05,
1136
+ "loss": 0.7548,
1137
+ "step": 564000
1138
+ },
1139
+ {
1140
+ "epoch": 16.92,
1141
+ "learning_rate": 4.663123400329807e-05,
1142
+ "loss": 0.7567,
1143
+ "step": 567000
1144
+ },
1145
+ {
1146
+ "epoch": 17.01,
1147
+ "learning_rate": 4.5274623239043856e-05,
1148
+ "loss": 0.7613,
1149
+ "step": 570000
1150
+ },
1151
+ {
1152
+ "epoch": 17.1,
1153
+ "learning_rate": 4.391801247478964e-05,
1154
+ "loss": 0.7346,
1155
+ "step": 573000
1156
+ },
1157
+ {
1158
+ "epoch": 17.19,
1159
+ "learning_rate": 4.256140171053544e-05,
1160
+ "loss": 0.7323,
1161
+ "step": 576000
1162
+ },
1163
+ {
1164
+ "epoch": 17.28,
1165
+ "learning_rate": 4.120479094628123e-05,
1166
+ "loss": 0.7322,
1167
+ "step": 579000
1168
+ },
1169
+ {
1170
+ "epoch": 17.37,
1171
+ "learning_rate": 3.9848180182027016e-05,
1172
+ "loss": 0.7456,
1173
+ "step": 582000
1174
+ },
1175
+ {
1176
+ "epoch": 17.46,
1177
+ "learning_rate": 3.84915694177728e-05,
1178
+ "loss": 0.7324,
1179
+ "step": 585000
1180
+ },
1181
+ {
1182
+ "epoch": 17.55,
1183
+ "learning_rate": 3.7134958653518595e-05,
1184
+ "loss": 0.7414,
1185
+ "step": 588000
1186
+ },
1187
+ {
1188
+ "epoch": 17.64,
1189
+ "learning_rate": 3.577834788926438e-05,
1190
+ "loss": 0.7334,
1191
+ "step": 591000
1192
+ },
1193
+ {
1194
+ "epoch": 17.73,
1195
+ "learning_rate": 3.442173712501017e-05,
1196
+ "loss": 0.731,
1197
+ "step": 594000
1198
+ },
1199
+ {
1200
+ "epoch": 17.82,
1201
+ "learning_rate": 3.306512636075596e-05,
1202
+ "loss": 0.7488,
1203
+ "step": 597000
1204
+ },
1205
+ {
1206
+ "epoch": 17.91,
1207
+ "learning_rate": 3.170851559650175e-05,
1208
+ "loss": 0.7287,
1209
+ "step": 600000
1210
+ },
1211
+ {
1212
+ "epoch": 18.0,
1213
+ "learning_rate": 3.035190483224754e-05,
1214
+ "loss": 0.7361,
1215
+ "step": 603000
1216
+ },
1217
+ {
1218
+ "epoch": 18.09,
1219
+ "learning_rate": 2.8995294067993327e-05,
1220
+ "loss": 0.7173,
1221
+ "step": 606000
1222
+ },
1223
+ {
1224
+ "epoch": 18.18,
1225
+ "learning_rate": 2.763868330373912e-05,
1226
+ "loss": 0.7173,
1227
+ "step": 609000
1228
+ },
1229
+ {
1230
+ "epoch": 18.27,
1231
+ "learning_rate": 2.6282072539484907e-05,
1232
+ "loss": 0.7138,
1233
+ "step": 612000
1234
+ },
1235
+ {
1236
+ "epoch": 18.35,
1237
+ "learning_rate": 2.4925461775230697e-05,
1238
+ "loss": 0.71,
1239
+ "step": 615000
1240
+ },
1241
+ {
1242
+ "epoch": 18.44,
1243
+ "learning_rate": 2.3568851010976486e-05,
1244
+ "loss": 0.7128,
1245
+ "step": 618000
1246
+ },
1247
+ {
1248
+ "epoch": 18.53,
1249
+ "learning_rate": 2.2212240246722276e-05,
1250
+ "loss": 0.7168,
1251
+ "step": 621000
1252
+ },
1253
+ {
1254
+ "epoch": 18.62,
1255
+ "learning_rate": 2.0855629482468066e-05,
1256
+ "loss": 0.7184,
1257
+ "step": 624000
1258
+ },
1259
+ {
1260
+ "epoch": 18.71,
1261
+ "learning_rate": 1.9499018718213856e-05,
1262
+ "loss": 0.7099,
1263
+ "step": 627000
1264
+ },
1265
+ {
1266
+ "epoch": 18.8,
1267
+ "learning_rate": 1.8142407953959646e-05,
1268
+ "loss": 0.7047,
1269
+ "step": 630000
1270
+ },
1271
+ {
1272
+ "epoch": 18.89,
1273
+ "learning_rate": 1.6785797189705435e-05,
1274
+ "loss": 0.7131,
1275
+ "step": 633000
1276
+ },
1277
+ {
1278
+ "epoch": 18.98,
1279
+ "learning_rate": 1.5429186425451222e-05,
1280
+ "loss": 0.7151,
1281
+ "step": 636000
1282
+ },
1283
+ {
1284
+ "epoch": 19.07,
1285
+ "learning_rate": 1.4072575661197012e-05,
1286
+ "loss": 0.7058,
1287
+ "step": 639000
1288
+ },
1289
+ {
1290
+ "epoch": 19.16,
1291
+ "learning_rate": 1.2715964896942801e-05,
1292
+ "loss": 0.6982,
1293
+ "step": 642000
1294
+ },
1295
+ {
1296
+ "epoch": 19.25,
1297
+ "learning_rate": 1.1359354132688591e-05,
1298
+ "loss": 0.6983,
1299
+ "step": 645000
1300
+ },
1301
+ {
1302
+ "epoch": 19.34,
1303
+ "learning_rate": 1.0002743368434381e-05,
1304
+ "loss": 0.6932,
1305
+ "step": 648000
1306
+ },
1307
+ {
1308
+ "epoch": 19.43,
1309
+ "learning_rate": 8.64613260418017e-06,
1310
+ "loss": 0.7025,
1311
+ "step": 651000
1312
+ },
1313
+ {
1314
+ "epoch": 19.52,
1315
+ "learning_rate": 7.289521839925958e-06,
1316
+ "loss": 0.6945,
1317
+ "step": 654000
1318
+ },
1319
+ {
1320
+ "epoch": 19.61,
1321
+ "learning_rate": 5.932911075671748e-06,
1322
+ "loss": 0.7039,
1323
+ "step": 657000
1324
+ },
1325
+ {
1326
+ "epoch": 19.7,
1327
+ "learning_rate": 4.576300311417537e-06,
1328
+ "loss": 0.6921,
1329
+ "step": 660000
1330
+ },
1331
+ {
1332
+ "epoch": 19.79,
1333
+ "learning_rate": 3.2196895471633263e-06,
1334
+ "loss": 0.6914,
1335
+ "step": 663000
1336
+ },
1337
+ {
1338
+ "epoch": 19.88,
1339
+ "learning_rate": 1.863078782909116e-06,
1340
+ "loss": 0.6969,
1341
+ "step": 666000
1342
+ },
1343
+ {
1344
+ "epoch": 19.97,
1345
+ "learning_rate": 5.064680186549053e-07,
1346
+ "loss": 0.6948,
1347
+ "step": 669000
1348
+ },
1349
+ {
1350
+ "epoch": 20.0,
1351
+ "step": 670120,
1352
+ "total_flos": 1.67362005330918e+21,
1353
+ "train_loss": 1.0658713307571661,
1354
+ "train_runtime": 426567.9926,
1355
+ "train_samples_per_second": 25.136,
1356
+ "train_steps_per_second": 1.571
1357
+ },
1358
+ {
1359
+ "epoch": 20.06,
1360
+ "learning_rate": 5.053313149301143e-07,
1361
+ "loss": 0.6923,
1362
+ "step": 672000
1363
+ },
1364
+ {
1365
+ "epoch": 20.15,
1366
+ "learning_rate": 5.035174260075754e-07,
1367
+ "loss": 0.6958,
1368
+ "step": 675000
1369
+ },
1370
+ {
1371
+ "epoch": 20.24,
1372
+ "learning_rate": 5.017035370850364e-07,
1373
+ "loss": 0.6885,
1374
+ "step": 678000
1375
+ },
1376
+ {
1377
+ "epoch": 20.32,
1378
+ "learning_rate": 4.998896481624976e-07,
1379
+ "loss": 0.6976,
1380
+ "step": 681000
1381
+ },
1382
+ {
1383
+ "epoch": 20.41,
1384
+ "learning_rate": 4.980757592399586e-07,
1385
+ "loss": 0.6997,
1386
+ "step": 684000
1387
+ },
1388
+ {
1389
+ "epoch": 20.5,
1390
+ "learning_rate": 4.962618703174198e-07,
1391
+ "loss": 0.6856,
1392
+ "step": 687000
1393
+ },
1394
+ {
1395
+ "epoch": 20.59,
1396
+ "learning_rate": 4.944479813948808e-07,
1397
+ "loss": 0.6866,
1398
+ "step": 690000
1399
+ },
1400
+ {
1401
+ "epoch": 20.68,
1402
+ "learning_rate": 4.926340924723419e-07,
1403
+ "loss": 0.6981,
1404
+ "step": 693000
1405
+ },
1406
+ {
1407
+ "epoch": 20.77,
1408
+ "learning_rate": 4.90820203549803e-07,
1409
+ "loss": 0.695,
1410
+ "step": 696000
1411
+ },
1412
+ {
1413
+ "epoch": 20.86,
1414
+ "learning_rate": 4.890063146272641e-07,
1415
+ "loss": 0.6946,
1416
+ "step": 699000
1417
+ },
1418
+ {
1419
+ "epoch": 20.95,
1420
+ "learning_rate": 4.871924257047252e-07,
1421
+ "loss": 0.6912,
1422
+ "step": 702000
1423
+ },
1424
+ {
1425
+ "epoch": 21.04,
1426
+ "learning_rate": 4.853785367821862e-07,
1427
+ "loss": 0.6885,
1428
+ "step": 705000
1429
+ },
1430
+ {
1431
+ "epoch": 21.13,
1432
+ "learning_rate": 4.835646478596474e-07,
1433
+ "loss": 0.6896,
1434
+ "step": 708000
1435
+ },
1436
+ {
1437
+ "epoch": 21.22,
1438
+ "learning_rate": 4.817507589371084e-07,
1439
+ "loss": 0.694,
1440
+ "step": 711000
1441
+ },
1442
+ {
1443
+ "epoch": 21.31,
1444
+ "learning_rate": 4.799368700145696e-07,
1445
+ "loss": 0.6885,
1446
+ "step": 714000
1447
+ },
1448
+ {
1449
+ "epoch": 21.4,
1450
+ "learning_rate": 4.781229810920306e-07,
1451
+ "loss": 0.6924,
1452
+ "step": 717000
1453
+ },
1454
+ {
1455
+ "epoch": 21.49,
1456
+ "learning_rate": 4.763090921694917e-07,
1457
+ "loss": 0.6928,
1458
+ "step": 720000
1459
+ },
1460
+ {
1461
+ "epoch": 21.58,
1462
+ "learning_rate": 4.744952032469528e-07,
1463
+ "loss": 0.6943,
1464
+ "step": 723000
1465
+ },
1466
+ {
1467
+ "epoch": 21.67,
1468
+ "learning_rate": 4.726813143244139e-07,
1469
+ "loss": 0.6893,
1470
+ "step": 726000
1471
+ },
1472
+ {
1473
+ "epoch": 21.76,
1474
+ "learning_rate": 4.70867425401875e-07,
1475
+ "loss": 0.6895,
1476
+ "step": 729000
1477
+ },
1478
+ {
1479
+ "epoch": 21.85,
1480
+ "learning_rate": 4.690535364793361e-07,
1481
+ "loss": 0.6949,
1482
+ "step": 732000
1483
+ },
1484
+ {
1485
+ "epoch": 21.94,
1486
+ "learning_rate": 4.6723964755679714e-07,
1487
+ "loss": 0.6919,
1488
+ "step": 735000
1489
+ },
1490
+ {
1491
+ "epoch": 22.03,
1492
+ "learning_rate": 4.6542575863425824e-07,
1493
+ "loss": 0.6885,
1494
+ "step": 738000
1495
+ },
1496
+ {
1497
+ "epoch": 22.12,
1498
+ "learning_rate": 4.636118697117194e-07,
1499
+ "loss": 0.6922,
1500
+ "step": 741000
1501
+ },
1502
+ {
1503
+ "epoch": 22.2,
1504
+ "learning_rate": 4.617979807891805e-07,
1505
+ "loss": 0.6863,
1506
+ "step": 744000
1507
+ },
1508
+ {
1509
+ "epoch": 22.29,
1510
+ "learning_rate": 4.599840918666416e-07,
1511
+ "loss": 0.6899,
1512
+ "step": 747000
1513
+ },
1514
+ {
1515
+ "epoch": 22.38,
1516
+ "learning_rate": 4.581702029441027e-07,
1517
+ "loss": 0.6844,
1518
+ "step": 750000
1519
+ },
1520
+ {
1521
+ "epoch": 22.47,
1522
+ "learning_rate": 4.563563140215638e-07,
1523
+ "loss": 0.6956,
1524
+ "step": 753000
1525
+ },
1526
+ {
1527
+ "epoch": 22.56,
1528
+ "learning_rate": 4.545424250990249e-07,
1529
+ "loss": 0.6916,
1530
+ "step": 756000
1531
+ },
1532
+ {
1533
+ "epoch": 22.65,
1534
+ "learning_rate": 4.527285361764859e-07,
1535
+ "loss": 0.6828,
1536
+ "step": 759000
1537
+ },
1538
+ {
1539
+ "epoch": 22.74,
1540
+ "learning_rate": 4.50914647253947e-07,
1541
+ "loss": 0.6865,
1542
+ "step": 762000
1543
+ },
1544
+ {
1545
+ "epoch": 22.83,
1546
+ "learning_rate": 4.491007583314081e-07,
1547
+ "loss": 0.6916,
1548
+ "step": 765000
1549
+ },
1550
+ {
1551
+ "epoch": 22.92,
1552
+ "learning_rate": 4.472868694088692e-07,
1553
+ "loss": 0.6876,
1554
+ "step": 768000
1555
+ },
1556
+ {
1557
+ "epoch": 23.01,
1558
+ "learning_rate": 4.454729804863303e-07,
1559
+ "loss": 0.6936,
1560
+ "step": 771000
1561
+ },
1562
+ {
1563
+ "epoch": 23.1,
1564
+ "learning_rate": 4.436590915637914e-07,
1565
+ "loss": 0.6908,
1566
+ "step": 774000
1567
+ },
1568
+ {
1569
+ "epoch": 23.19,
1570
+ "learning_rate": 4.418452026412525e-07,
1571
+ "loss": 0.6864,
1572
+ "step": 777000
1573
+ },
1574
+ {
1575
+ "epoch": 23.28,
1576
+ "learning_rate": 4.400313137187136e-07,
1577
+ "loss": 0.6823,
1578
+ "step": 780000
1579
+ },
1580
+ {
1581
+ "epoch": 23.37,
1582
+ "learning_rate": 4.3821742479617464e-07,
1583
+ "loss": 0.6914,
1584
+ "step": 783000
1585
+ },
1586
+ {
1587
+ "epoch": 23.46,
1588
+ "learning_rate": 4.3640353587363574e-07,
1589
+ "loss": 0.6915,
1590
+ "step": 786000
1591
+ },
1592
+ {
1593
+ "epoch": 23.55,
1594
+ "learning_rate": 4.3458964695109684e-07,
1595
+ "loss": 0.6873,
1596
+ "step": 789000
1597
+ },
1598
+ {
1599
+ "epoch": 23.64,
1600
+ "learning_rate": 4.3277575802855793e-07,
1601
+ "loss": 0.69,
1602
+ "step": 792000
1603
+ },
1604
+ {
1605
+ "epoch": 23.73,
1606
+ "learning_rate": 4.3096186910601903e-07,
1607
+ "loss": 0.6872,
1608
+ "step": 795000
1609
+ },
1610
+ {
1611
+ "epoch": 23.82,
1612
+ "learning_rate": 4.2914798018348013e-07,
1613
+ "loss": 0.6925,
1614
+ "step": 798000
1615
+ },
1616
+ {
1617
+ "epoch": 23.91,
1618
+ "learning_rate": 4.273340912609412e-07,
1619
+ "loss": 0.6877,
1620
+ "step": 801000
1621
+ },
1622
+ {
1623
+ "epoch": 24.0,
1624
+ "learning_rate": 4.2552020233840227e-07,
1625
+ "loss": 0.6908,
1626
+ "step": 804000
1627
+ },
1628
+ {
1629
+ "epoch": 24.09,
1630
+ "learning_rate": 4.2370631341586337e-07,
1631
+ "loss": 0.6898,
1632
+ "step": 807000
1633
+ },
1634
+ {
1635
+ "epoch": 24.17,
1636
+ "learning_rate": 4.218924244933245e-07,
1637
+ "loss": 0.6855,
1638
+ "step": 810000
1639
+ },
1640
+ {
1641
+ "epoch": 24.26,
1642
+ "learning_rate": 4.200785355707856e-07,
1643
+ "loss": 0.6865,
1644
+ "step": 813000
1645
+ },
1646
+ {
1647
+ "epoch": 24.35,
1648
+ "learning_rate": 4.182646466482467e-07,
1649
+ "loss": 0.685,
1650
+ "step": 816000
1651
+ },
1652
+ {
1653
+ "epoch": 24.44,
1654
+ "learning_rate": 4.164507577257078e-07,
1655
+ "loss": 0.6991,
1656
+ "step": 819000
1657
+ },
1658
+ {
1659
+ "epoch": 24.53,
1660
+ "learning_rate": 4.146368688031689e-07,
1661
+ "loss": 0.6891,
1662
+ "step": 822000
1663
+ },
1664
+ {
1665
+ "epoch": 24.62,
1666
+ "learning_rate": 4.1282297988063e-07,
1667
+ "loss": 0.6871,
1668
+ "step": 825000
1669
+ },
1670
+ {
1671
+ "epoch": 24.71,
1672
+ "learning_rate": 4.1100909095809104e-07,
1673
+ "loss": 0.6867,
1674
+ "step": 828000
1675
+ },
1676
+ {
1677
+ "epoch": 24.8,
1678
+ "learning_rate": 4.0919520203555214e-07,
1679
+ "loss": 0.688,
1680
+ "step": 831000
1681
+ },
1682
+ {
1683
+ "epoch": 24.89,
1684
+ "learning_rate": 4.0738131311301324e-07,
1685
+ "loss": 0.6849,
1686
+ "step": 834000
1687
+ },
1688
+ {
1689
+ "epoch": 24.98,
1690
+ "learning_rate": 4.0556742419047433e-07,
1691
+ "loss": 0.6881,
1692
+ "step": 837000
1693
+ }
1694
+ ],
1695
+ "logging_steps": 3000,
1696
+ "max_steps": 837650,
1697
+ "num_train_epochs": 25,
1698
+ "save_steps": 500,
1699
+ "total_flos": 2.0920258472167164e+21,
1700
+ "trial_name": null,
1701
+ "trial_params": null
1702
+ }
checkpoint-837650/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85b3b6a5e18625ed0537c25eb5a02b86ed14477bf6bc935ecef99791b9ff6f59
3
+ size 4600
checkpoint-837650/vocab.json ADDED
@@ -0,0 +1,3303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\"": 1,
3
+ "+": 2,
4
+ "-": 3,
5
+ "[PAD]": 3300,
6
+ "[UNK]": 3299,
7
+ "]": 4,
8
+ "a": 5,
9
+ "b": 6,
10
+ "c": 7,
11
+ "d": 8,
12
+ "e": 9,
13
+ "f": 10,
14
+ "g": 11,
15
+ "h": 12,
16
+ "i": 13,
17
+ "j": 14,
18
+ "k": 15,
19
+ "l": 16,
20
+ "m": 17,
21
+ "n": 18,
22
+ "o": 19,
23
+ "p": 20,
24
+ "q": 21,
25
+ "r": 22,
26
+ "s": 23,
27
+ "t": 24,
28
+ "u": 25,
29
+ "v": 26,
30
+ "w": 27,
31
+ "x": 28,
32
+ "y": 29,
33
+ "z": 30,
34
+ "|": 0,
35
+ "°": 31,
36
+ "×": 32,
37
+ "à": 33,
38
+ "â": 34,
39
+ "ã": 35,
40
+ "ä": 36,
41
+ "ê": 37,
42
+ "í": 38,
43
+ "ö": 39,
44
+ "ú": 40,
45
+ "ü": 41,
46
+ "ā": 42,
47
+ "ė": 43,
48
+ "ę": 44,
49
+ "ł": 45,
50
+ "ş": 46,
51
+ "ż": 47,
52
+ "α": 48,
53
+ "β": 49,
54
+ "ι": 50,
55
+ "μ": 51,
56
+ "ο": 52,
57
+ "π": 53,
58
+ "а": 54,
59
+ "б": 55,
60
+ "в": 56,
61
+ "д": 57,
62
+ "е": 58,
63
+ "ж": 59,
64
+ "з": 60,
65
+ "и": 61,
66
+ "й": 62,
67
+ "к": 63,
68
+ "л": 64,
69
+ "м": 65,
70
+ "н": 66,
71
+ "о": 67,
72
+ "п": 68,
73
+ "р": 69,
74
+ "с": 70,
75
+ "т": 71,
76
+ "у": 72,
77
+ "х": 73,
78
+ "ц": 74,
79
+ "ч": 75,
80
+ "ш": 76,
81
+ "ы": 77,
82
+ "ь": 78,
83
+ "э": 79,
84
+ "ю": 80,
85
+ "я": 81,
86
+ "א": 82,
87
+ "ה": 83,
88
+ "י": 84,
89
+ "ל": 85,
90
+ "ש": 86,
91
+ "أ": 87,
92
+ "ا": 88,
93
+ "ب": 89,
94
+ "ث": 90,
95
+ "د": 91,
96
+ "س": 92,
97
+ "ل": 93,
98
+ "م": 94,
99
+ "ه": 95,
100
+ "و": 96,
101
+ "ي": 97,
102
+ "پ": 98,
103
+ "ک": 99,
104
+ "ھ": 100,
105
+ "ی": 101,
106
+ "ے": 102,
107
+ "ி": 103,
108
+ "จ": 104,
109
+ "เ": 105,
110
+ "ị": 106,
111
+ "​": 107,
112
+ "‐": 108,
113
+ "―": 109,
114
+ "‘": 110,
115
+ "“": 111,
116
+ "”": 112,
117
+ "‥": 113,
118
+ "…": 114,
119
+ "⁉": 115,
120
+ "℃": 116,
121
+ "ℓ": 117,
122
+ "⅔": 118,
123
+ "ⅱ": 119,
124
+ "ⅲ": 120,
125
+ "ⅴ": 121,
126
+ "ⅿ": 122,
127
+ "→": 123,
128
+ "∞": 124,
129
+ "①": 125,
130
+ "②": 126,
131
+ "③": 127,
132
+ "─": 128,
133
+ "○": 129,
134
+ "●": 130,
135
+ "★": 131,
136
+ "✕": 132,
137
+ "、": 133,
138
+ "。": 134,
139
+ "々": 135,
140
+ "〆": 136,
141
+ "〇": 137,
142
+ "〉": 138,
143
+ "《": 139,
144
+ "》": 140,
145
+ "「": 141,
146
+ "」": 142,
147
+ "『": 143,
148
+ "』": 144,
149
+ "【": 145,
150
+ "】": 146,
151
+ "〜": 147,
152
+ "ぁ": 148,
153
+ "あ": 149,
154
+ "ぃ": 150,
155
+ "い": 151,
156
+ "ぅ": 152,
157
+ "う": 153,
158
+ "ぇ": 154,
159
+ "え": 155,
160
+ "ぉ": 156,
161
+ "お": 157,
162
+ "か": 158,
163
+ "が": 159,
164
+ "き": 160,
165
+ "ぎ": 161,
166
+ "く": 162,
167
+ "ぐ": 163,
168
+ "け": 164,
169
+ "げ": 165,
170
+ "こ": 166,
171
+ "ご": 167,
172
+ "さ": 168,
173
+ "ざ": 169,
174
+ "し": 170,
175
+ "じ": 171,
176
+ "す": 172,
177
+ "ず": 173,
178
+ "せ": 174,
179
+ "ぜ": 175,
180
+ "そ": 176,
181
+ "ぞ": 177,
182
+ "た": 178,
183
+ "だ": 179,
184
+ "ち": 180,
185
+ "ぢ": 181,
186
+ "っ": 182,
187
+ "つ": 183,
188
+ "づ": 184,
189
+ "て": 185,
190
+ "で": 186,
191
+ "と": 187,
192
+ "ど": 188,
193
+ "な": 189,
194
+ "に": 190,
195
+ "ぬ": 191,
196
+ "ね": 192,
197
+ "の": 193,
198
+ "は": 194,
199
+ "ば": 195,
200
+ "ぱ": 196,
201
+ "ひ": 197,
202
+ "び": 198,
203
+ "ぴ": 199,
204
+ "ふ": 200,
205
+ "ぶ": 201,
206
+ "ぷ": 202,
207
+ "へ": 203,
208
+ "べ": 204,
209
+ "ぺ": 205,
210
+ "ほ": 206,
211
+ "ぼ": 207,
212
+ "ぽ": 208,
213
+ "ま": 209,
214
+ "み": 210,
215
+ "む": 211,
216
+ "め": 212,
217
+ "も": 213,
218
+ "ゃ": 214,
219
+ "や": 215,
220
+ "ゅ": 216,
221
+ "ゆ": 217,
222
+ "ょ": 218,
223
+ "よ": 219,
224
+ "ら": 220,
225
+ "り": 221,
226
+ "る": 222,
227
+ "れ": 223,
228
+ "ろ": 224,
229
+ "ゎ": 225,
230
+ "わ": 226,
231
+ "を": 227,
232
+ "ん": 228,
233
+ "ゔ": 229,
234
+ "゛": 230,
235
+ "ァ": 231,
236
+ "ア": 232,
237
+ "ィ": 233,
238
+ "イ": 234,
239
+ "ゥ": 235,
240
+ "ウ": 236,
241
+ "ェ": 237,
242
+ "エ": 238,
243
+ "ォ": 239,
244
+ "オ": 240,
245
+ "カ": 241,
246
+ "ガ": 242,
247
+ "キ": 243,
248
+ "ギ": 244,
249
+ "ク": 245,
250
+ "グ": 246,
251
+ "ケ": 247,
252
+ "ゲ": 248,
253
+ "コ": 249,
254
+ "ゴ": 250,
255
+ "サ": 251,
256
+ "ザ": 252,
257
+ "シ": 253,
258
+ "ジ": 254,
259
+ "ス": 255,
260
+ "ズ": 256,
261
+ "セ": 257,
262
+ "ゼ": 258,
263
+ "ソ": 259,
264
+ "ゾ": 260,
265
+ "タ": 261,
266
+ "ダ": 262,
267
+ "チ": 263,
268
+ "ヂ": 264,
269
+ "ッ": 265,
270
+ "ツ": 266,
271
+ "ヅ": 267,
272
+ "テ": 268,
273
+ "デ": 269,
274
+ "ト": 270,
275
+ "ド": 271,
276
+ "ナ": 272,
277
+ "ニ": 273,
278
+ "ヌ": 274,
279
+ "ネ": 275,
280
+ "ノ": 276,
281
+ "ハ": 277,
282
+ "バ": 278,
283
+ "パ": 279,
284
+ "ヒ": 280,
285
+ "ビ": 281,
286
+ "ピ": 282,
287
+ "フ": 283,
288
+ "ブ": 284,
289
+ "プ": 285,
290
+ "ヘ": 286,
291
+ "ベ": 287,
292
+ "ペ": 288,
293
+ "ホ": 289,
294
+ "ボ": 290,
295
+ "ポ": 291,
296
+ "マ": 292,
297
+ "ミ": 293,
298
+ "ム": 294,
299
+ "メ": 295,
300
+ "モ": 296,
301
+ "ャ": 297,
302
+ "ヤ": 298,
303
+ "ュ": 299,
304
+ "ユ": 300,
305
+ "ョ": 301,
306
+ "ヨ": 302,
307
+ "ラ": 303,
308
+ "リ": 304,
309
+ "ル": 305,
310
+ "レ": 306,
311
+ "ロ": 307,
312
+ "ワ": 308,
313
+ "ン": 309,
314
+ "ヴ": 310,
315
+ "ヵ": 311,
316
+ "ヶ": 312,
317
+ "・": 313,
318
+ "ー": 314,
319
+ "ㄷ": 315,
320
+ "ㅏ": 316,
321
+ "ㅑ": 317,
322
+ "ㅜ": 318,
323
+ "ㅠ": 319,
324
+ "ㅡ": 320,
325
+ "ㇱ": 321,
326
+ "ㇴ": 322,
327
+ "ㇶ": 323,
328
+ "ㇻ": 324,
329
+ "ㇽ": 325,
330
+ "㎏": 326,
331
+ "㎖": 327,
332
+ "㎝": 328,
333
+ "㎞": 329,
334
+ "㏌": 330,
335
+ "一": 331,
336
+ "丁": 332,
337
+ "七": 333,
338
+ "万": 334,
339
+ "丈": 335,
340
+ "三": 336,
341
+ "上": 337,
342
+ "下": 338,
343
+ "不": 339,
344
+ "与": 340,
345
+ "丑": 341,
346
+ "且": 342,
347
+ "世": 343,
348
+ "丘": 344,
349
+ "両": 345,
350
+ "並": 346,
351
+ "中": 347,
352
+ "串": 348,
353
+ "丸": 349,
354
+ "丹": 350,
355
+ "主": 351,
356
+ "丼": 352,
357
+ "乃": 353,
358
+ "久": 354,
359
+ "之": 355,
360
+ "乏": 356,
361
+ "乗": 357,
362
+ "乙": 358,
363
+ "九": 359,
364
+ "乞": 360,
365
+ "也": 361,
366
+ "乱": 362,
367
+ "乳": 363,
368
+ "乾": 364,
369
+ "亀": 365,
370
+ "了": 366,
371
+ "予": 367,
372
+ "争": 368,
373
+ "事": 369,
374
+ "二": 370,
375
+ "云": 371,
376
+ "互": 372,
377
+ "五": 373,
378
+ "井": 374,
379
+ "些": 375,
380
+ "亜": 376,
381
+ "亡": 377,
382
+ "交": 378,
383
+ "京": 379,
384
+ "亭": 380,
385
+ "亮": 381,
386
+ "人": 382,
387
+ "仁": 383,
388
+ "仇": 384,
389
+ "今": 385,
390
+ "介": 386,
391
+ "从": 387,
392
+ "仏": 388,
393
+ "仔": 389,
394
+ "仕": 390,
395
+ "他": 391,
396
+ "付": 392,
397
+ "仙": 393,
398
+ "代": 394,
399
+ "令": 395,
400
+ "以": 396,
401
+ "仮": 397,
402
+ "仰": 398,
403
+ "仲": 399,
404
+ "件": 400,
405
+ "任": 401,
406
+ "份": 402,
407
+ "企": 403,
408
+ "伊": 404,
409
+ "伎": 405,
410
+ "伏": 406,
411
+ "伐": 407,
412
+ "休": 408,
413
+ "会": 409,
414
+ "伝": 410,
415
+ "伯": 411,
416
+ "伴": 412,
417
+ "伶": 413,
418
+ "伸": 414,
419
+ "伺": 415,
420
+ "似": 416,
421
+ "伽": 417,
422
+ "佃": 418,
423
+ "佇": 419,
424
+ "位": 420,
425
+ "低": 421,
426
+ "住": 422,
427
+ "佐": 423,
428
+ "佑": 424,
429
+ "体": 425,
430
+ "何": 426,
431
+ "余": 427,
432
+ "作": 428,
433
+ "你": 429,
434
+ "佳": 430,
435
+ "併": 431,
436
+ "使": 432,
437
+ "來": 433,
438
+ "例": 434,
439
+ "侍": 435,
440
+ "供": 436,
441
+ "依": 437,
442
+ "侠": 438,
443
+ "価": 439,
444
+ "侮": 440,
445
+ "侯": 441,
446
+ "侵": 442,
447
+ "侶": 443,
448
+ "便": 444,
449
+ "係": 445,
450
+ "促": 446,
451
+ "俊": 447,
452
+ "俗": 448,
453
+ "保": 449,
454
+ "信": 450,
455
+ "俣": 451,
456
+ "俩": 452,
457
+ "修": 453,
458
+ "俯": 454,
459
+ "俳": 455,
460
+ "俵": 456,
461
+ "俸": 457,
462
+ "俺": 458,
463
+ "倉": 459,
464
+ "個": 460,
465
+ "倍": 461,
466
+ "倒": 462,
467
+ "倖": 463,
468
+ "候": 464,
469
+ "借": 465,
470
+ "倣": 466,
471
+ "値": 467,
472
+ "倦": 468,
473
+ "倫": 469,
474
+ "倶": 470,
475
+ "倹": 471,
476
+ "假": 472,
477
+ "偉": 473,
478
+ "偏": 474,
479
+ "做": 475,
480
+ "停": 476,
481
+ "健": 477,
482
+ "側": 478,
483
+ "偵": 479,
484
+ "偶": 480,
485
+ "偽": 481,
486
+ "傅": 482,
487
+ "傍": 483,
488
+ "傑": 484,
489
+ "傘": 485,
490
+ "備": 486,
491
+ "催": 487,
492
+ "傭": 488,
493
+ "債": 489,
494
+ "傷": 490,
495
+ "傾": 491,
496
+ "僅": 492,
497
+ "働": 493,
498
+ "像": 494,
499
+ "僕": 495,
500
+ "僚": 496,
501
+ "僧": 497,
502
+ "儀": 498,
503
+ "儂": 499,
504
+ "億": 500,
505
+ "儘": 501,
506
+ "儚": 502,
507
+ "償": 503,
508
+ "優": 504,
509
+ "儲": 505,
510
+ "元": 506,
511
+ "兄": 507,
512
+ "充": 508,
513
+ "兆": 509,
514
+ "先": 510,
515
+ "光": 511,
516
+ "克": 512,
517
+ "免": 513,
518
+ "兎": 514,
519
+ "児": 515,
520
+ "党": 516,
521
+ "兜": 517,
522
+ "入": 518,
523
+ "全": 519,
524
+ "八": 520,
525
+ "公": 521,
526
+ "六": 522,
527
+ "共": 523,
528
+ "兴": 524,
529
+ "兵": 525,
530
+ "其": 526,
531
+ "具": 527,
532
+ "典": 528,
533
+ "兼": 529,
534
+ "内": 530,
535
+ "円": 531,
536
+ "冊": 532,
537
+ "再": 533,
538
+ "冑": 534,
539
+ "冒": 535,
540
+ "冗": 536,
541
+ "写": 537,
542
+ "冠": 538,
543
+ "冤": 539,
544
+ "冥": 540,
545
+ "冨": 541,
546
+ "冬": 542,
547
+ "冰": 543,
548
+ "冲": 544,
549
+ "冴": 545,
550
+ "冶": 546,
551
+ "冷": 547,
552
+ "凄": 548,
553
+ "凌": 549,
554
+ "凍": 550,
555
+ "凛": 551,
556
+ "凝": 552,
557
+ "几": 553,
558
+ "凡": 554,
559
+ "処": 555,
560
+ "凪": 556,
561
+ "凰": 557,
562
+ "凱": 558,
563
+ "凶": 559,
564
+ "凸": 560,
565
+ "凹": 561,
566
+ "出": 562,
567
+ "函": 563,
568
+ "刀": 564,
569
+ "刃": 565,
570
+ "分": 566,
571
+ "切": 567,
572
+ "刈": 568,
573
+ "刊": 569,
574
+ "刑": 570,
575
+ "列": 571,
576
+ "初": 572,
577
+ "判": 573,
578
+ "別": 574,
579
+ "利": 575,
580
+ "刮": 576,
581
+ "到": 577,
582
+ "制": 578,
583
+ "刷": 579,
584
+ "券": 580,
585
+ "刹": 581,
586
+ "刺": 582,
587
+ "刻": 583,
588
+ "剃": 584,
589
+ "則": 585,
590
+ "削": 586,
591
+ "前": 587,
592
+ "剖": 588,
593
+ "剛": 589,
594
+ "剝": 590,
595
+ "剣": 591,
596
+ "剤": 592,
597
+ "剥": 593,
598
+ "剪": 594,
599
+ "副": 595,
600
+ "剰": 596,
601
+ "剱": 597,
602
+ "割": 598,
603
+ "創": 599,
604
+ "剽": 600,
605
+ "劇": 601,
606
+ "劔": 602,
607
+ "力": 603,
608
+ "功": 604,
609
+ "加": 605,
610
+ "劣": 606,
611
+ "动": 607,
612
+ "助": 608,
613
+ "努": 609,
614
+ "劫": 610,
615
+ "励": 611,
616
+ "労": 612,
617
+ "効": 613,
618
+ "勃": 614,
619
+ "勇": 615,
620
+ "勉": 616,
621
+ "動": 617,
622
+ "勘": 618,
623
+ "務": 619,
624
+ "勝": 620,
625
+ "募": 621,
626
+ "勢": 622,
627
+ "勤": 623,
628
+ "勧": 624,
629
+ "勲": 625,
630
+ "勾": 626,
631
+ "勿": 627,
632
+ "匂": 628,
633
+ "包": 629,
634
+ "化": 630,
635
+ "北": 631,
636
+ "匠": 632,
637
+ "匹": 633,
638
+ "区": 634,
639
+ "医": 635,
640
+ "匿": 636,
641
+ "區": 637,
642
+ "十": 638,
643
+ "千": 639,
644
+ "升": 640,
645
+ "午": 641,
646
+ "半": 642,
647
+ "卍": 643,
648
+ "卑": 644,
649
+ "卒": 645,
650
+ "卓": 646,
651
+ "協": 647,
652
+ "南": 648,
653
+ "単": 649,
654
+ "博": 650,
655
+ "占": 651,
656
+ "卦": 652,
657
+ "卭": 653,
658
+ "卯": 654,
659
+ "印": 655,
660
+ "危": 656,
661
+ "即": 657,
662
+ "却": 658,
663
+ "卵": 659,
664
+ "卷": 660,
665
+ "卸": 661,
666
+ "卿": 662,
667
+ "厄": 663,
668
+ "厚": 664,
669
+ "原": 665,
670
+ "厨": 666,
671
+ "厳": 667,
672
+ "去": 668,
673
+ "参": 669,
674
+ "又": 670,
675
+ "叉": 671,
676
+ "及": 672,
677
+ "友": 673,
678
+ "双": 674,
679
+ "反": 675,
680
+ "収": 676,
681
+ "叔": 677,
682
+ "取": 678,
683
+ "受": 679,
684
+ "叙": 680,
685
+ "叡": 681,
686
+ "口": 682,
687
+ "古": 683,
688
+ "句": 684,
689
+ "叩": 685,
690
+ "只": 686,
691
+ "叫": 687,
692
+ "召": 688,
693
+ "可": 689,
694
+ "台": 690,
695
+ "叱": 691,
696
+ "史": 692,
697
+ "右": 693,
698
+ "叶": 694,
699
+ "号": 695,
700
+ "司": 696,
701
+ "各": 697,
702
+ "合": 698,
703
+ "吉": 699,
704
+ "吊": 700,
705
+ "同": 701,
706
+ "名": 702,
707
+ "吐": 703,
708
+ "向": 704,
709
+ "君": 705,
710
+ "吞": 706,
711
+ "吟": 707,
712
+ "吠": 708,
713
+ "否": 709,
714
+ "含": 710,
715
+ "吸": 711,
716
+ "吹": 712,
717
+ "吽": 713,
718
+ "吾": 714,
719
+ "呂": 715,
720
+ "呆": 716,
721
+ "呈": 717,
722
+ "呉": 718,
723
+ "告": 719,
724
+ "呑": 720,
725
+ "呟": 721,
726
+ "周": 722,
727
+ "呪": 723,
728
+ "味": 724,
729
+ "呵": 725,
730
+ "呼": 726,
731
+ "命": 727,
732
+ "咀": 728,
733
+ "和": 729,
734
+ "咎": 730,
735
+ "咬": 731,
736
+ "咲": 732,
737
+ "咳": 733,
738
+ "咽": 734,
739
+ "哀": 735,
740
+ "品": 736,
741
+ "哉": 737,
742
+ "員": 738,
743
+ "哨": 739,
744
+ "哲": 740,
745
+ "哺": 741,
746
+ "唄": 742,
747
+ "唇": 743,
748
+ "唐": 744,
749
+ "唯": 745,
750
+ "唱": 746,
751
+ "唸": 747,
752
+ "唾": 748,
753
+ "商": 749,
754
+ "問": 750,
755
+ "啓": 751,
756
+ "啖": 752,
757
+ "善": 753,
758
+ "喉": 754,
759
+ "喋": 755,
760
+ "喘": 756,
761
+ "喚": 757,
762
+ "喜": 758,
763
+ "喝": 759,
764
+ "喧": 760,
765
+ "喩": 761,
766
+ "喪": 762,
767
+ "喫": 763,
768
+ "喰": 764,
769
+ "営": 765,
770
+ "嗅": 766,
771
+ "嗚": 767,
772
+ "嗜": 768,
773
+ "嗣": 769,
774
+ "嘆": 770,
775
+ "嘉": 771,
776
+ "嘔": 772,
777
+ "嘘": 773,
778
+ "嘩": 774,
779
+ "嘲": 775,
780
+ "噂": 776,
781
+ "噌": 777,
782
+ "噓": 778,
783
+ "噛": 779,
784
+ "器": 780,
785
+ "噴": 781,
786
+ "嚇": 782,
787
+ "嚙": 783,
788
+ "嚥": 784,
789
+ "嚼": 785,
790
+ "囁": 786,
791
+ "囃": 787,
792
+ "囚": 788,
793
+ "四": 789,
794
+ "回": 790,
795
+ "因": 791,
796
+ "団": 792,
797
+ "囮": 793,
798
+ "困": 794,
799
+ "囲": 795,
800
+ "図": 796,
801
+ "固": 797,
802
+ "国": 798,
803
+ "圀": 799,
804
+ "國": 800,
805
+ "圏": 801,
806
+ "園": 802,
807
+ "土": 803,
808
+ "圧": 804,
809
+ "在": 805,
810
+ "圭": 806,
811
+ "地": 807,
812
+ "坂": 808,
813
+ "均": 809,
814
+ "坊": 810,
815
+ "坑": 811,
816
+ "坦": 812,
817
+ "坪": 813,
818
+ "垂": 814,
819
+ "型": 815,
820
+ "垢": 816,
821
+ "垣": 817,
822
+ "埃": 818,
823
+ "埋": 819,
824
+ "城": 820,
825
+ "域": 821,
826
+ "埠": 822,
827
+ "執": 823,
828
+ "培": 824,
829
+ "基": 825,
830
+ "埼": 826,
831
+ "堀": 827,
832
+ "堂": 828,
833
+ "堅": 829,
834
+ "堆": 830,
835
+ "堕": 831,
836
+ "堤": 832,
837
+ "堪": 833,
838
+ "報": 834,
839
+ "場": 835,
840
+ "堵": 836,
841
+ "堺": 837,
842
+ "塀": 838,
843
+ "塁": 839,
844
+ "塊": 840,
845
+ "塔": 841,
846
+ "塗": 842,
847
+ "塘": 843,
848
+ "塚": 844,
849
+ "塞": 845,
850
+ "塩": 846,
851
+ "填": 847,
852
+ "塵": 848,
853
+ "塹": 849,
854
+ "塾": 850,
855
+ "境": 851,
856
+ "墓": 852,
857
+ "増": 853,
858
+ "墜": 854,
859
+ "墟": 855,
860
+ "墨": 856,
861
+ "墳": 857,
862
+ "墾": 858,
863
+ "壁": 859,
864
+ "壇": 860,
865
+ "壊": 861,
866
+ "壌": 862,
867
+ "壕": 863,
868
+ "壢": 864,
869
+ "士": 865,
870
+ "壮": 866,
871
+ "声": 867,
872
+ "壱": 868,
873
+ "売": 869,
874
+ "壺": 870,
875
+ "変": 871,
876
+ "复": 872,
877
+ "夏": 873,
878
+ "夕": 874,
879
+ "外": 875,
880
+ "多": 876,
881
+ "夜": 877,
882
+ "夢": 878,
883
+ "大": 879,
884
+ "天": 880,
885
+ "太": 881,
886
+ "夫": 882,
887
+ "央": 883,
888
+ "失": 884,
889
+ "夷": 885,
890
+ "奄": 886,
891
+ "奇": 887,
892
+ "奈": 888,
893
+ "奉": 889,
894
+ "奏": 890,
895
+ "契": 891,
896
+ "套": 892,
897
+ "奢": 893,
898
+ "奥": 894,
899
+ "奨": 895,
900
+ "奪": 896,
901
+ "奮": 897,
902
+ "女": 898,
903
+ "奴": 899,
904
+ "奶": 900,
905
+ "好": 901,
906
+ "如": 902,
907
+ "妃": 903,
908
+ "妄": 904,
909
+ "妊": 905,
910
+ "妓": 906,
911
+ "妖": 907,
912
+ "妙": 908,
913
+ "妞": 909,
914
+ "妥": 910,
915
+ "妨": 911,
916
+ "妬": 912,
917
+ "妹": 913,
918
+ "妻": 914,
919
+ "姉": 915,
920
+ "始": 916,
921
+ "姓": 917,
922
+ "委": 918,
923
+ "姜": 919,
924
+ "姪": 920,
925
+ "姫": 921,
926
+ "姻": 922,
927
+ "姿": 923,
928
+ "威": 924,
929
+ "娘": 925,
930
+ "娠": 926,
931
+ "娯": 927,
932
+ "娼": 928,
933
+ "婆": 929,
934
+ "婚": 930,
935
+ "婦": 931,
936
+ "婿": 932,
937
+ "媒": 933,
938
+ "媚": 934,
939
+ "媛": 935,
940
+ "嫁": 936,
941
+ "嫉": 937,
942
+ "嫌": 938,
943
+ "嬉": 939,
944
+ "嬌": 940,
945
+ "嬢": 941,
946
+ "子": 942,
947
+ "孔": 943,
948
+ "字": 944,
949
+ "存": 945,
950
+ "孝": 946,
951
+ "孟": 947,
952
+ "季": 948,
953
+ "孤": 949,
954
+ "学": 950,
955
+ "孫": 951,
956
+ "孵": 952,
957
+ "宅": 953,
958
+ "宇": 954,
959
+ "守": 955,
960
+ "安": 956,
961
+ "完": 957,
962
+ "宍": 958,
963
+ "宏": 959,
964
+ "宕": 960,
965
+ "宗": 961,
966
+ "官": 962,
967
+ "宙": 963,
968
+ "定": 964,
969
+ "宛": 965,
970
+ "宜": 966,
971
+ "宝": 967,
972
+ "実": 968,
973
+ "客": 969,
974
+ "宣": 970,
975
+ "室": 971,
976
+ "宥": 972,
977
+ "宮": 973,
978
+ "宰": 974,
979
+ "害": 975,
980
+ "宴": 976,
981
+ "宵": 977,
982
+ "家": 978,
983
+ "容": 979,
984
+ "宿": 980,
985
+ "寂": 981,
986
+ "寄": 982,
987
+ "寅": 983,
988
+ "密": 984,
989
+ "富": 985,
990
+ "寒": 986,
991
+ "寓": 987,
992
+ "寛": 988,
993
+ "寝": 989,
994
+ "察": 990,
995
+ "寡": 991,
996
+ "實": 992,
997
+ "寧": 993,
998
+ "審": 994,
999
+ "寮": 995,
1000
+ "寸": 996,
1001
+ "寺": 997,
1002
+ "対": 998,
1003
+ "寿": 999,
1004
+ "封": 1000,
1005
+ "専": 1001,
1006
+ "射": 1002,
1007
+ "将": 1003,
1008
+ "專": 1004,
1009
+ "尊": 1005,
1010
+ "尋": 1006,
1011
+ "導": 1007,
1012
+ "小": 1008,
1013
+ "少": 1009,
1014
+ "尖": 1010,
1015
+ "尚": 1011,
1016
+ "就": 1012,
1017
+ "尺": 1013,
1018
+ "尻": 1014,
1019
+ "尽": 1015,
1020
+ "尾": 1016,
1021
+ "尿": 1017,
1022
+ "局": 1018,
1023
+ "屁": 1019,
1024
+ "居": 1020,
1025
+ "屈": 1021,
1026
+ "届": 1022,
1027
+ "屋": 1023,
1028
+ "屍": 1024,
1029
+ "屏": 1025,
1030
+ "屑": 1026,
1031
+ "屓": 1027,
1032
+ "展": 1028,
1033
+ "属": 1029,
1034
+ "屠": 1030,
1035
+ "層": 1031,
1036
+ "履": 1032,
1037
+ "屯": 1033,
1038
+ "山": 1034,
1039
+ "岐": 1035,
1040
+ "岡": 1036,
1041
+ "岩": 1037,
1042
+ "岬": 1038,
1043
+ "岳": 1039,
1044
+ "岸": 1040,
1045
+ "峙": 1041,
1046
+ "峠": 1042,
1047
+ "峡": 1043,
1048
+ "峯": 1044,
1049
+ "峰": 1045,
1050
+ "島": 1046,
1051
+ "崇": 1047,
1052
+ "崎": 1048,
1053
+ "崖": 1049,
1054
+ "崗": 1050,
1055
+ "崩": 1051,
1056
+ "嵌": 1052,
1057
+ "嵐": 1053,
1058
+ "嵜": 1054,
1059
+ "嵩": 1055,
1060
+ "嶋": 1056,
1061
+ "嶺": 1057,
1062
+ "嶽": 1058,
1063
+ "川": 1059,
1064
+ "州": 1060,
1065
+ "巡": 1061,
1066
+ "巣": 1062,
1067
+ "工": 1063,
1068
+ "左": 1064,
1069
+ "巧": 1065,
1070
+ "巨": 1066,
1071
+ "巫": 1067,
1072
+ "差": 1068,
1073
+ "己": 1069,
1074
+ "巴": 1070,
1075
+ "巷": 1071,
1076
+ "巻": 1072,
1077
+ "巾": 1073,
1078
+ "市": 1074,
1079
+ "布": 1075,
1080
+ "帆": 1076,
1081
+ "希": 1077,
1082
+ "帖": 1078,
1083
+ "帝": 1079,
1084
+ "師": 1080,
1085
+ "席": 1081,
1086
+ "帯": 1082,
1087
+ "帰": 1083,
1088
+ "帳": 1084,
1089
+ "帶": 1085,
1090
+ "常": 1086,
1091
+ "帽": 1087,
1092
+ "幅": 1088,
1093
+ "幌": 1089,
1094
+ "幕": 1090,
1095
+ "幡": 1091,
1096
+ "幣": 1092,
1097
+ "干": 1093,
1098
+ "平": 1094,
1099
+ "年": 1095,
1100
+ "幸": 1096,
1101
+ "幹": 1097,
1102
+ "幻": 1098,
1103
+ "幼": 1099,
1104
+ "幽": 1100,
1105
+ "幾": 1101,
1106
+ "庁": 1102,
1107
+ "広": 1103,
1108
+ "庄": 1104,
1109
+ "床": 1105,
1110
+ "序": 1106,
1111
+ "底": 1107,
1112
+ "店": 1108,
1113
+ "府": 1109,
1114
+ "度": 1110,
1115
+ "座": 1111,
1116
+ "庫": 1112,
1117
+ "庭": 1113,
1118
+ "庵": 1114,
1119
+ "庶": 1115,
1120
+ "康": 1116,
1121
+ "廃": 1117,
1122
+ "廉": 1118,
1123
+ "廊": 1119,
1124
+ "廚": 1120,
1125
+ "廟": 1121,
1126
+ "延": 1122,
1127
+ "廷": 1123,
1128
+ "建": 1124,
1129
+ "廻": 1125,
1130
+ "弁": 1126,
1131
+ "弄": 1127,
1132
+ "弊": 1128,
1133
+ "式": 1129,
1134
+ "弐": 1130,
1135
+ "弓": 1131,
1136
+ "引": 1132,
1137
+ "弘": 1133,
1138
+ "弛": 1134,
1139
+ "弟": 1135,
1140
+ "弥": 1136,
1141
+ "弦": 1137,
1142
+ "弧": 1138,
1143
+ "弱": 1139,
1144
+ "張": 1140,
1145
+ "強": 1141,
1146
+ "弾": 1142,
1147
+ "彅": 1143,
1148
+ "彊": 1144,
1149
+ "当": 1145,
1150
+ "彗": 1146,
1151
+ "彙": 1147,
1152
+ "形": 1148,
1153
+ "彦": 1149,
1154
+ "彩": 1150,
1155
+ "彫": 1151,
1156
+ "彰": 1152,
1157
+ "影": 1153,
1158
+ "彷": 1154,
1159
+ "役": 1155,
1160
+ "彼": 1156,
1161
+ "彿": 1157,
1162
+ "往": 1158,
1163
+ "征": 1159,
1164
+ "径": 1160,
1165
+ "待": 1161,
1166
+ "很": 1162,
1167
+ "徊": 1163,
1168
+ "律": 1164,
1169
+ "後": 1165,
1170
+ "徐": 1166,
1171
+ "徒": 1167,
1172
+ "従": 1168,
1173
+ "得": 1169,
1174
+ "徘": 1170,
1175
+ "御": 1171,
1176
+ "徨": 1172,
1177
+ "復": 1173,
1178
+ "循": 1174,
1179
+ "微": 1175,
1180
+ "徳": 1176,
1181
+ "徴": 1177,
1182
+ "徹": 1178,
1183
+ "心": 1179,
1184
+ "必": 1180,
1185
+ "忌": 1181,
1186
+ "忍": 1182,
1187
+ "忖": 1183,
1188
+ "志": 1184,
1189
+ "忘": 1185,
1190
+ "忙": 1186,
1191
+ "応": 1187,
1192
+ "忠": 1188,
1193
+ "快": 1189,
1194
+ "念": 1190,
1195
+ "怎": 1191,
1196
+ "怒": 1192,
1197
+ "怖": 1193,
1198
+ "怜": 1194,
1199
+ "思": 1195,
1200
+ "怠": 1196,
1201
+ "急": 1197,
1202
+ "性": 1198,
1203
+ "怨": 1199,
1204
+ "怪": 1200,
1205
+ "怯": 1201,
1206
+ "恋": 1202,
1207
+ "恐": 1203,
1208
+ "恒": 1204,
1209
+ "恥": 1205,
1210
+ "恨": 1206,
1211
+ "恩": 1207,
1212
+ "息": 1208,
1213
+ "恰": 1209,
1214
+ "恵": 1210,
1215
+ "悍": 1211,
1216
+ "悔": 1212,
1217
+ "悟": 1213,
1218
+ "悠": 1214,
1219
+ "患": 1215,
1220
+ "悦": 1216,
1221
+ "悩": 1217,
1222
+ "悪": 1218,
1223
+ "悲": 1219,
1224
+ "悶": 1220,
1225
+ "悼": 1221,
1226
+ "情": 1222,
1227
+ "惑": 1223,
1228
+ "惚": 1224,
1229
+ "惜": 1225,
1230
+ "惣": 1226,
1231
+ "惧": 1227,
1232
+ "惨": 1228,
1233
+ "惰": 1229,
1234
+ "想": 1230,
1235
+ "惹": 1231,
1236
+ "愁": 1232,
1237
+ "愉": 1233,
1238
+ "意": 1234,
1239
+ "愕": 1235,
1240
+ "愚": 1236,
1241
+ "愛": 1237,
1242
+ "感": 1238,
1243
+ "慄": 1239,
1244
+ "慈": 1240,
1245
+ "態": 1241,
1246
+ "慌": 1242,
1247
+ "慎": 1243,
1248
+ "慕": 1244,
1249
+ "慢": 1245,
1250
+ "慣": 1246,
1251
+ "慨": 1247,
1252
+ "慮": 1248,
1253
+ "慰": 1249,
1254
+ "慶": 1250,
1255
+ "憂": 1251,
1256
+ "憎": 1252,
1257
+ "憐": 1253,
1258
+ "憑": 1254,
1259
+ "憤": 1255,
1260
+ "憧": 1256,
1261
+ "憩": 1257,
1262
+ "憫": 1258,
1263
+ "憲": 1259,
1264
+ "憶": 1260,
1265
+ "憾": 1261,
1266
+ "懇": 1262,
1267
+ "應": 1263,
1268
+ "懐": 1264,
1269
+ "懲": 1265,
1270
+ "懸": 1266,
1271
+ "懺": 1267,
1272
+ "成": 1268,
1273
+ "我": 1269,
1274
+ "戒": 1270,
1275
+ "戚": 1271,
1276
+ "戦": 1272,
1277
+ "戯": 1273,
1278
+ "戴": 1274,
1279
+ "戸": 1275,
1280
+ "戻": 1276,
1281
+ "房": 1277,
1282
+ "所": 1278,
1283
+ "扁": 1279,
1284
+ "扇": 1280,
1285
+ "扉": 1281,
1286
+ "手": 1282,
1287
+ "才": 1283,
1288
+ "打": 1284,
1289
+ "払": 1285,
1290
+ "托": 1286,
1291
+ "扮": 1287,
1292
+ "扱": 1288,
1293
+ "扶": 1289,
1294
+ "批": 1290,
1295
+ "承": 1291,
1296
+ "技": 1292,
1297
+ "抉": 1293,
1298
+ "把": 1294,
1299
+ "抑": 1295,
1300
+ "投": 1296,
1301
+ "抗": 1297,
1302
+ "折": 1298,
1303
+ "抜": 1299,
1304
+ "択": 1300,
1305
+ "披": 1301,
1306
+ "抱": 1302,
1307
+ "抵": 1303,
1308
+ "抹": 1304,
1309
+ "押": 1305,
1310
+ "抽": 1306,
1311
+ "担": 1307,
1312
+ "拉": 1308,
1313
+ "拌": 1309,
1314
+ "拍": 1310,
1315
+ "拐": 1311,
1316
+ "拒": 1312,
1317
+ "拓": 1313,
1318
+ "拗": 1314,
1319
+ "拘": 1315,
1320
+ "拙": 1316,
1321
+ "招": 1317,
1322
+ "拝": 1318,
1323
+ "拠": 1319,
1324
+ "拡": 1320,
1325
+ "括": 1321,
1326
+ "拭": 1322,
1327
+ "拳": 1323,
1328
+ "拶": 1324,
1329
+ "拷": 1325,
1330
+ "拾": 1326,
1331
+ "持": 1327,
1332
+ "指": 1328,
1333
+ "按": 1329,
1334
+ "挑": 1330,
1335
+ "挙": 1331,
1336
+ "挟": 1332,
1337
+ "挨": 1333,
1338
+ "挫": 1334,
1339
+ "振": 1335,
1340
+ "挽": 1336,
1341
+ "挿": 1337,
1342
+ "捉": 1338,
1343
+ "捌": 1339,
1344
+ "捕": 1340,
1345
+ "捗": 1341,
1346
+ "捜": 1342,
1347
+ "捧": 1343,
1348
+ "捨": 1344,
1349
+ "据": 1345,
1350
+ "捲": 1346,
1351
+ "捻": 1347,
1352
+ "掃": 1348,
1353
+ "授": 1349,
1354
+ "掌": 1350,
1355
+ "掏": 1351,
1356
+ "排": 1352,
1357
+ "掘": 1353,
1358
+ "掛": 1354,
1359
+ "掠": 1355,
1360
+ "採": 1356,
1361
+ "探": 1357,
1362
+ "接": 1358,
1363
+ "控": 1359,
1364
+ "推": 1360,
1365
+ "措": 1361,
1366
+ "掲": 1362,
1367
+ "掴": 1363,
1368
+ "掻": 1364,
1369
+ "揃": 1365,
1370
+ "揉": 1366,
1371
+ "描": 1367,
1372
+ "提": 1368,
1373
+ "揚": 1369,
1374
+ "換": 1370,
1375
+ "握": 1371,
1376
+ "揮": 1372,
1377
+ "援": 1373,
1378
+ "揺": 1374,
1379
+ "損": 1375,
1380
+ "搔": 1376,
1381
+ "搬": 1377,
1382
+ "搭": 1378,
1383
+ "携": 1379,
1384
+ "搾": 1380,
1385
+ "摂": 1381,
1386
+ "摘": 1382,
1387
+ "摩": 1383,
1388
+ "摯": 1384,
1389
+ "摸": 1385,
1390
+ "摺": 1386,
1391
+ "撃": 1387,
1392
+ "撒": 1388,
1393
+ "撤": 1389,
1394
+ "撥": 1390,
1395
+ "撫": 1391,
1396
+ "播": 1392,
1397
+ "撮": 1393,
1398
+ "撲": 1394,
1399
+ "撹": 1395,
1400
+ "擁": 1396,
1401
+ "操": 1397,
1402
+ "擢": 1398,
1403
+ "擦": 1399,
1404
+ "擬": 1400,
1405
+ "擲": 1401,
1406
+ "攪": 1402,
1407
+ "攫": 1403,
1408
+ "支": 1404,
1409
+ "改": 1405,
1410
+ "攻": 1406,
1411
+ "放": 1407,
1412
+ "政": 1408,
1413
+ "故": 1409,
1414
+ "敏": 1410,
1415
+ "救": 1411,
1416
+ "敗": 1412,
1417
+ "教": 1413,
1418
+ "敢": 1414,
1419
+ "散": 1415,
1420
+ "敦": 1416,
1421
+ "敬": 1417,
1422
+ "数": 1418,
1423
+ "整": 1419,
1424
+ "敵": 1420,
1425
+ "敷": 1421,
1426
+ "文": 1422,
1427
+ "斉": 1423,
1428
+ "斎": 1424,
1429
+ "斐": 1425,
1430
+ "斑": 1426,
1431
+ "斗": 1427,
1432
+ "料": 1428,
1433
+ "斜": 1429,
1434
+ "斤": 1430,
1435
+ "斥": 1431,
1436
+ "斧": 1432,
1437
+ "斬": 1433,
1438
+ "断": 1434,
1439
+ "斯": 1435,
1440
+ "新": 1436,
1441
+ "方": 1437,
1442
+ "施": 1438,
1443
+ "旅": 1439,
1444
+ "旋": 1440,
1445
+ "族": 1441,
1446
+ "旗": 1442,
1447
+ "既": 1443,
1448
+ "日": 1444,
1449
+ "旦": 1445,
1450
+ "旧": 1446,
1451
+ "旨": 1447,
1452
+ "早": 1448,
1453
+ "旬": 1449,
1454
+ "旭": 1450,
1455
+ "旺": 1451,
1456
+ "昆": 1452,
1457
+ "昇": 1453,
1458
+ "昌": 1454,
1459
+ "明": 1455,
1460
+ "昏": 1456,
1461
+ "易": 1457,
1462
+ "昔": 1458,
1463
+ "星": 1459,
1464
+ "映": 1460,
1465
+ "春": 1461,
1466
+ "昧": 1462,
1467
+ "昨": 1463,
1468
+ "昭": 1464,
1469
+ "是": 1465,
1470
+ "昼": 1466,
1471
+ "時": 1467,
1472
+ "晄": 1468,
1473
+ "晋": 1469,
1474
+ "晒": 1470,
1475
+ "晦": 1471,
1476
+ "晩": 1472,
1477
+ "普": 1473,
1478
+ "景": 1474,
1479
+ "晴": 1475,
1480
+ "晶": 1476,
1481
+ "智": 1477,
1482
+ "暁": 1478,
1483
+ "暇": 1479,
1484
+ "暈": 1480,
1485
+ "暉": 1481,
1486
+ "暑": 1482,
1487
+ "暖": 1483,
1488
+ "暗": 1484,
1489
+ "暢": 1485,
1490
+ "暦": 1486,
1491
+ "暫": 1487,
1492
+ "暮": 1488,
1493
+ "暴": 1489,
1494
+ "曇": 1490,
1495
+ "曖": 1491,
1496
+ "曜": 1492,
1497
+ "曝": 1493,
1498
+ "曰": 1494,
1499
+ "曲": 1495,
1500
+ "更": 1496,
1501
+ "書": 1497,
1502
+ "曹": 1498,
1503
+ "曽": 1499,
1504
+ "曾": 1500,
1505
+ "替": 1501,
1506
+ "最": 1502,
1507
+ "會": 1503,
1508
+ "月": 1504,
1509
+ "有": 1505,
1510
+ "朋": 1506,
1511
+ "服": 1507,
1512
+ "朗": 1508,
1513
+ "望": 1509,
1514
+ "朝": 1510,
1515
+ "期": 1511,
1516
+ "朧": 1512,
1517
+ "木": 1513,
1518
+ "未": 1514,
1519
+ "末": 1515,
1520
+ "本": 1516,
1521
+ "札": 1517,
1522
+ "朱": 1518,
1523
+ "朴": 1519,
1524
+ "机": 1520,
1525
+ "朽": 1521,
1526
+ "杉": 1522,
1527
+ "李": 1523,
1528
+ "杏": 1524,
1529
+ "材": 1525,
1530
+ "村": 1526,
1531
+ "杖": 1527,
1532
+ "杜": 1528,
1533
+ "束": 1529,
1534
+ "条": 1530,
1535
+ "来": 1531,
1536
+ "杭": 1532,
1537
+ "杯": 1533,
1538
+ "東": 1534,
1539
+ "松": 1535,
1540
+ "板": 1536,
1541
+ "析": 1537,
1542
+ "枕": 1538,
1543
+ "林": 1539,
1544
+ "枚": 1540,
1545
+ "果": 1541,
1546
+ "枝": 1542,
1547
+ "枠": 1543,
1548
+ "枢": 1544,
1549
+ "枩": 1545,
1550
+ "枯": 1546,
1551
+ "架": 1547,
1552
+ "枷": 1548,
1553
+ "柄": 1549,
1554
+ "柏": 1550,
1555
+ "某": 1551,
1556
+ "柑": 1552,
1557
+ "染": 1553,
1558
+ "柔": 1554,
1559
+ "柚": 1555,
1560
+ "柱": 1556,
1561
+ "柳": 1557,
1562
+ "柴": 1558,
1563
+ "柵": 1559,
1564
+ "査": 1560,
1565
+ "柿": 1561,
1566
+ "栂": 1562,
1567
+ "栃": 1563,
1568
+ "栄": 1564,
1569
+ "栓": 1565,
1570
+ "栖": 1566,
1571
+ "栗": 1567,
1572
+ "校": 1568,
1573
+ "株": 1569,
1574
+ "核": 1570,
1575
+ "根": 1571,
1576
+ "格": 1572,
1577
+ "栽": 1573,
1578
+ "桁": 1574,
1579
+ "桂": 1575,
1580
+ "桃": 1576,
1581
+ "案": 1577,
1582
+ "桐": 1578,
1583
+ "桑": 1579,
1584
+ "桔": 1580,
1585
+ "桜": 1581,
1586
+ "桝": 1582,
1587
+ "桟": 1583,
1588
+ "桶": 1584,
1589
+ "梁": 1585,
1590
+ "梅": 1586,
1591
+ "梗": 1587,
1592
+ "條": 1588,
1593
+ "梟": 1589,
1594
+ "梨": 1590,
1595
+ "梯": 1591,
1596
+ "械": 1592,
1597
+ "梱": 1593,
1598
+ "梵": 1594,
1599
+ "梶": 1595,
1600
+ "棄": 1596,
1601
+ "棉": 1597,
1602
+ "棋": 1598,
1603
+ "棍": 1599,
1604
+ "棒": 1600,
1605
+ "棕": 1601,
1606
+ "棘": 1602,
1607
+ "棚": 1603,
1608
+ "棟": 1604,
1609
+ "森": 1605,
1610
+ "棲": 1606,
1611
+ "椀": 1607,
1612
+ "椄": 1608,
1613
+ "椅": 1609,
1614
+ "植": 1610,
1615
+ "椎": 1611,
1616
+ "椒": 1612,
1617
+ "検": 1613,
1618
+ "椿": 1614,
1619
+ "楊": 1615,
1620
+ "楓": 1616,
1621
+ "楕": 1617,
1622
+ "楚": 1618,
1623
+ "業": 1619,
1624
+ "楯": 1620,
1625
+ "極": 1621,
1626
+ "楼": 1622,
1627
+ "楽": 1623,
1628
+ "概": 1624,
1629
+ "榎": 1625,
1630
+ "榛": 1626,
1631
+ "榴": 1627,
1632
+ "槃": 1628,
1633
+ "構": 1629,
1634
+ "槌": 1630,
1635
+ "槍": 1631,
1636
+ "様": 1632,
1637
+ "槙": 1633,
1638
+ "槻": 1634,
1639
+ "槽": 1635,
1640
+ "樋": 1636,
1641
+ "標": 1637,
1642
+ "模": 1638,
1643
+ "樣": 1639,
1644
+ "権": 1640,
1645
+ "横": 1641,
1646
+ "樫": 1642,
1647
+ "樹": 1643,
1648
+ "樺": 1644,
1649
+ "樽": 1645,
1650
+ "橋": 1646,
1651
+ "橘": 1647,
1652
+ "機": 1648,
1653
+ "檀": 1649,
1654
+ "檎": 1650,
1655
+ "檜": 1651,
1656
+ "檬": 1652,
1657
+ "檳": 1653,
1658
+ "檸": 1654,
1659
+ "檻": 1655,
1660
+ "櫛": 1656,
1661
+ "櫻": 1657,
1662
+ "欄": 1658,
1663
+ "欅": 1659,
1664
+ "欒": 1660,
1665
+ "欠": 1661,
1666
+ "次": 1662,
1667
+ "欧": 1663,
1668
+ "欲": 1664,
1669
+ "欺": 1665,
1670
+ "欽": 1666,
1671
+ "歌": 1667,
1672
+ "歓": 1668,
1673
+ "止": 1669,
1674
+ "正": 1670,
1675
+ "步": 1671,
1676
+ "武": 1672,
1677
+ "歩": 1673,
1678
+ "歪": 1674,
1679
+ "歯": 1675,
1680
+ "歳": 1676,
1681
+ "歴": 1677,
1682
+ "死": 1678,
1683
+ "殆": 1679,
1684
+ "殊": 1680,
1685
+ "残": 1681,
1686
+ "殖": 1682,
1687
+ "殲": 1683,
1688
+ "殴": 1684,
1689
+ "段": 1685,
1690
+ "殺": 1686,
1691
+ "殻": 1687,
1692
+ "殿": 1688,
1693
+ "毀": 1689,
1694
+ "母": 1690,
1695
+ "毎": 1691,
1696
+ "毒": 1692,
1697
+ "比": 1693,
1698
+ "毛": 1694,
1699
+ "毯": 1695,
1700
+ "氏": 1696,
1701
+ "民": 1697,
1702
+ "気": 1698,
1703
+ "水": 1699,
1704
+ "氷": 1700,
1705
+ "永": 1701,
1706
+ "氾": 1702,
1707
+ "汁": 1703,
1708
+ "求": 1704,
1709
+ "汎": 1705,
1710
+ "汐": 1706,
1711
+ "汗": 1707,
1712
+ "汚": 1708,
1713
+ "汝": 1709,
1714
+ "江": 1710,
1715
+ "池": 1711,
1716
+ "汰": 1712,
1717
+ "汲": 1713,
1718
+ "決": 1714,
1719
+ "汽": 1715,
1720
+ "沈": 1716,
1721
+ "沌": 1717,
1722
+ "沐": 1718,
1723
+ "沖": 1719,
1724
+ "沙": 1720,
1725
+ "没": 1721,
1726
+ "沢": 1722,
1727
+ "沫": 1723,
1728
+ "河": 1724,
1729
+ "沸": 1725,
1730
+ "油": 1726,
1731
+ "治": 1727,
1732
+ "沼": 1728,
1733
+ "沿": 1729,
1734
+ "況": 1730,
1735
+ "泄": 1731,
1736
+ "泉": 1732,
1737
+ "泊": 1733,
1738
+ "泌": 1734,
1739
+ "法": 1735,
1740
+ "泡": 1736,
1741
+ "波": 1737,
1742
+ "泣": 1738,
1743
+ "泥": 1739,
1744
+ "注": 1740,
1745
+ "泰": 1741,
1746
+ "泳": 1742,
1747
+ "洋": 1743,
1748
+ "洒": 1744,
1749
+ "洗": 1745,
1750
+ "洞": 1746,
1751
+ "津": 1747,
1752
+ "洩": 1748,
1753
+ "洪": 1749,
1754
+ "洲": 1750,
1755
+ "活": 1751,
1756
+ "派": 1752,
1757
+ "流": 1753,
1758
+ "浄": 1754,
1759
+ "浅": 1755,
1760
+ "浜": 1756,
1761
+ "浦": 1757,
1762
+ "浩": 1758,
1763
+ "浪": 1759,
1764
+ "浮": 1760,
1765
+ "浴": 1761,
1766
+ "海": 1762,
1767
+ "浸": 1763,
1768
+ "涅": 1764,
1769
+ "消": 1765,
1770
+ "涌": 1766,
1771
+ "涙": 1767,
1772
+ "涛": 1768,
1773
+ "涜": 1769,
1774
+ "涯": 1770,
1775
+ "液": 1771,
1776
+ "涸": 1772,
1777
+ "涼": 1773,
1778
+ "淀": 1774,
1779
+ "淑": 1775,
1780
+ "淘": 1776,
1781
+ "淡": 1777,
1782
+ "深": 1778,
1783
+ "淵": 1779,
1784
+ "混": 1780,
1785
+ "淹": 1781,
1786
+ "添": 1782,
1787
+ "清": 1783,
1788
+ "渇": 1784,
1789
+ "済": 1785,
1790
+ "渉": 1786,
1791
+ "渋": 1787,
1792
+ "渓": 1788,
1793
+ "渕": 1789,
1794
+ "渚": 1790,
1795
+ "減": 1791,
1796
+ "渡": 1792,
1797
+ "渦": 1793,
1798
+ "温": 1794,
1799
+ "測": 1795,
1800
+ "港": 1796,
1801
+ "游": 1797,
1802
+ "渾": 1798,
1803
+ "湊": 1799,
1804
+ "湖": 1800,
1805
+ "湘": 1801,
1806
+ "湧": 1802,
1807
+ "湯": 1803,
1808
+ "湾": 1804,
1809
+ "湿": 1805,
1810
+ "満": 1806,
1811
+ "源": 1807,
1812
+ "準": 1808,
1813
+ "溜": 1809,
1814
+ "溝": 1810,
1815
+ "溢": 1811,
1816
+ "溶": 1812,
1817
+ "溺": 1813,
1818
+ "滅": 1814,
1819
+ "滋": 1815,
1820
+ "滑": 1816,
1821
+ "滝": 1817,
1822
+ "滞": 1818,
1823
+ "滲": 1819,
1824
+ "滴": 1820,
1825
+ "漁": 1821,
1826
+ "漂": 1822,
1827
+ "漆": 1823,
1828
+ "漏": 1824,
1829
+ "演": 1825,
1830
+ "漕": 1826,
1831
+ "漠": 1827,
1832
+ "漢": 1828,
1833
+ "漫": 1829,
1834
+ "漬": 1830,
1835
+ "漱": 1831,
1836
+ "潔": 1832,
1837
+ "潜": 1833,
1838
+ "潟": 1834,
1839
+ "潤": 1835,
1840
+ "潮": 1836,
1841
+ "潰": 1837,
1842
+ "澄": 1838,
1843
+ "澤": 1839,
1844
+ "澱": 1840,
1845
+ "激": 1841,
1846
+ "濁": 1842,
1847
+ "濃": 1843,
1848
+ "濡": 1844,
1849
+ "濫": 1845,
1850
+ "濯": 1846,
1851
+ "濱": 1847,
1852
+ "濾": 1848,
1853
+ "瀑": 1849,
1854
+ "瀕": 1850,
1855
+ "瀞": 1851,
1856
+ "瀧": 1852,
1857
+ "瀬": 1853,
1858
+ "灣": 1854,
1859
+ "火": 1855,
1860
+ "灯": 1856,
1861
+ "灰": 1857,
1862
+ "灸": 1858,
1863
+ "灼": 1859,
1864
+ "災": 1860,
1865
+ "炉": 1861,
1866
+ "炊": 1862,
1867
+ "炎": 1863,
1868
+ "炒": 1864,
1869
+ "炙": 1865,
1870
+ "炭": 1866,
1871
+ "炸": 1867,
1872
+ "点": 1868,
1873
+ "為": 1869,
1874
+ "烈": 1870,
1875
+ "烏": 1871,
1876
+ "烙": 1872,
1877
+ "烹": 1873,
1878
+ "焉": 1874,
1879
+ "焙": 1875,
1880
+ "焚": 1876,
1881
+ "無": 1877,
1882
+ "焦": 1878,
1883
+ "然": 1879,
1884
+ "焼": 1880,
1885
+ "煉": 1881,
1886
+ "煌": 1882,
1887
+ "煎": 1883,
1888
+ "煙": 1884,
1889
+ "照": 1885,
1890
+ "煩": 1886,
1891
+ "煮": 1887,
1892
+ "煽": 1888,
1893
+ "熄": 1889,
1894
+ "熊": 1890,
1895
+ "熟": 1891,
1896
+ "熱": 1892,
1897
+ "燃": 1893,
1898
+ "燈": 1894,
1899
+ "燕": 1895,
1900
+ "燗": 1896,
1901
+ "燥": 1897,
1902
+ "燧": 1898,
1903
+ "燭": 1899,
1904
+ "燻": 1900,
1905
+ "爆": 1901,
1906
+ "爪": 1902,
1907
+ "爬": 1903,
1908
+ "爵": 1904,
1909
+ "父": 1905,
1910
+ "爺": 1906,
1911
+ "爽": 1907,
1912
+ "牆": 1908,
1913
+ "片": 1909,
1914
+ "版": 1910,
1915
+ "牌": 1911,
1916
+ "牙": 1912,
1917
+ "牛": 1913,
1918
+ "牡": 1914,
1919
+ "牢": 1915,
1920
+ "牧": 1916,
1921
+ "物": 1917,
1922
+ "牲": 1918,
1923
+ "特": 1919,
1924
+ "牽": 1920,
1925
+ "犀": 1921,
1926
+ "犠": 1922,
1927
+ "犬": 1923,
1928
+ "犯": 1924,
1929
+ "状": 1925,
1930
+ "狂": 1926,
1931
+ "狐": 1927,
1932
+ "狗": 1928,
1933
+ "狙": 1929,
1934
+ "狡": 1930,
1935
+ "狩": 1931,
1936
+ "独": 1932,
1937
+ "狭": 1933,
1938
+ "狸": 1934,
1939
+ "狼": 1935,
1940
+ "猛": 1936,
1941
+ "猜": 1937,
1942
+ "猟": 1938,
1943
+ "猥": 1939,
1944
+ "猪": 1940,
1945
+ "猫": 1941,
1946
+ "献": 1942,
1947
+ "猶": 1943,
1948
+ "猾": 1944,
1949
+ "猿": 1945,
1950
+ "獄": 1946,
1951
+ "獅": 1947,
1952
+ "獣": 1948,
1953
+ "獲": 1949,
1954
+ "獺": 1950,
1955
+ "玄": 1951,
1956
+ "率": 1952,
1957
+ "玉": 1953,
1958
+ "王": 1954,
1959
+ "玲": 1955,
1960
+ "珀": 1956,
1961
+ "珈": 1957,
1962
+ "珍": 1958,
1963
+ "珠": 1959,
1964
+ "班": 1960,
1965
+ "現": 1961,
1966
+ "球": 1962,
1967
+ "理": 1963,
1968
+ "琉": 1964,
1969
+ "琥": 1965,
1970
+ "琲": 1966,
1971
+ "琳": 1967,
1972
+ "琴": 1968,
1973
+ "琵": 1969,
1974
+ "琶": 1970,
1975
+ "瑞": 1971,
1976
+ "瑠": 1972,
1977
+ "璧": 1973,
1978
+ "環": 1974,
1979
+ "瓢": 1975,
1980
+ "瓦": 1976,
1981
+ "瓶": 1977,
1982
+ "甘": 1978,
1983
+ "甚": 1979,
1984
+ "甜": 1980,
1985
+ "生": 1981,
1986
+ "産": 1982,
1987
+ "甥": 1983,
1988
+ "甦": 1984,
1989
+ "用": 1985,
1990
+ "田": 1986,
1991
+ "由": 1987,
1992
+ "甲": 1988,
1993
+ "申": 1989,
1994
+ "男": 1990,
1995
+ "町": 1991,
1996
+ "画": 1992,
1997
+ "界": 1993,
1998
+ "畏": 1994,
1999
+ "畑": 1995,
2000
+ "畔": 1996,
2001
+ "留": 1997,
2002
+ "畜": 1998,
2003
+ "畝": 1999,
2004
+ "略": 2000,
2005
+ "番": 2001,
2006
+ "異": 2002,
2007
+ "畳": 2003,
2008
+ "畿": 2004,
2009
+ "疆": 2005,
2010
+ "疇": 2006,
2011
+ "疎": 2007,
2012
+ "疑": 2008,
2013
+ "疫": 2009,
2014
+ "疱": 2010,
2015
+ "疲": 2011,
2016
+ "疹": 2012,
2017
+ "疼": 2013,
2018
+ "疾": 2014,
2019
+ "病": 2015,
2020
+ "症": 2016,
2021
+ "痍": 2017,
2022
+ "痒": 2018,
2023
+ "痔": 2019,
2024
+ "痕": 2020,
2025
+ "痛": 2021,
2026
+ "痢": 2022,
2027
+ "痣": 2023,
2028
+ "痩": 2024,
2029
+ "痰": 2025,
2030
+ "痱": 2026,
2031
+ "痴": 2027,
2032
+ "痺": 2028,
2033
+ "瘍": 2029,
2034
+ "瘡": 2030,
2035
+ "瘦": 2031,
2036
+ "瘴": 2032,
2037
+ "療": 2033,
2038
+ "癌": 2034,
2039
+ "癒": 2035,
2040
+ "癖": 2036,
2041
+ "癪": 2037,
2042
+ "発": 2038,
2043
+ "登": 2039,
2044
+ "白": 2040,
2045
+ "百": 2041,
2046
+ "的": 2042,
2047
+ "皆": 2043,
2048
+ "皇": 2044,
2049
+ "皮": 2045,
2050
+ "皺": 2046,
2051
+ "皿": 2047,
2052
+ "盂": 2048,
2053
+ "盃": 2049,
2054
+ "盆": 2050,
2055
+ "益": 2051,
2056
+ "盗": 2052,
2057
+ "盛": 2053,
2058
+ "盟": 2054,
2059
+ "監": 2055,
2060
+ "盤": 2056,
2061
+ "盪": 2057,
2062
+ "目": 2058,
2063
+ "盲": 2059,
2064
+ "直": 2060,
2065
+ "相": 2061,
2066
+ "盾": 2062,
2067
+ "省": 2063,
2068
+ "眉": 2064,
2069
+ "看": 2065,
2070
+ "県": 2066,
2071
+ "真": 2067,
2072
+ "眠": 2068,
2073
+ "眩": 2069,
2074
+ "眺": 2070,
2075
+ "眼": 2071,
2076
+ "着": 2072,
2077
+ "睡": 2073,
2078
+ "督": 2074,
2079
+ "睦": 2075,
2080
+ "睨": 2076,
2081
+ "瞑": 2077,
2082
+ "瞬": 2078,
2083
+ "瞭": 2079,
2084
+ "瞰": 2080,
2085
+ "瞳": 2081,
2086
+ "瞼": 2082,
2087
+ "矛": 2083,
2088
+ "矢": 2084,
2089
+ "知": 2085,
2090
+ "矩": 2086,
2091
+ "短": 2087,
2092
+ "矯": 2088,
2093
+ "石": 2089,
2094
+ "砂": 2090,
2095
+ "研": 2091,
2096
+ "砕": 2092,
2097
+ "砦": 2093,
2098
+ "砲": 2094,
2099
+ "破": 2095,
2100
+ "硫": 2096,
2101
+ "硬": 2097,
2102
+ "碁": 2098,
2103
+ "碇": 2099,
2104
+ "碑": 2100,
2105
+ "碕": 2101,
2106
+ "碗": 2102,
2107
+ "碧": 2103,
2108
+ "確": 2104,
2109
+ "碾": 2105,
2110
+ "磁": 2106,
2111
+ "磅": 2107,
2112
+ "磊": 2108,
2113
+ "磐": 2109,
2114
+ "磨": 2110,
2115
+ "磯": 2111,
2116
+ "礁": 2112,
2117
+ "礎": 2113,
2118
+ "示": 2114,
2119
+ "礼": 2115,
2120
+ "社": 2116,
2121
+ "祀": 2117,
2122
+ "祇": 2118,
2123
+ "祈": 2119,
2124
+ "祉": 2120,
2125
+ "祐": 2121,
2126
+ "祓": 2122,
2127
+ "祖": 2123,
2128
+ "祝": 2124,
2129
+ "神": 2125,
2130
+ "祠": 2126,
2131
+ "祥": 2127,
2132
+ "票": 2128,
2133
+ "祭": 2129,
2134
+ "禁": 2130,
2135
+ "禄": 2131,
2136
+ "禅": 2132,
2137
+ "禊": 2133,
2138
+ "禍": 2134,
2139
+ "福": 2135,
2140
+ "禰": 2136,
2141
+ "秀": 2137,
2142
+ "私": 2138,
2143
+ "秋": 2139,
2144
+ "科": 2140,
2145
+ "秒": 2141,
2146
+ "秘": 2142,
2147
+ "秤": 2143,
2148
+ "秦": 2144,
2149
+ "秩": 2145,
2150
+ "称": 2146,
2151
+ "移": 2147,
2152
+ "稀": 2148,
2153
+ "程": 2149,
2154
+ "税": 2150,
2155
+ "稚": 2151,
2156
+ "稜": 2152,
2157
+ "種": 2153,
2158
+ "稱": 2154,
2159
+ "稲": 2155,
2160
+ "稼": 2156,
2161
+ "稽": 2157,
2162
+ "稿": 2158,
2163
+ "穀": 2159,
2164
+ "穂": 2160,
2165
+ "積": 2161,
2166
+ "穏": 2162,
2167
+ "穢": 2163,
2168
+ "穫": 2164,
2169
+ "穴": 2165,
2170
+ "究": 2166,
2171
+ "空": 2167,
2172
+ "穿": 2168,
2173
+ "突": 2169,
2174
+ "窃": 2170,
2175
+ "窒": 2171,
2176
+ "窓": 2172,
2177
+ "窟": 2173,
2178
+ "窪": 2174,
2179
+ "窮": 2175,
2180
+ "窯": 2176,
2181
+ "立": 2177,
2182
+ "竜": 2178,
2183
+ "章": 2179,
2184
+ "童": 2180,
2185
+ "竦": 2181,
2186
+ "端": 2182,
2187
+ "競": 2183,
2188
+ "竹": 2184,
2189
+ "竺": 2185,
2190
+ "竿": 2186,
2191
+ "笑": 2187,
2192
+ "笘": 2188,
2193
+ "笛": 2189,
2194
+ "笠": 2190,
2195
+ "符": 2191,
2196
+ "第": 2192,
2197
+ "笹": 2193,
2198
+ "筆": 2194,
2199
+ "筈": 2195,
2200
+ "等": 2196,
2201
+ "筋": 2197,
2202
+ "筍": 2198,
2203
+ "筏": 2199,
2204
+ "筐": 2200,
2205
+ "筑": 2201,
2206
+ "筒": 2202,
2207
+ "答": 2203,
2208
+ "策": 2204,
2209
+ "箇": 2205,
2210
+ "箋": 2206,
2211
+ "箔": 2207,
2212
+ "箕": 2208,
2213
+ "算": 2209,
2214
+ "管": 2210,
2215
+ "箭": 2211,
2216
+ "箱": 2212,
2217
+ "箸": 2213,
2218
+ "節": 2214,
2219
+ "範": 2215,
2220
+ "築": 2216,
2221
+ "篝": 2217,
2222
+ "篠": 2218,
2223
+ "篭": 2219,
2224
+ "篷": 2220,
2225
+ "簀": 2221,
2226
+ "簡": 2222,
2227
+ "簾": 2223,
2228
+ "簿": 2224,
2229
+ "籍": 2225,
2230
+ "籠": 2226,
2231
+ "米": 2227,
2232
+ "粉": 2228,
2233
+ "粋": 2229,
2234
+ "粒": 2230,
2235
+ "粕": 2231,
2236
+ "粗": 2232,
2237
+ "粘": 2233,
2238
+ "粛": 2234,
2239
+ "粥": 2235,
2240
+ "粧": 2236,
2241
+ "精": 2237,
2242
+ "糊": 2238,
2243
+ "糖": 2239,
2244
+ "糞": 2240,
2245
+ "糧": 2241,
2246
+ "糸": 2242,
2247
+ "系": 2243,
2248
+ "紀": 2244,
2249
+ "約": 2245,
2250
+ "紅": 2246,
2251
+ "紋": 2247,
2252
+ "納": 2248,
2253
+ "紐": 2249,
2254
+ "純": 2250,
2255
+ "紗": 2251,
2256
+ "紙": 2252,
2257
+ "級": 2253,
2258
+ "紛": 2254,
2259
+ "素": 2255,
2260
+ "索": 2256,
2261
+ "紫": 2257,
2262
+ "累": 2258,
2263
+ "細": 2259,
2264
+ "紳": 2260,
2265
+ "紹": 2261,
2266
+ "紺": 2262,
2267
+ "終": 2263,
2268
+ "組": 2264,
2269
+ "絆": 2265,
2270
+ "経": 2266,
2271
+ "結": 2267,
2272
+ "絞": 2268,
2273
+ "絡": 2269,
2274
+ "給": 2270,
2275
+ "絨": 2271,
2276
+ "統": 2272,
2277
+ "絵": 2273,
2278
+ "絶": 2274,
2279
+ "絹": 2275,
2280
+ "継": 2276,
2281
+ "続": 2277,
2282
+ "綜": 2278,
2283
+ "維": 2279,
2284
+ "綱": 2280,
2285
+ "網": 2281,
2286
+ "綴": 2282,
2287
+ "綺": 2283,
2288
+ "綻": 2284,
2289
+ "綾": 2285,
2290
+ "綿": 2286,
2291
+ "緊": 2287,
2292
+ "総": 2288,
2293
+ "緑": 2289,
2294
+ "緒": 2290,
2295
+ "緘": 2291,
2296
+ "線": 2292,
2297
+ "締": 2293,
2298
+ "編": 2294,
2299
+ "緩": 2295,
2300
+ "緯": 2296,
2301
+ "練": 2297,
2302
+ "緻": 2298,
2303
+ "縁": 2299,
2304
+ "縄": 2300,
2305
+ "縋": 2301,
2306
+ "縛": 2302,
2307
+ "縞": 2303,
2308
+ "縢": 2304,
2309
+ "縦": 2305,
2310
+ "縫": 2306,
2311
+ "縮": 2307,
2312
+ "縱": 2308,
2313
+ "績": 2309,
2314
+ "繁": 2310,
2315
+ "繊": 2311,
2316
+ "繋": 2312,
2317
+ "繍": 2313,
2318
+ "織": 2314,
2319
+ "繕": 2315,
2320
+ "繚": 2316,
2321
+ "繡": 2317,
2322
+ "繫": 2318,
2323
+ "繭": 2319,
2324
+ "繰": 2320,
2325
+ "纏": 2321,
2326
+ "缶": 2322,
2327
+ "罠": 2323,
2328
+ "罪": 2324,
2329
+ "置": 2325,
2330
+ "罰": 2326,
2331
+ "署": 2327,
2332
+ "罵": 2328,
2333
+ "罹": 2329,
2334
+ "羅": 2330,
2335
+ "羊": 2331,
2336
+ "美": 2332,
2337
+ "羞": 2333,
2338
+ "群": 2334,
2339
+ "羨": 2335,
2340
+ "義": 2336,
2341
+ "羮": 2337,
2342
+ "羹": 2338,
2343
+ "羽": 2339,
2344
+ "翌": 2340,
2345
+ "習": 2341,
2346
+ "翔": 2342,
2347
+ "翠": 2343,
2348
+ "翻": 2344,
2349
+ "翼": 2345,
2350
+ "耀": 2346,
2351
+ "老": 2347,
2352
+ "考": 2348,
2353
+ "者": 2349,
2354
+ "耐": 2350,
2355
+ "耕": 2351,
2356
+ "耗": 2352,
2357
+ "耳": 2353,
2358
+ "耶": 2354,
2359
+ "聖": 2355,
2360
+ "聘": 2356,
2361
+ "聞": 2357,
2362
+ "聡": 2358,
2363
+ "聴": 2359,
2364
+ "職": 2360,
2365
+ "肉": 2361,
2366
+ "肋": 2362,
2367
+ "肌": 2363,
2368
+ "肖": 2364,
2369
+ "肘": 2365,
2370
+ "肝": 2366,
2371
+ "股": 2367,
2372
+ "肢": 2368,
2373
+ "肥": 2369,
2374
+ "肩": 2370,
2375
+ "肪": 2371,
2376
+ "肯": 2372,
2377
+ "育": 2373,
2378
+ "肴": 2374,
2379
+ "肺": 2375,
2380
+ "胃": 2376,
2381
+ "胆": 2377,
2382
+ "背": 2378,
2383
+ "胎": 2379,
2384
+ "胞": 2380,
2385
+ "胡": 2381,
2386
+ "胱": 2382,
2387
+ "胴": 2383,
2388
+ "胸": 2384,
2389
+ "能": 2385,
2390
+ "脂": 2386,
2391
+ "脅": 2387,
2392
+ "脆": 2388,
2393
+ "脇": 2389,
2394
+ "脈": 2390,
2395
+ "脊": 2391,
2396
+ "脚": 2392,
2397
+ "脱": 2393,
2398
+ "脳": 2394,
2399
+ "脹": 2395,
2400
+ "腎": 2396,
2401
+ "腐": 2397,
2402
+ "腑": 2398,
2403
+ "腔": 2399,
2404
+ "腕": 2400,
2405
+ "腫": 2401,
2406
+ "腰": 2402,
2407
+ "腱": 2403,
2408
+ "腸": 2404,
2409
+ "腹": 2405,
2410
+ "腺": 2406,
2411
+ "腿": 2407,
2412
+ "膀": 2408,
2413
+ "膏": 2409,
2414
+ "膚": 2410,
2415
+ "膜": 2411,
2416
+ "膝": 2412,
2417
+ "膠": 2413,
2418
+ "膨": 2414,
2419
+ "膳": 2415,
2420
+ "膵": 2416,
2421
+ "膿": 2417,
2422
+ "臆": 2418,
2423
+ "臓": 2419,
2424
+ "臣": 2420,
2425
+ "臨": 2421,
2426
+ "自": 2422,
2427
+ "臭": 2423,
2428
+ "至": 2424,
2429
+ "致": 2425,
2430
+ "臼": 2426,
2431
+ "興": 2427,
2432
+ "舌": 2428,
2433
+ "舎": 2429,
2434
+ "舐": 2430,
2435
+ "舗": 2431,
2436
+ "舞": 2432,
2437
+ "舟": 2433,
2438
+ "航": 2434,
2439
+ "般": 2435,
2440
+ "舵": 2436,
2441
+ "舶": 2437,
2442
+ "船": 2438,
2443
+ "艇": 2439,
2444
+ "艦": 2440,
2445
+ "良": 2441,
2446
+ "色": 2442,
2447
+ "艶": 2443,
2448
+ "芋": 2444,
2449
+ "芒": 2445,
2450
+ "芝": 2446,
2451
+ "芭": 2447,
2452
+ "芯": 2448,
2453
+ "花": 2449,
2454
+ "芳": 2450,
2455
+ "芸": 2451,
2456
+ "芻": 2452,
2457
+ "芽": 2453,
2458
+ "苑": 2454,
2459
+ "苔": 2455,
2460
+ "苗": 2456,
2461
+ "苛": 2457,
2462
+ "若": 2458,
2463
+ "苦": 2459,
2464
+ "苫": 2460,
2465
+ "英": 2461,
2466
+ "苺": 2462,
2467
+ "茂": 2463,
2468
+ "茄": 2464,
2469
+ "茅": 2465,
2470
+ "茎": 2466,
2471
+ "茜": 2467,
2472
+ "茨": 2468,
2473
+ "茶": 2469,
2474
+ "茸": 2470,
2475
+ "茹": 2471,
2476
+ "草": 2472,
2477
+ "荒": 2473,
2478
+ "荘": 2474,
2479
+ "荷": 2475,
2480
+ "荻": 2476,
2481
+ "莫": 2477,
2482
+ "菅": 2478,
2483
+ "菊": 2479,
2484
+ "菌": 2480,
2485
+ "菓": 2481,
2486
+ "菜": 2482,
2487
+ "菩": 2483,
2488
+ "華": 2484,
2489
+ "菱": 2485,
2490
+ "萄": 2486,
2491
+ "萌": 2487,
2492
+ "萎": 2488,
2493
+ "萩": 2489,
2494
+ "萬": 2490,
2495
+ "落": 2491,
2496
+ "葉": 2492,
2497
+ "著": 2493,
2498
+ "葛": 2494,
2499
+ "葡": 2495,
2500
+ "葩": 2496,
2501
+ "葬": 2497,
2502
+ "葵": 2498,
2503
+ "蒙": 2499,
2504
+ "蒲": 2500,
2505
+ "蒸": 2501,
2506
+ "蒼": 2502,
2507
+ "蓄": 2503,
2508
+ "蓋": 2504,
2509
+ "蓑": 2505,
2510
+ "蓮": 2506,
2511
+ "蓼": 2507,
2512
+ "蔑": 2508,
2513
+ "蔓": 2509,
2514
+ "蔬": 2510,
2515
+ "蔵": 2511,
2516
+ "蔽": 2512,
2517
+ "蕁": 2513,
2518
+ "蕉": 2514,
2519
+ "蕎": 2515,
2520
+ "蕞": 2516,
2521
+ "蕩": 2517,
2522
+ "蕪": 2518,
2523
+ "蕾": 2519,
2524
+ "薄": 2520,
2525
+ "薇": 2521,
2526
+ "薔": 2522,
2527
+ "薙": 2523,
2528
+ "薦": 2524,
2529
+ "薩": 2525,
2530
+ "薪": 2526,
2531
+ "薫": 2527,
2532
+ "薬": 2528,
2533
+ "薮": 2529,
2534
+ "藁": 2530,
2535
+ "藤": 2531,
2536
+ "藩": 2532,
2537
+ "藻": 2533,
2538
+ "蘇": 2534,
2539
+ "蘭": 2535,
2540
+ "虎": 2536,
2541
+ "虐": 2537,
2542
+ "虔": 2538,
2543
+ "虚": 2539,
2544
+ "虜": 2540,
2545
+ "虫": 2541,
2546
+ "虹": 2542,
2547
+ "蚊": 2543,
2548
+ "蚕": 2544,
2549
+ "蚤": 2545,
2550
+ "蛇": 2546,
2551
+ "蛋": 2547,
2552
+ "蛍": 2548,
2553
+ "蛙": 2549,
2554
+ "蛛": 2550,
2555
+ "蛭": 2551,
2556
+ "蛮": 2552,
2557
+ "蛾": 2553,
2558
+ "蜂": 2554,
2559
+ "蜘": 2555,
2560
+ "蜜": 2556,
2561
+ "蝉": 2557,
2562
+ "蝋": 2558,
2563
+ "蝎": 2559,
2564
+ "蝕": 2560,
2565
+ "蝦": 2561,
2566
+ "蝶": 2562,
2567
+ "融": 2563,
2568
+ "螺": 2564,
2569
+ "蟹": 2565,
2570
+ "蠣": 2566,
2571
+ "血": 2567,
2572
+ "衆": 2568,
2573
+ "行": 2569,
2574
+ "術": 2570,
2575
+ "街": 2571,
2576
+ "衛": 2572,
2577
+ "衝": 2573,
2578
+ "衡": 2574,
2579
+ "衣": 2575,
2580
+ "表": 2576,
2581
+ "衰": 2577,
2582
+ "衿": 2578,
2583
+ "袈": 2579,
2584
+ "袋": 2580,
2585
+ "袖": 2581,
2586
+ "被": 2582,
2587
+ "袴": 2583,
2588
+ "裁": 2584,
2589
+ "裂": 2585,
2590
+ "装": 2586,
2591
+ "裏": 2587,
2592
+ "裔": 2588,
2593
+ "裕": 2589,
2594
+ "裙": 2590,
2595
+ "補": 2591,
2596
+ "裟": 2592,
2597
+ "裸": 2593,
2598
+ "製": 2594,
2599
+ "裾": 2595,
2600
+ "褄": 2596,
2601
+ "複": 2597,
2602
+ "褐": 2598,
2603
+ "褒": 2599,
2604
+ "褪": 2600,
2605
+ "襖": 2601,
2606
+ "襟": 2602,
2607
+ "襲": 2603,
2608
+ "西": 2604,
2609
+ "要": 2605,
2610
+ "覆": 2606,
2611
+ "覇": 2607,
2612
+ "見": 2608,
2613
+ "規": 2609,
2614
+ "視": 2610,
2615
+ "覗": 2611,
2616
+ "覚": 2612,
2617
+ "覧": 2613,
2618
+ "親": 2614,
2619
+ "観": 2615,
2620
+ "角": 2616,
2621
+ "解": 2617,
2622
+ "触": 2618,
2623
+ "言": 2619,
2624
+ "訂": 2620,
2625
+ "訃": 2621,
2626
+ "計": 2622,
2627
+ "討": 2623,
2628
+ "訓": 2624,
2629
+ "託": 2625,
2630
+ "記": 2626,
2631
+ "訛": 2627,
2632
+ "訝": 2628,
2633
+ "訟": 2629,
2634
+ "訣": 2630,
2635
+ "訪": 2631,
2636
+ "設": 2632,
2637
+ "許": 2633,
2638
+ "訳": 2634,
2639
+ "訴": 2635,
2640
+ "診": 2636,
2641
+ "証": 2637,
2642
+ "詐": 2638,
2643
+ "評": 2639,
2644
+ "詞": 2640,
2645
+ "詠": 2641,
2646
+ "詣": 2642,
2647
+ "試": 2643,
2648
+ "詩": 2644,
2649
+ "詫": 2645,
2650
+ "詮": 2646,
2651
+ "詰": 2647,
2652
+ "話": 2648,
2653
+ "該": 2649,
2654
+ "詳": 2650,
2655
+ "誇": 2651,
2656
+ "誉": 2652,
2657
+ "誌": 2653,
2658
+ "認": 2654,
2659
+ "誓": 2655,
2660
+ "誕": 2656,
2661
+ "誘": 2657,
2662
+ "語": 2658,
2663
+ "誠": 2659,
2664
+ "誤": 2660,
2665
+ "説": 2661,
2666
+ "読": 2662,
2667
+ "誰": 2663,
2668
+ "課": 2664,
2669
+ "誹": 2665,
2670
+ "調": 2666,
2671
+ "談": 2667,
2672
+ "請": 2668,
2673
+ "諏": 2669,
2674
+ "論": 2670,
2675
+ "諜": 2671,
2676
+ "諦": 2672,
2677
+ "諭": 2673,
2678
+ "諸": 2674,
2679
+ "諾": 2675,
2680
+ "謀": 2676,
2681
+ "謎": 2677,
2682
+ "謗": 2678,
2683
+ "謙": 2679,
2684
+ "講": 2680,
2685
+ "謝": 2681,
2686
+ "謡": 2682,
2687
+ "謳": 2683,
2688
+ "謹": 2684,
2689
+ "識": 2685,
2690
+ "譜": 2686,
2691
+ "警": 2687,
2692
+ "議": 2688,
2693
+ "譲": 2689,
2694
+ "護": 2690,
2695
+ "讐": 2691,
2696
+ "讓": 2692,
2697
+ "认": 2693,
2698
+ "识": 2694,
2699
+ "谷": 2695,
2700
+ "豆": 2696,
2701
+ "豊": 2697,
2702
+ "豚": 2698,
2703
+ "象": 2699,
2704
+ "豪": 2700,
2705
+ "豹": 2701,
2706
+ "貌": 2702,
2707
+ "貝": 2703,
2708
+ "貞": 2704,
2709
+ "負": 2705,
2710
+ "財": 2706,
2711
+ "貢": 2707,
2712
+ "貧": 2708,
2713
+ "貨": 2709,
2714
+ "販": 2710,
2715
+ "貪": 2711,
2716
+ "貫": 2712,
2717
+ "責": 2713,
2718
+ "貯": 2714,
2719
+ "貰": 2715,
2720
+ "貴": 2716,
2721
+ "貶": 2717,
2722
+ "買": 2718,
2723
+ "貸": 2719,
2724
+ "費": 2720,
2725
+ "貼": 2721,
2726
+ "貿": 2722,
2727
+ "賀": 2723,
2728
+ "賃": 2724,
2729
+ "賄": 2725,
2730
+ "資": 2726,
2731
+ "賊": 2727,
2732
+ "賑": 2728,
2733
+ "賓": 2729,
2734
+ "賛": 2730,
2735
+ "賜": 2731,
2736
+ "賞": 2732,
2737
+ "賠": 2733,
2738
+ "賢": 2734,
2739
+ "質": 2735,
2740
+ "賭": 2736,
2741
+ "購": 2737,
2742
+ "賽": 2738,
2743
+ "贄": 2739,
2744
+ "贅": 2740,
2745
+ "贈": 2741,
2746
+ "贔": 2742,
2747
+ "赤": 2743,
2748
+ "赦": 2744,
2749
+ "走": 2745,
2750
+ "赴": 2746,
2751
+ "起": 2747,
2752
+ "超": 2748,
2753
+ "越": 2749,
2754
+ "趙": 2750,
2755
+ "趣": 2751,
2756
+ "足": 2752,
2757
+ "趾": 2753,
2758
+ "距": 2754,
2759
+ "跟": 2755,
2760
+ "跡": 2756,
2761
+ "跨": 2757,
2762
+ "路": 2758,
2763
+ "跳": 2759,
2764
+ "践": 2760,
2765
+ "踊": 2761,
2766
+ "踏": 2762,
2767
+ "踪": 2763,
2768
+ "蹄": 2764,
2769
+ "蹴": 2765,
2770
+ "躇": 2766,
2771
+ "躊": 2767,
2772
+ "躍": 2768,
2773
+ "躓": 2769,
2774
+ "身": 2770,
2775
+ "躯": 2771,
2776
+ "躰": 2772,
2777
+ "躾": 2773,
2778
+ "車": 2774,
2779
+ "軌": 2775,
2780
+ "軍": 2776,
2781
+ "軒": 2777,
2782
+ "軟": 2778,
2783
+ "転": 2779,
2784
+ "軸": 2780,
2785
+ "軽": 2781,
2786
+ "較": 2782,
2787
+ "載": 2783,
2788
+ "輊": 2784,
2789
+ "輔": 2785,
2790
+ "輝": 2786,
2791
+ "輩": 2787,
2792
+ "輪": 2788,
2793
+ "輯": 2789,
2794
+ "輸": 2790,
2795
+ "輿": 2791,
2796
+ "轄": 2792,
2797
+ "轟": 2793,
2798
+ "轢": 2794,
2799
+ "辛": 2795,
2800
+ "辞": 2796,
2801
+ "辣": 2797,
2802
+ "辰": 2798,
2803
+ "辱": 2799,
2804
+ "農": 2800,
2805
+ "辺": 2801,
2806
+ "辻": 2802,
2807
+ "込": 2803,
2808
+ "辿": 2804,
2809
+ "迂": 2805,
2810
+ "迅": 2806,
2811
+ "迎": 2807,
2812
+ "近": 2808,
2813
+ "返": 2809,
2814
+ "迦": 2810,
2815
+ "迫": 2811,
2816
+ "述": 2812,
2817
+ "迷": 2813,
2818
+ "追": 2814,
2819
+ "退": 2815,
2820
+ "送": 2816,
2821
+ "逃": 2817,
2822
+ "逆": 2818,
2823
+ "透": 2819,
2824
+ "逐": 2820,
2825
+ "途": 2821,
2826
+ "這": 2822,
2827
+ "通": 2823,
2828
+ "逝": 2824,
2829
+ "逞": 2825,
2830
+ "速": 2826,
2831
+ "造": 2827,
2832
+ "逢": 2828,
2833
+ "連": 2829,
2834
+ "逮": 2830,
2835
+ "週": 2831,
2836
+ "進": 2832,
2837
+ "逸": 2833,
2838
+ "遁": 2834,
2839
+ "遂": 2835,
2840
+ "遅": 2836,
2841
+ "遇": 2837,
2842
+ "遊": 2838,
2843
+ "運": 2839,
2844
+ "遍": 2840,
2845
+ "過": 2841,
2846
+ "道": 2842,
2847
+ "達": 2843,
2848
+ "違": 2844,
2849
+ "遜": 2845,
2850
+ "遠": 2846,
2851
+ "遡": 2847,
2852
+ "遣": 2848,
2853
+ "遥": 2849,
2854
+ "適": 2850,
2855
+ "遭": 2851,
2856
+ "遮": 2852,
2857
+ "遲": 2853,
2858
+ "遵": 2854,
2859
+ "遷": 2855,
2860
+ "選": 2856,
2861
+ "遺": 2857,
2862
+ "遼": 2858,
2863
+ "遽": 2859,
2864
+ "避": 2860,
2865
+ "還": 2861,
2866
+ "邑": 2862,
2867
+ "那": 2863,
2868
+ "邦": 2864,
2869
+ "邪": 2865,
2870
+ "邸": 2866,
2871
+ "郁": 2867,
2872
+ "郊": 2868,
2873
+ "郎": 2869,
2874
+ "郞": 2870,
2875
+ "郡": 2871,
2876
+ "部": 2872,
2877
+ "郭": 2873,
2878
+ "郵": 2874,
2879
+ "郷": 2875,
2880
+ "都": 2876,
2881
+ "酉": 2877,
2882
+ "酌": 2878,
2883
+ "配": 2879,
2884
+ "酎": 2880,
2885
+ "酒": 2881,
2886
+ "酔": 2882,
2887
+ "酛": 2883,
2888
+ "酢": 2884,
2889
+ "酬": 2885,
2890
+ "酵": 2886,
2891
+ "酷": 2887,
2892
+ "酸": 2888,
2893
+ "醇": 2889,
2894
+ "醍": 2890,
2895
+ "醐": 2891,
2896
+ "醒": 2892,
2897
+ "醜": 2893,
2898
+ "醤": 2894,
2899
+ "醬": 2895,
2900
+ "醸": 2896,
2901
+ "采": 2897,
2902
+ "釈": 2898,
2903
+ "里": 2899,
2904
+ "重": 2900,
2905
+ "野": 2901,
2906
+ "量": 2902,
2907
+ "金": 2903,
2908
+ "釘": 2904,
2909
+ "釜": 2905,
2910
+ "針": 2906,
2911
+ "釣": 2907,
2912
+ "釧": 2908,
2913
+ "鈍": 2909,
2914
+ "鈴": 2910,
2915
+ "鈿": 2911,
2916
+ "鉄": 2912,
2917
+ "鉛": 2913,
2918
+ "鉢": 2914,
2919
+ "鉤": 2915,
2920
+ "鉱": 2916,
2921
+ "鉾": 2917,
2922
+ "銀": 2918,
2923
+ "銃": 2919,
2924
+ "銅": 2920,
2925
+ "銘": 2921,
2926
+ "銚": 2922,
2927
+ "銭": 2923,
2928
+ "鋏": 2924,
2929
+ "鋭": 2925,
2930
+ "鋲": 2926,
2931
+ "鋸": 2927,
2932
+ "鋼": 2928,
2933
+ "錆": 2929,
2934
+ "錘": 2930,
2935
+ "錠": 2931,
2936
+ "錦": 2932,
2937
+ "錬": 2933,
2938
+ "錯": 2934,
2939
+ "録": 2935,
2940
+ "鍋": 2936,
2941
+ "鍔": 2937,
2942
+ "鍛": 2938,
2943
+ "鍮": 2939,
2944
+ "鍵": 2940,
2945
+ "鍼": 2941,
2946
+ "鍾": 2942,
2947
+ "鎌": 2943,
2948
+ "鎖": 2944,
2949
+ "鎗": 2945,
2950
+ "鎚": 2946,
2951
+ "鎧": 2947,
2952
+ "鎮": 2948,
2953
+ "鏡": 2949,
2954
+ "鐘": 2950,
2955
+ "鑑": 2951,
2956
+ "鑓": 2952,
2957
+ "長": 2953,
2958
+ "門": 2954,
2959
+ "閃": 2955,
2960
+ "閉": 2956,
2961
+ "開": 2957,
2962
+ "閑": 2958,
2963
+ "間": 2959,
2964
+ "関": 2960,
2965
+ "閣": 2961,
2966
+ "閥": 2962,
2967
+ "閲": 2963,
2968
+ "闇": 2964,
2969
+ "闍": 2965,
2970
+ "闘": 2966,
2971
+ "阜": 2967,
2972
+ "阪": 2968,
2973
+ "防": 2969,
2974
+ "阻": 2970,
2975
+ "阿": 2971,
2976
+ "陀": 2972,
2977
+ "降": 2973,
2978
+ "限": 2974,
2979
+ "陛": 2975,
2980
+ "院": 2976,
2981
+ "陣": 2977,
2982
+ "除": 2978,
2983
+ "陥": 2979,
2984
+ "陰": 2980,
2985
+ "陳": 2981,
2986
+ "陵": 2982,
2987
+ "陶": 2983,
2988
+ "陸": 2984,
2989
+ "険": 2985,
2990
+ "陽": 2986,
2991
+ "隅": 2987,
2992
+ "隆": 2988,
2993
+ "隈": 2989,
2994
+ "隊": 2990,
2995
+ "階": 2991,
2996
+ "随": 2992,
2997
+ "隔": 2993,
2998
+ "隕": 2994,
2999
+ "隙": 2995,
3000
+ "際": 2996,
3001
+ "障": 2997,
3002
+ "隠": 2998,
3003
+ "隣": 2999,
3004
+ "隷": 3000,
3005
+ "雀": 3001,
3006
+ "雄": 3002,
3007
+ "雅": 3003,
3008
+ "集": 3004,
3009
+ "雇": 3005,
3010
+ "雉": 3006,
3011
+ "雌": 3007,
3012
+ "雑": 3008,
3013
+ "雛": 3009,
3014
+ "離": 3010,
3015
+ "難": 3011,
3016
+ "雨": 3012,
3017
+ "雪": 3013,
3018
+ "雫": 3014,
3019
+ "雰": 3015,
3020
+ "雲": 3016,
3021
+ "零": 3017,
3022
+ "雷": 3018,
3023
+ "電": 3019,
3024
+ "需": 3020,
3025
+ "震": 3021,
3026
+ "霊": 3022,
3027
+ "霜": 3023,
3028
+ "霞": 3024,
3029
+ "霧": 3025,
3030
+ "露": 3026,
3031
+ "霹": 3027,
3032
+ "靂": 3028,
3033
+ "靄": 3029,
3034
+ "青": 3030,
3035
+ "靖": 3031,
3036
+ "静": 3032,
3037
+ "靜": 3033,
3038
+ "非": 3034,
3039
+ "靡": 3035,
3040
+ "面": 3036,
3041
+ "革": 3037,
3042
+ "靭": 3038,
3043
+ "靴": 3039,
3044
+ "鞄": 3040,
3045
+ "鞍": 3041,
3046
+ "鞘": 3042,
3047
+ "鞭": 3043,
3048
+ "韓": 3044,
3049
+ "韮": 3045,
3050
+ "音": 3046,
3051
+ "韻": 3047,
3052
+ "響": 3048,
3053
+ "頂": 3049,
3054
+ "頃": 3050,
3055
+ "項": 3051,
3056
+ "順": 3052,
3057
+ "須": 3053,
3058
+ "預": 3054,
3059
+ "頑": 3055,
3060
+ "頓": 3056,
3061
+ "領": 3057,
3062
+ "頬": 3058,
3063
+ "頭": 3059,
3064
+ "頷": 3060,
3065
+ "頻": 3061,
3066
+ "頼": 3062,
3067
+ "顆": 3063,
3068
+ "題": 3064,
3069
+ "額": 3065,
3070
+ "顎": 3066,
3071
+ "顔": 3067,
3072
+ "顕": 3068,
3073
+ "願": 3069,
3074
+ "類": 3070,
3075
+ "顧": 3071,
3076
+ "風": 3072,
3077
+ "颯": 3073,
3078
+ "飛": 3074,
3079
+ "食": 3075,
3080
+ "飢": 3076,
3081
+ "飯": 3077,
3082
+ "飲": 3078,
3083
+ "飴": 3079,
3084
+ "飼": 3080,
3085
+ "飽": 3081,
3086
+ "飾": 3082,
3087
+ "餃": 3083,
3088
+ "餅": 3084,
3089
+ "養": 3085,
3090
+ "餌": 3086,
3091
+ "餐": 3087,
3092
+ "餓": 3088,
3093
+ "餞": 3089,
3094
+ "餡": 3090,
3095
+ "館": 3091,
3096
+ "饅": 3092,
3097
+ "饒": 3093,
3098
+ "首": 3094,
3099
+ "香": 3095,
3100
+ "馬": 3096,
3101
+ "馳": 3097,
3102
+ "馴": 3098,
3103
+ "駄": 3099,
3104
+ "駅": 3100,
3105
+ "駆": 3101,
3106
+ "駐": 3102,
3107
+ "駒": 3103,
3108
+ "駕": 3104,
3109
+ "駿": 3105,
3110
+ "騎": 3106,
3111
+ "騒": 3107,
3112
+ "験": 3108,
3113
+ "騙": 3109,
3114
+ "騨": 3110,
3115
+ "騰": 3111,
3116
+ "驚": 3112,
3117
+ "骨": 3113,
3118
+ "骸": 3114,
3119
+ "髄": 3115,
3120
+ "高": 3116,
3121
+ "髪": 3117,
3122
+ "髭": 3118,
3123
+ "鬱": 3119,
3124
+ "鬼": 3120,
3125
+ "魁": 3121,
3126
+ "魂": 3122,
3127
+ "魄": 3123,
3128
+ "魅": 3124,
3129
+ "魔": 3125,
3130
+ "魚": 3126,
3131
+ "鮎": 3127,
3132
+ "鮑": 3128,
3133
+ "鮪": 3129,
3134
+ "鮫": 3130,
3135
+ "鮭": 3131,
3136
+ "鮮": 3132,
3137
+ "鯉": 3133,
3138
+ "鯖": 3134,
3139
+ "鯛": 3135,
3140
+ "鯨": 3136,
3141
+ "鰐": 3137,
3142
+ "鰹": 3138,
3143
+ "鱈": 3139,
3144
+ "鱗": 3140,
3145
+ "鲁": 3141,
3146
+ "鳥": 3142,
3147
+ "鳩": 3143,
3148
+ "鳳": 3144,
3149
+ "鳴": 3145,
3150
+ "鴨": 3146,
3151
+ "鴻": 3147,
3152
+ "鵜": 3148,
3153
+ "鵡": 3149,
3154
+ "鶏": 3150,
3155
+ "鶯": 3151,
3156
+ "鶴": 3152,
3157
+ "鷲": 3153,
3158
+ "鷹": 3154,
3159
+ "鷺": 3155,
3160
+ "鸚": 3156,
3161
+ "鹸": 3157,
3162
+ "鹿": 3158,
3163
+ "麒": 3159,
3164
+ "麓": 3160,
3165
+ "麗": 3161,
3166
+ "麟": 3162,
3167
+ "麦": 3163,
3168
+ "麩": 3164,
3169
+ "麵": 3165,
3170
+ "麹": 3166,
3171
+ "麺": 3167,
3172
+ "麻": 3168,
3173
+ "麼": 3169,
3174
+ "黄": 3170,
3175
+ "黑": 3171,
3176
+ "黒": 3172,
3177
+ "黙": 3173,
3178
+ "點": 3174,
3179
+ "鼈": 3175,
3180
+ "鼓": 3176,
3181
+ "鼻": 3177,
3182
+ "鼾": 3178,
3183
+ "齋": 3179,
3184
+ "齎": 3180,
3185
+ "齟": 3181,
3186
+ "齢": 3182,
3187
+ "齧": 3183,
3188
+ "齬": 3184,
3189
+ "龍": 3185,
3190
+ "각": 3186,
3191
+ "걸": 3187,
3192
+ "검": 3188,
3193
+ "과": 3189,
3194
+ "귀": 3190,
3195
+ "급": 3191,
3196
+ "기": 3192,
3197
+ "는": 3193,
3198
+ "니": 3194,
3199
+ "님": 3195,
3200
+ "다": 3196,
3201
+ "됩": 3197,
3202
+ "두": 3198,
3203
+ "로": 3199,
3204
+ "름": 3200,
3205
+ "마": 3201,
3206
+ "모": 3202,
3207
+ "문": 3203,
3208
+ "받": 3204,
3209
+ "부": 3205,
3210
+ "사": 3206,
3211
+ "생": 3207,
3212
+ "스": 3208,
3213
+ "안": 3209,
3214
+ "알": 3210,
3215
+ "았": 3211,
3216
+ "앞": 3212,
3217
+ "어": 3213,
3218
+ "었": 3214,
3219
+ "에": 3215,
3220
+ "요": 3216,
3221
+ "은": 3217,
3222
+ "이": 3218,
3223
+ "입": 3219,
3224
+ "장": 3220,
3225
+ "정": 3221,
3226
+ "제": 3222,
3227
+ "중": 3223,
3228
+ "초": 3224,
3229
+ "출": 3225,
3230
+ "치": 3226,
3231
+ "카": 3227,
3232
+ "커": 3228,
3233
+ "하": 3229,
3234
+ "합": 3230,
3235
+ "효": 3231,
3236
+ "行": 3232,
3237
+ "️": 3233,
3238
+ "!": 3234,
3239
+ "%": 3235,
3240
+ "&": 3236,
3241
+ "(": 3237,
3242
+ ")": 3238,
3243
+ "+": 3239,
3244
+ ",": 3240,
3245
+ "-": 3241,
3246
+ ".": 3242,
3247
+ "/": 3243,
3248
+ "0": 3244,
3249
+ "1": 3245,
3250
+ "2": 3246,
3251
+ "3": 3247,
3252
+ "4": 3248,
3253
+ "5": 3249,
3254
+ "6": 3250,
3255
+ "7": 3251,
3256
+ "8": 3252,
3257
+ "9": 3253,
3258
+ ":": 3254,
3259
+ "=": 3255,
3260
+ ">": 3256,
3261
+ "?": 3257,
3262
+ "@": 3258,
3263
+ "_": 3259,
3264
+ "a": 3260,
3265
+ "b": 3261,
3266
+ "c": 3262,
3267
+ "d": 3263,
3268
+ "f": 3264,
3269
+ "g": 3265,
3270
+ "h": 3266,
3271
+ "j": 3267,
3272
+ "k": 3268,
3273
+ "l": 3269,
3274
+ "m": 3270,
3275
+ "n": 3271,
3276
+ "o": 3272,
3277
+ "p": 3273,
3278
+ "r": 3274,
3279
+ "s": 3275,
3280
+ "t": 3276,
3281
+ "u": 3277,
3282
+ "v": 3278,
3283
+ "w": 3279,
3284
+ "x": 3280,
3285
+ "z": 3281,
3286
+ "~": 3282,
3287
+ "、": 3283,
3288
+ "ア": 3284,
3289
+ "オ": 3285,
3290
+ "ト": 3286,
3291
+ "ネ": 3287,
3292
+ "ル": 3288,
3293
+ "゙": 3289,
3294
+ "¥": 3290,
3295
+ "�": 3291,
3296
+ "🌵": 3292,
3297
+ "🍻": 3293,
3298
+ "🐼": 3294,
3299
+ "📢": 3295,
3300
+ "🔥": 3296,
3301
+ "🖥": 3297,
3302
+ "𠮟": 3298
3303
+ }
config.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jako_xlsr_100p_run1",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForCTC"
11
+ ],
12
+ "attention_dropout": 0.05,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 768,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "mean",
46
+ "ctc_zero_infinity": true,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.05,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "gradient_checkpointing": false,
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.05,
59
+ "hidden_size": 1024,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 4096,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.05,
64
+ "mask_channel_length": 10,
65
+ "mask_channel_min_space": 1,
66
+ "mask_channel_other": 0.0,
67
+ "mask_channel_prob": 0.0,
68
+ "mask_channel_selection": "static",
69
+ "mask_feature_length": 10,
70
+ "mask_feature_min_masks": 0,
71
+ "mask_feature_prob": 0.0,
72
+ "mask_time_length": 10,
73
+ "mask_time_min_masks": 2,
74
+ "mask_time_min_space": 1,
75
+ "mask_time_other": 0.0,
76
+ "mask_time_prob": 0.05,
77
+ "mask_time_selection": "static",
78
+ "model_type": "wav2vec2",
79
+ "num_adapter_layers": 3,
80
+ "num_attention_heads": 16,
81
+ "num_codevector_groups": 2,
82
+ "num_codevectors_per_group": 320,
83
+ "num_conv_pos_embedding_groups": 16,
84
+ "num_conv_pos_embeddings": 128,
85
+ "num_feat_extract_layers": 7,
86
+ "num_hidden_layers": 24,
87
+ "num_negatives": 100,
88
+ "output_hidden_size": 1024,
89
+ "pad_token_id": 3300,
90
+ "proj_codevector_dim": 768,
91
+ "tdnn_dilation": [
92
+ 1,
93
+ 2,
94
+ 3,
95
+ 1,
96
+ 1
97
+ ],
98
+ "tdnn_dim": [
99
+ 512,
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 1500
104
+ ],
105
+ "tdnn_kernel": [
106
+ 5,
107
+ 3,
108
+ 3,
109
+ 1,
110
+ 1
111
+ ],
112
+ "torch_dtype": "float32",
113
+ "transformers_version": "4.35.2",
114
+ "use_weighted_layer_sum": false,
115
+ "vocab_size": 3303,
116
+ "xvector_output_dim": 512
117
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6703defd6ff1b4ce50eef71f2ed507af8a6b2c033200352b72a636a1ed87f4a0
3
+ size 1275349820
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "[UNK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": true,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "3299": {
4
+ "content": "[UNK]",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "3300": {
12
+ "content": "[PAD]",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "3301": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3302": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": true,
38
+ "config": null,
39
+ "do_lower_case": false,
40
+ "eos_token": "</s>",
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "[PAD]",
43
+ "processor_class": "Wav2Vec2Processor",
44
+ "replace_word_delimiter_char": " ",
45
+ "target_lang": null,
46
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
47
+ "tokenizer_type": "wav2vec2",
48
+ "trust_remote_code": false,
49
+ "unk_token": "[UNK]",
50
+ "word_delimiter_token": "|"
51
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 25.0,
3
+ "train_loss": 0.13803036045986866,
4
+ "train_runtime": 107320.4824,
5
+ "train_samples": 536104,
6
+ "train_samples_per_second": 124.884,
7
+ "train_steps_per_second": 7.805
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1711 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 24.99992538761136,
5
+ "eval_steps": 500,
6
+ "global_step": 837650,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.09,
13
+ "learning_rate": 0.0001342882721575649,
14
+ "loss": 12.1916,
15
+ "step": 3000
16
+ },
17
+ {
18
+ "epoch": 0.18,
19
+ "learning_rate": 0.0002685765443151298,
20
+ "loss": 2.3149,
21
+ "step": 6000
22
+ },
23
+ {
24
+ "epoch": 0.27,
25
+ "learning_rate": 0.00029896083615458125,
26
+ "loss": 1.9954,
27
+ "step": 9000
28
+ },
29
+ {
30
+ "epoch": 0.36,
31
+ "learning_rate": 0.00029760422539032704,
32
+ "loss": 1.8429,
33
+ "step": 12000
34
+ },
35
+ {
36
+ "epoch": 0.45,
37
+ "learning_rate": 0.0002962476146260728,
38
+ "loss": 1.7657,
39
+ "step": 15000
40
+ },
41
+ {
42
+ "epoch": 0.54,
43
+ "learning_rate": 0.0002948910038618186,
44
+ "loss": 1.6944,
45
+ "step": 18000
46
+ },
47
+ {
48
+ "epoch": 0.63,
49
+ "learning_rate": 0.0002935343930975644,
50
+ "loss": 1.6484,
51
+ "step": 21000
52
+ },
53
+ {
54
+ "epoch": 0.72,
55
+ "learning_rate": 0.0002921777823333102,
56
+ "loss": 1.6187,
57
+ "step": 24000
58
+ },
59
+ {
60
+ "epoch": 0.81,
61
+ "learning_rate": 0.00029082117156905597,
62
+ "loss": 1.5982,
63
+ "step": 27000
64
+ },
65
+ {
66
+ "epoch": 0.9,
67
+ "learning_rate": 0.00028946456080480176,
68
+ "loss": 1.5673,
69
+ "step": 30000
70
+ },
71
+ {
72
+ "epoch": 0.98,
73
+ "learning_rate": 0.00028810795004054755,
74
+ "loss": 1.5474,
75
+ "step": 33000
76
+ },
77
+ {
78
+ "epoch": 1.07,
79
+ "learning_rate": 0.0002867513392762934,
80
+ "loss": 1.4948,
81
+ "step": 36000
82
+ },
83
+ {
84
+ "epoch": 1.16,
85
+ "learning_rate": 0.0002853947285120391,
86
+ "loss": 1.4913,
87
+ "step": 39000
88
+ },
89
+ {
90
+ "epoch": 1.25,
91
+ "learning_rate": 0.00028403811774778496,
92
+ "loss": 1.4821,
93
+ "step": 42000
94
+ },
95
+ {
96
+ "epoch": 1.34,
97
+ "learning_rate": 0.0002826815069835307,
98
+ "loss": 1.4474,
99
+ "step": 45000
100
+ },
101
+ {
102
+ "epoch": 1.43,
103
+ "learning_rate": 0.00028132489621927653,
104
+ "loss": 1.4602,
105
+ "step": 48000
106
+ },
107
+ {
108
+ "epoch": 1.52,
109
+ "learning_rate": 0.00027996828545502226,
110
+ "loss": 1.456,
111
+ "step": 51000
112
+ },
113
+ {
114
+ "epoch": 1.61,
115
+ "learning_rate": 0.0002786116746907681,
116
+ "loss": 1.4377,
117
+ "step": 54000
118
+ },
119
+ {
120
+ "epoch": 1.7,
121
+ "learning_rate": 0.0002772550639265139,
122
+ "loss": 1.4301,
123
+ "step": 57000
124
+ },
125
+ {
126
+ "epoch": 1.79,
127
+ "learning_rate": 0.0002758984531622597,
128
+ "loss": 1.425,
129
+ "step": 60000
130
+ },
131
+ {
132
+ "epoch": 1.88,
133
+ "learning_rate": 0.00027454184239800546,
134
+ "loss": 1.4153,
135
+ "step": 63000
136
+ },
137
+ {
138
+ "epoch": 1.97,
139
+ "learning_rate": 0.00027318523163375125,
140
+ "loss": 1.4046,
141
+ "step": 66000
142
+ },
143
+ {
144
+ "epoch": 2.06,
145
+ "learning_rate": 0.00027182862086949704,
146
+ "loss": 1.3565,
147
+ "step": 69000
148
+ },
149
+ {
150
+ "epoch": 2.15,
151
+ "learning_rate": 0.0002704720101052428,
152
+ "loss": 1.3488,
153
+ "step": 72000
154
+ },
155
+ {
156
+ "epoch": 2.24,
157
+ "learning_rate": 0.0002691153993409886,
158
+ "loss": 1.339,
159
+ "step": 75000
160
+ },
161
+ {
162
+ "epoch": 2.33,
163
+ "learning_rate": 0.0002677587885767344,
164
+ "loss": 1.3513,
165
+ "step": 78000
166
+ },
167
+ {
168
+ "epoch": 2.42,
169
+ "learning_rate": 0.0002664021778124802,
170
+ "loss": 1.3491,
171
+ "step": 81000
172
+ },
173
+ {
174
+ "epoch": 2.51,
175
+ "learning_rate": 0.00026504556704822597,
176
+ "loss": 1.3345,
177
+ "step": 84000
178
+ },
179
+ {
180
+ "epoch": 2.6,
181
+ "learning_rate": 0.00026368895628397175,
182
+ "loss": 1.3313,
183
+ "step": 87000
184
+ },
185
+ {
186
+ "epoch": 2.69,
187
+ "learning_rate": 0.00026233234551971754,
188
+ "loss": 1.3319,
189
+ "step": 90000
190
+ },
191
+ {
192
+ "epoch": 2.78,
193
+ "learning_rate": 0.00026097573475546333,
194
+ "loss": 1.3185,
195
+ "step": 93000
196
+ },
197
+ {
198
+ "epoch": 2.87,
199
+ "learning_rate": 0.00025961912399120917,
200
+ "loss": 1.325,
201
+ "step": 96000
202
+ },
203
+ {
204
+ "epoch": 2.95,
205
+ "learning_rate": 0.0002582625132269549,
206
+ "loss": 1.3048,
207
+ "step": 99000
208
+ },
209
+ {
210
+ "epoch": 3.04,
211
+ "learning_rate": 0.00025690590246270074,
212
+ "loss": 1.2797,
213
+ "step": 102000
214
+ },
215
+ {
216
+ "epoch": 3.13,
217
+ "learning_rate": 0.00025554929169844653,
218
+ "loss": 1.2646,
219
+ "step": 105000
220
+ },
221
+ {
222
+ "epoch": 3.22,
223
+ "learning_rate": 0.0002541926809341923,
224
+ "loss": 1.2595,
225
+ "step": 108000
226
+ },
227
+ {
228
+ "epoch": 3.31,
229
+ "learning_rate": 0.0002528360701699381,
230
+ "loss": 1.2574,
231
+ "step": 111000
232
+ },
233
+ {
234
+ "epoch": 3.4,
235
+ "learning_rate": 0.0002514794594056839,
236
+ "loss": 1.2623,
237
+ "step": 114000
238
+ },
239
+ {
240
+ "epoch": 3.49,
241
+ "learning_rate": 0.0002501228486414297,
242
+ "loss": 1.2548,
243
+ "step": 117000
244
+ },
245
+ {
246
+ "epoch": 3.58,
247
+ "learning_rate": 0.00024876623787717546,
248
+ "loss": 1.2615,
249
+ "step": 120000
250
+ },
251
+ {
252
+ "epoch": 3.67,
253
+ "learning_rate": 0.00024740962711292125,
254
+ "loss": 1.2558,
255
+ "step": 123000
256
+ },
257
+ {
258
+ "epoch": 3.76,
259
+ "learning_rate": 0.00024605301634866703,
260
+ "loss": 1.2537,
261
+ "step": 126000
262
+ },
263
+ {
264
+ "epoch": 3.85,
265
+ "learning_rate": 0.0002446964055844128,
266
+ "loss": 1.2393,
267
+ "step": 129000
268
+ },
269
+ {
270
+ "epoch": 3.94,
271
+ "learning_rate": 0.0002433397948201586,
272
+ "loss": 1.2438,
273
+ "step": 132000
274
+ },
275
+ {
276
+ "epoch": 4.03,
277
+ "learning_rate": 0.00024198318405590442,
278
+ "loss": 1.2277,
279
+ "step": 135000
280
+ },
281
+ {
282
+ "epoch": 4.12,
283
+ "learning_rate": 0.00024062657329165018,
284
+ "loss": 1.1934,
285
+ "step": 138000
286
+ },
287
+ {
288
+ "epoch": 4.21,
289
+ "learning_rate": 0.000239269962527396,
290
+ "loss": 1.1857,
291
+ "step": 141000
292
+ },
293
+ {
294
+ "epoch": 4.3,
295
+ "learning_rate": 0.00023791335176314175,
296
+ "loss": 1.1902,
297
+ "step": 144000
298
+ },
299
+ {
300
+ "epoch": 4.39,
301
+ "learning_rate": 0.00023655674099888756,
302
+ "loss": 1.1901,
303
+ "step": 147000
304
+ },
305
+ {
306
+ "epoch": 4.48,
307
+ "learning_rate": 0.00023520013023463332,
308
+ "loss": 1.1948,
309
+ "step": 150000
310
+ },
311
+ {
312
+ "epoch": 4.57,
313
+ "learning_rate": 0.00023384351947037914,
314
+ "loss": 1.1941,
315
+ "step": 153000
316
+ },
317
+ {
318
+ "epoch": 4.66,
319
+ "learning_rate": 0.00023248690870612495,
320
+ "loss": 1.1903,
321
+ "step": 156000
322
+ },
323
+ {
324
+ "epoch": 4.75,
325
+ "learning_rate": 0.0002311302979418707,
326
+ "loss": 1.1877,
327
+ "step": 159000
328
+ },
329
+ {
330
+ "epoch": 4.83,
331
+ "learning_rate": 0.00022977368717761652,
332
+ "loss": 1.1974,
333
+ "step": 162000
334
+ },
335
+ {
336
+ "epoch": 4.92,
337
+ "learning_rate": 0.00022841707641336228,
338
+ "loss": 1.189,
339
+ "step": 165000
340
+ },
341
+ {
342
+ "epoch": 5.01,
343
+ "learning_rate": 0.0002270604656491081,
344
+ "loss": 1.1851,
345
+ "step": 168000
346
+ },
347
+ {
348
+ "epoch": 5.1,
349
+ "learning_rate": 0.00022570385488485386,
350
+ "loss": 1.1479,
351
+ "step": 171000
352
+ },
353
+ {
354
+ "epoch": 5.19,
355
+ "learning_rate": 0.00022434724412059967,
356
+ "loss": 1.1374,
357
+ "step": 174000
358
+ },
359
+ {
360
+ "epoch": 5.28,
361
+ "learning_rate": 0.00022299063335634543,
362
+ "loss": 1.1343,
363
+ "step": 177000
364
+ },
365
+ {
366
+ "epoch": 5.37,
367
+ "learning_rate": 0.00022163402259209124,
368
+ "loss": 1.1306,
369
+ "step": 180000
370
+ },
371
+ {
372
+ "epoch": 5.46,
373
+ "learning_rate": 0.00022027741182783706,
374
+ "loss": 1.1399,
375
+ "step": 183000
376
+ },
377
+ {
378
+ "epoch": 5.55,
379
+ "learning_rate": 0.00021892080106358282,
380
+ "loss": 1.1457,
381
+ "step": 186000
382
+ },
383
+ {
384
+ "epoch": 5.64,
385
+ "learning_rate": 0.00021756419029932863,
386
+ "loss": 1.1469,
387
+ "step": 189000
388
+ },
389
+ {
390
+ "epoch": 5.73,
391
+ "learning_rate": 0.0002162075795350744,
392
+ "loss": 1.1448,
393
+ "step": 192000
394
+ },
395
+ {
396
+ "epoch": 5.82,
397
+ "learning_rate": 0.0002148509687708202,
398
+ "loss": 1.1397,
399
+ "step": 195000
400
+ },
401
+ {
402
+ "epoch": 5.91,
403
+ "learning_rate": 0.00021349435800656596,
404
+ "loss": 1.1441,
405
+ "step": 198000
406
+ },
407
+ {
408
+ "epoch": 6.0,
409
+ "learning_rate": 0.00021213774724231177,
410
+ "loss": 1.1453,
411
+ "step": 201000
412
+ },
413
+ {
414
+ "epoch": 6.09,
415
+ "learning_rate": 0.00021078113647805753,
416
+ "loss": 1.0897,
417
+ "step": 204000
418
+ },
419
+ {
420
+ "epoch": 6.18,
421
+ "learning_rate": 0.00020942452571380335,
422
+ "loss": 1.0956,
423
+ "step": 207000
424
+ },
425
+ {
426
+ "epoch": 6.27,
427
+ "learning_rate": 0.0002080679149495491,
428
+ "loss": 1.0947,
429
+ "step": 210000
430
+ },
431
+ {
432
+ "epoch": 6.36,
433
+ "learning_rate": 0.00020671130418529492,
434
+ "loss": 1.0961,
435
+ "step": 213000
436
+ },
437
+ {
438
+ "epoch": 6.45,
439
+ "learning_rate": 0.00020535469342104073,
440
+ "loss": 1.1117,
441
+ "step": 216000
442
+ },
443
+ {
444
+ "epoch": 6.54,
445
+ "learning_rate": 0.0002039980826567865,
446
+ "loss": 1.1032,
447
+ "step": 219000
448
+ },
449
+ {
450
+ "epoch": 6.63,
451
+ "learning_rate": 0.0002026414718925323,
452
+ "loss": 1.0983,
453
+ "step": 222000
454
+ },
455
+ {
456
+ "epoch": 6.72,
457
+ "learning_rate": 0.00020128486112827807,
458
+ "loss": 1.0885,
459
+ "step": 225000
460
+ },
461
+ {
462
+ "epoch": 6.8,
463
+ "learning_rate": 0.00019992825036402388,
464
+ "loss": 1.0867,
465
+ "step": 228000
466
+ },
467
+ {
468
+ "epoch": 6.89,
469
+ "learning_rate": 0.00019857163959976964,
470
+ "loss": 1.0993,
471
+ "step": 231000
472
+ },
473
+ {
474
+ "epoch": 6.98,
475
+ "learning_rate": 0.00019721502883551545,
476
+ "loss": 1.1021,
477
+ "step": 234000
478
+ },
479
+ {
480
+ "epoch": 7.07,
481
+ "learning_rate": 0.00019585841807126124,
482
+ "loss": 1.0519,
483
+ "step": 237000
484
+ },
485
+ {
486
+ "epoch": 7.16,
487
+ "learning_rate": 0.00019450180730700702,
488
+ "loss": 1.0594,
489
+ "step": 240000
490
+ },
491
+ {
492
+ "epoch": 7.25,
493
+ "learning_rate": 0.00019314519654275284,
494
+ "loss": 1.0555,
495
+ "step": 243000
496
+ },
497
+ {
498
+ "epoch": 7.34,
499
+ "learning_rate": 0.0001917885857784986,
500
+ "loss": 1.057,
501
+ "step": 246000
502
+ },
503
+ {
504
+ "epoch": 7.43,
505
+ "learning_rate": 0.0001904319750142444,
506
+ "loss": 1.0585,
507
+ "step": 249000
508
+ },
509
+ {
510
+ "epoch": 7.52,
511
+ "learning_rate": 0.00018907536424999017,
512
+ "loss": 1.0534,
513
+ "step": 252000
514
+ },
515
+ {
516
+ "epoch": 7.61,
517
+ "learning_rate": 0.00018771875348573598,
518
+ "loss": 1.0655,
519
+ "step": 255000
520
+ },
521
+ {
522
+ "epoch": 7.7,
523
+ "learning_rate": 0.00018636214272148174,
524
+ "loss": 1.056,
525
+ "step": 258000
526
+ },
527
+ {
528
+ "epoch": 7.79,
529
+ "learning_rate": 0.00018500553195722756,
530
+ "loss": 1.0638,
531
+ "step": 261000
532
+ },
533
+ {
534
+ "epoch": 7.88,
535
+ "learning_rate": 0.00018364892119297334,
536
+ "loss": 1.0521,
537
+ "step": 264000
538
+ },
539
+ {
540
+ "epoch": 7.97,
541
+ "learning_rate": 0.00018229231042871913,
542
+ "loss": 1.0633,
543
+ "step": 267000
544
+ },
545
+ {
546
+ "epoch": 8.06,
547
+ "learning_rate": 0.00018093569966446492,
548
+ "loss": 1.0345,
549
+ "step": 270000
550
+ },
551
+ {
552
+ "epoch": 8.15,
553
+ "learning_rate": 0.0001795790889002107,
554
+ "loss": 1.0186,
555
+ "step": 273000
556
+ },
557
+ {
558
+ "epoch": 8.24,
559
+ "learning_rate": 0.00017822247813595652,
560
+ "loss": 1.0141,
561
+ "step": 276000
562
+ },
563
+ {
564
+ "epoch": 8.33,
565
+ "learning_rate": 0.00017686586737170228,
566
+ "loss": 1.0184,
567
+ "step": 279000
568
+ },
569
+ {
570
+ "epoch": 8.42,
571
+ "learning_rate": 0.0001755092566074481,
572
+ "loss": 1.0184,
573
+ "step": 282000
574
+ },
575
+ {
576
+ "epoch": 8.51,
577
+ "learning_rate": 0.00017415264584319385,
578
+ "loss": 1.0222,
579
+ "step": 285000
580
+ },
581
+ {
582
+ "epoch": 8.6,
583
+ "learning_rate": 0.00017279603507893966,
584
+ "loss": 1.0176,
585
+ "step": 288000
586
+ },
587
+ {
588
+ "epoch": 8.68,
589
+ "learning_rate": 0.00017143942431468545,
590
+ "loss": 1.0236,
591
+ "step": 291000
592
+ },
593
+ {
594
+ "epoch": 8.77,
595
+ "learning_rate": 0.00017008281355043123,
596
+ "loss": 1.0278,
597
+ "step": 294000
598
+ },
599
+ {
600
+ "epoch": 8.86,
601
+ "learning_rate": 0.00016872620278617702,
602
+ "loss": 1.0076,
603
+ "step": 297000
604
+ },
605
+ {
606
+ "epoch": 8.95,
607
+ "learning_rate": 0.0001673695920219228,
608
+ "loss": 1.0248,
609
+ "step": 300000
610
+ },
611
+ {
612
+ "epoch": 9.04,
613
+ "learning_rate": 0.00016601298125766862,
614
+ "loss": 0.9915,
615
+ "step": 303000
616
+ },
617
+ {
618
+ "epoch": 9.13,
619
+ "learning_rate": 0.00016465637049341438,
620
+ "loss": 0.9759,
621
+ "step": 306000
622
+ },
623
+ {
624
+ "epoch": 9.22,
625
+ "learning_rate": 0.0001632997597291602,
626
+ "loss": 0.9813,
627
+ "step": 309000
628
+ },
629
+ {
630
+ "epoch": 9.31,
631
+ "learning_rate": 0.00016194314896490595,
632
+ "loss": 0.9853,
633
+ "step": 312000
634
+ },
635
+ {
636
+ "epoch": 9.4,
637
+ "learning_rate": 0.00016058653820065177,
638
+ "loss": 0.9808,
639
+ "step": 315000
640
+ },
641
+ {
642
+ "epoch": 9.49,
643
+ "learning_rate": 0.00015922992743639755,
644
+ "loss": 0.9759,
645
+ "step": 318000
646
+ },
647
+ {
648
+ "epoch": 9.58,
649
+ "learning_rate": 0.00015787331667214334,
650
+ "loss": 0.9852,
651
+ "step": 321000
652
+ },
653
+ {
654
+ "epoch": 9.67,
655
+ "learning_rate": 0.00015651670590788913,
656
+ "loss": 0.9796,
657
+ "step": 324000
658
+ },
659
+ {
660
+ "epoch": 9.76,
661
+ "learning_rate": 0.0001551600951436349,
662
+ "loss": 0.9871,
663
+ "step": 327000
664
+ },
665
+ {
666
+ "epoch": 9.85,
667
+ "learning_rate": 0.0001538034843793807,
668
+ "loss": 0.9953,
669
+ "step": 330000
670
+ },
671
+ {
672
+ "epoch": 9.94,
673
+ "learning_rate": 0.00015244687361512649,
674
+ "loss": 0.9883,
675
+ "step": 333000
676
+ },
677
+ {
678
+ "epoch": 10.03,
679
+ "learning_rate": 0.0001510902628508723,
680
+ "loss": 0.9735,
681
+ "step": 336000
682
+ },
683
+ {
684
+ "epoch": 10.12,
685
+ "learning_rate": 0.00014973365208661809,
686
+ "loss": 0.9509,
687
+ "step": 339000
688
+ },
689
+ {
690
+ "epoch": 10.21,
691
+ "learning_rate": 0.00014837704132236387,
692
+ "loss": 0.9448,
693
+ "step": 342000
694
+ },
695
+ {
696
+ "epoch": 10.3,
697
+ "learning_rate": 0.00014702043055810966,
698
+ "loss": 0.9395,
699
+ "step": 345000
700
+ },
701
+ {
702
+ "epoch": 10.39,
703
+ "learning_rate": 0.00014566381979385544,
704
+ "loss": 0.9438,
705
+ "step": 348000
706
+ },
707
+ {
708
+ "epoch": 10.48,
709
+ "learning_rate": 0.00014430720902960123,
710
+ "loss": 0.9498,
711
+ "step": 351000
712
+ },
713
+ {
714
+ "epoch": 10.57,
715
+ "learning_rate": 0.00014295059826534702,
716
+ "loss": 0.9481,
717
+ "step": 354000
718
+ },
719
+ {
720
+ "epoch": 10.65,
721
+ "learning_rate": 0.0001415939875010928,
722
+ "loss": 0.9509,
723
+ "step": 357000
724
+ },
725
+ {
726
+ "epoch": 10.74,
727
+ "learning_rate": 0.0001402373767368386,
728
+ "loss": 0.9527,
729
+ "step": 360000
730
+ },
731
+ {
732
+ "epoch": 10.83,
733
+ "learning_rate": 0.0001388807659725844,
734
+ "loss": 0.944,
735
+ "step": 363000
736
+ },
737
+ {
738
+ "epoch": 10.92,
739
+ "learning_rate": 0.0001375241552083302,
740
+ "loss": 0.9427,
741
+ "step": 366000
742
+ },
743
+ {
744
+ "epoch": 11.01,
745
+ "learning_rate": 0.00013616754444407598,
746
+ "loss": 0.9511,
747
+ "step": 369000
748
+ },
749
+ {
750
+ "epoch": 11.1,
751
+ "learning_rate": 0.00013481093367982176,
752
+ "loss": 0.901,
753
+ "step": 372000
754
+ },
755
+ {
756
+ "epoch": 11.19,
757
+ "learning_rate": 0.00013345432291556755,
758
+ "loss": 0.9175,
759
+ "step": 375000
760
+ },
761
+ {
762
+ "epoch": 11.28,
763
+ "learning_rate": 0.00013209771215131334,
764
+ "loss": 0.9061,
765
+ "step": 378000
766
+ },
767
+ {
768
+ "epoch": 11.37,
769
+ "learning_rate": 0.00013074110138705912,
770
+ "loss": 0.9175,
771
+ "step": 381000
772
+ },
773
+ {
774
+ "epoch": 11.46,
775
+ "learning_rate": 0.0001293844906228049,
776
+ "loss": 0.9175,
777
+ "step": 384000
778
+ },
779
+ {
780
+ "epoch": 11.55,
781
+ "learning_rate": 0.0001280278798585507,
782
+ "loss": 0.9149,
783
+ "step": 387000
784
+ },
785
+ {
786
+ "epoch": 11.64,
787
+ "learning_rate": 0.0001266712690942965,
788
+ "loss": 0.9155,
789
+ "step": 390000
790
+ },
791
+ {
792
+ "epoch": 11.73,
793
+ "learning_rate": 0.0001253146583300423,
794
+ "loss": 0.9129,
795
+ "step": 393000
796
+ },
797
+ {
798
+ "epoch": 11.82,
799
+ "learning_rate": 0.00012395804756578808,
800
+ "loss": 0.9178,
801
+ "step": 396000
802
+ },
803
+ {
804
+ "epoch": 11.91,
805
+ "learning_rate": 0.00012260143680153387,
806
+ "loss": 0.912,
807
+ "step": 399000
808
+ },
809
+ {
810
+ "epoch": 12.0,
811
+ "learning_rate": 0.00012124482603727964,
812
+ "loss": 0.9217,
813
+ "step": 402000
814
+ },
815
+ {
816
+ "epoch": 12.09,
817
+ "learning_rate": 0.00011988821527302545,
818
+ "loss": 0.8778,
819
+ "step": 405000
820
+ },
821
+ {
822
+ "epoch": 12.18,
823
+ "learning_rate": 0.00011853160450877124,
824
+ "loss": 0.8741,
825
+ "step": 408000
826
+ },
827
+ {
828
+ "epoch": 12.27,
829
+ "learning_rate": 0.00011717499374451703,
830
+ "loss": 0.8786,
831
+ "step": 411000
832
+ },
833
+ {
834
+ "epoch": 12.36,
835
+ "learning_rate": 0.00011581838298026281,
836
+ "loss": 0.8837,
837
+ "step": 414000
838
+ },
839
+ {
840
+ "epoch": 12.45,
841
+ "learning_rate": 0.0001144617722160086,
842
+ "loss": 0.883,
843
+ "step": 417000
844
+ },
845
+ {
846
+ "epoch": 12.53,
847
+ "learning_rate": 0.00011310516145175439,
848
+ "loss": 0.8764,
849
+ "step": 420000
850
+ },
851
+ {
852
+ "epoch": 12.62,
853
+ "learning_rate": 0.00011174855068750017,
854
+ "loss": 0.8881,
855
+ "step": 423000
856
+ },
857
+ {
858
+ "epoch": 12.71,
859
+ "learning_rate": 0.00011039193992324596,
860
+ "loss": 0.8844,
861
+ "step": 426000
862
+ },
863
+ {
864
+ "epoch": 12.8,
865
+ "learning_rate": 0.00010903532915899175,
866
+ "loss": 0.8838,
867
+ "step": 429000
868
+ },
869
+ {
870
+ "epoch": 12.89,
871
+ "learning_rate": 0.00010767871839473755,
872
+ "loss": 0.8799,
873
+ "step": 432000
874
+ },
875
+ {
876
+ "epoch": 12.98,
877
+ "learning_rate": 0.00010632210763048335,
878
+ "loss": 0.8766,
879
+ "step": 435000
880
+ },
881
+ {
882
+ "epoch": 13.07,
883
+ "learning_rate": 0.00010496549686622913,
884
+ "loss": 0.8562,
885
+ "step": 438000
886
+ },
887
+ {
888
+ "epoch": 13.16,
889
+ "learning_rate": 0.00010360888610197492,
890
+ "loss": 0.8445,
891
+ "step": 441000
892
+ },
893
+ {
894
+ "epoch": 13.25,
895
+ "learning_rate": 0.0001022522753377207,
896
+ "loss": 0.8422,
897
+ "step": 444000
898
+ },
899
+ {
900
+ "epoch": 13.34,
901
+ "learning_rate": 0.00010089566457346649,
902
+ "loss": 0.8405,
903
+ "step": 447000
904
+ },
905
+ {
906
+ "epoch": 13.43,
907
+ "learning_rate": 9.953905380921228e-05,
908
+ "loss": 0.8456,
909
+ "step": 450000
910
+ },
911
+ {
912
+ "epoch": 13.52,
913
+ "learning_rate": 9.818244304495806e-05,
914
+ "loss": 0.8516,
915
+ "step": 453000
916
+ },
917
+ {
918
+ "epoch": 13.61,
919
+ "learning_rate": 9.682583228070386e-05,
920
+ "loss": 0.8514,
921
+ "step": 456000
922
+ },
923
+ {
924
+ "epoch": 13.7,
925
+ "learning_rate": 9.546922151644965e-05,
926
+ "loss": 0.8465,
927
+ "step": 459000
928
+ },
929
+ {
930
+ "epoch": 13.79,
931
+ "learning_rate": 9.411261075219544e-05,
932
+ "loss": 0.8499,
933
+ "step": 462000
934
+ },
935
+ {
936
+ "epoch": 13.88,
937
+ "learning_rate": 9.275599998794124e-05,
938
+ "loss": 0.8582,
939
+ "step": 465000
940
+ },
941
+ {
942
+ "epoch": 13.97,
943
+ "learning_rate": 9.139938922368702e-05,
944
+ "loss": 0.8544,
945
+ "step": 468000
946
+ },
947
+ {
948
+ "epoch": 14.06,
949
+ "learning_rate": 9.004277845943281e-05,
950
+ "loss": 0.8226,
951
+ "step": 471000
952
+ },
953
+ {
954
+ "epoch": 14.15,
955
+ "learning_rate": 8.86861676951786e-05,
956
+ "loss": 0.8132,
957
+ "step": 474000
958
+ },
959
+ {
960
+ "epoch": 14.24,
961
+ "learning_rate": 8.732955693092438e-05,
962
+ "loss": 0.8196,
963
+ "step": 477000
964
+ },
965
+ {
966
+ "epoch": 14.33,
967
+ "learning_rate": 8.597294616667018e-05,
968
+ "loss": 0.8221,
969
+ "step": 480000
970
+ },
971
+ {
972
+ "epoch": 14.42,
973
+ "learning_rate": 8.461633540241597e-05,
974
+ "loss": 0.8155,
975
+ "step": 483000
976
+ },
977
+ {
978
+ "epoch": 14.5,
979
+ "learning_rate": 8.325972463816176e-05,
980
+ "loss": 0.8219,
981
+ "step": 486000
982
+ },
983
+ {
984
+ "epoch": 14.59,
985
+ "learning_rate": 8.190311387390754e-05,
986
+ "loss": 0.8171,
987
+ "step": 489000
988
+ },
989
+ {
990
+ "epoch": 14.68,
991
+ "learning_rate": 8.054650310965333e-05,
992
+ "loss": 0.8116,
993
+ "step": 492000
994
+ },
995
+ {
996
+ "epoch": 14.77,
997
+ "learning_rate": 7.918989234539913e-05,
998
+ "loss": 0.8213,
999
+ "step": 495000
1000
+ },
1001
+ {
1002
+ "epoch": 14.86,
1003
+ "learning_rate": 7.783328158114491e-05,
1004
+ "loss": 0.8154,
1005
+ "step": 498000
1006
+ },
1007
+ {
1008
+ "epoch": 14.95,
1009
+ "learning_rate": 7.64766708168907e-05,
1010
+ "loss": 0.824,
1011
+ "step": 501000
1012
+ },
1013
+ {
1014
+ "epoch": 15.04,
1015
+ "learning_rate": 7.512006005263649e-05,
1016
+ "loss": 0.8068,
1017
+ "step": 504000
1018
+ },
1019
+ {
1020
+ "epoch": 15.13,
1021
+ "learning_rate": 7.376344928838229e-05,
1022
+ "loss": 0.7813,
1023
+ "step": 507000
1024
+ },
1025
+ {
1026
+ "epoch": 15.22,
1027
+ "learning_rate": 7.240683852412807e-05,
1028
+ "loss": 0.7947,
1029
+ "step": 510000
1030
+ },
1031
+ {
1032
+ "epoch": 15.31,
1033
+ "learning_rate": 7.105022775987386e-05,
1034
+ "loss": 0.7899,
1035
+ "step": 513000
1036
+ },
1037
+ {
1038
+ "epoch": 15.4,
1039
+ "learning_rate": 6.969361699561965e-05,
1040
+ "loss": 0.7885,
1041
+ "step": 516000
1042
+ },
1043
+ {
1044
+ "epoch": 15.49,
1045
+ "learning_rate": 6.833700623136545e-05,
1046
+ "loss": 0.7963,
1047
+ "step": 519000
1048
+ },
1049
+ {
1050
+ "epoch": 15.58,
1051
+ "learning_rate": 6.698039546711123e-05,
1052
+ "loss": 0.787,
1053
+ "step": 522000
1054
+ },
1055
+ {
1056
+ "epoch": 15.67,
1057
+ "learning_rate": 6.562378470285702e-05,
1058
+ "loss": 0.7877,
1059
+ "step": 525000
1060
+ },
1061
+ {
1062
+ "epoch": 15.76,
1063
+ "learning_rate": 6.42671739386028e-05,
1064
+ "loss": 0.7949,
1065
+ "step": 528000
1066
+ },
1067
+ {
1068
+ "epoch": 15.85,
1069
+ "learning_rate": 6.291056317434859e-05,
1070
+ "loss": 0.7835,
1071
+ "step": 531000
1072
+ },
1073
+ {
1074
+ "epoch": 15.94,
1075
+ "learning_rate": 6.155395241009439e-05,
1076
+ "loss": 0.7904,
1077
+ "step": 534000
1078
+ },
1079
+ {
1080
+ "epoch": 16.03,
1081
+ "learning_rate": 6.019734164584017e-05,
1082
+ "loss": 0.7797,
1083
+ "step": 537000
1084
+ },
1085
+ {
1086
+ "epoch": 16.12,
1087
+ "learning_rate": 5.8840730881585965e-05,
1088
+ "loss": 0.7606,
1089
+ "step": 540000
1090
+ },
1091
+ {
1092
+ "epoch": 16.21,
1093
+ "learning_rate": 5.748412011733175e-05,
1094
+ "loss": 0.7671,
1095
+ "step": 543000
1096
+ },
1097
+ {
1098
+ "epoch": 16.3,
1099
+ "learning_rate": 5.6127509353077545e-05,
1100
+ "loss": 0.764,
1101
+ "step": 546000
1102
+ },
1103
+ {
1104
+ "epoch": 16.38,
1105
+ "learning_rate": 5.477089858882333e-05,
1106
+ "loss": 0.758,
1107
+ "step": 549000
1108
+ },
1109
+ {
1110
+ "epoch": 16.47,
1111
+ "learning_rate": 5.3414287824569124e-05,
1112
+ "loss": 0.7518,
1113
+ "step": 552000
1114
+ },
1115
+ {
1116
+ "epoch": 16.56,
1117
+ "learning_rate": 5.205767706031491e-05,
1118
+ "loss": 0.7644,
1119
+ "step": 555000
1120
+ },
1121
+ {
1122
+ "epoch": 16.65,
1123
+ "learning_rate": 5.07010662960607e-05,
1124
+ "loss": 0.7577,
1125
+ "step": 558000
1126
+ },
1127
+ {
1128
+ "epoch": 16.74,
1129
+ "learning_rate": 4.934445553180649e-05,
1130
+ "loss": 0.762,
1131
+ "step": 561000
1132
+ },
1133
+ {
1134
+ "epoch": 16.83,
1135
+ "learning_rate": 4.7987844767552283e-05,
1136
+ "loss": 0.7548,
1137
+ "step": 564000
1138
+ },
1139
+ {
1140
+ "epoch": 16.92,
1141
+ "learning_rate": 4.663123400329807e-05,
1142
+ "loss": 0.7567,
1143
+ "step": 567000
1144
+ },
1145
+ {
1146
+ "epoch": 17.01,
1147
+ "learning_rate": 4.5274623239043856e-05,
1148
+ "loss": 0.7613,
1149
+ "step": 570000
1150
+ },
1151
+ {
1152
+ "epoch": 17.1,
1153
+ "learning_rate": 4.391801247478964e-05,
1154
+ "loss": 0.7346,
1155
+ "step": 573000
1156
+ },
1157
+ {
1158
+ "epoch": 17.19,
1159
+ "learning_rate": 4.256140171053544e-05,
1160
+ "loss": 0.7323,
1161
+ "step": 576000
1162
+ },
1163
+ {
1164
+ "epoch": 17.28,
1165
+ "learning_rate": 4.120479094628123e-05,
1166
+ "loss": 0.7322,
1167
+ "step": 579000
1168
+ },
1169
+ {
1170
+ "epoch": 17.37,
1171
+ "learning_rate": 3.9848180182027016e-05,
1172
+ "loss": 0.7456,
1173
+ "step": 582000
1174
+ },
1175
+ {
1176
+ "epoch": 17.46,
1177
+ "learning_rate": 3.84915694177728e-05,
1178
+ "loss": 0.7324,
1179
+ "step": 585000
1180
+ },
1181
+ {
1182
+ "epoch": 17.55,
1183
+ "learning_rate": 3.7134958653518595e-05,
1184
+ "loss": 0.7414,
1185
+ "step": 588000
1186
+ },
1187
+ {
1188
+ "epoch": 17.64,
1189
+ "learning_rate": 3.577834788926438e-05,
1190
+ "loss": 0.7334,
1191
+ "step": 591000
1192
+ },
1193
+ {
1194
+ "epoch": 17.73,
1195
+ "learning_rate": 3.442173712501017e-05,
1196
+ "loss": 0.731,
1197
+ "step": 594000
1198
+ },
1199
+ {
1200
+ "epoch": 17.82,
1201
+ "learning_rate": 3.306512636075596e-05,
1202
+ "loss": 0.7488,
1203
+ "step": 597000
1204
+ },
1205
+ {
1206
+ "epoch": 17.91,
1207
+ "learning_rate": 3.170851559650175e-05,
1208
+ "loss": 0.7287,
1209
+ "step": 600000
1210
+ },
1211
+ {
1212
+ "epoch": 18.0,
1213
+ "learning_rate": 3.035190483224754e-05,
1214
+ "loss": 0.7361,
1215
+ "step": 603000
1216
+ },
1217
+ {
1218
+ "epoch": 18.09,
1219
+ "learning_rate": 2.8995294067993327e-05,
1220
+ "loss": 0.7173,
1221
+ "step": 606000
1222
+ },
1223
+ {
1224
+ "epoch": 18.18,
1225
+ "learning_rate": 2.763868330373912e-05,
1226
+ "loss": 0.7173,
1227
+ "step": 609000
1228
+ },
1229
+ {
1230
+ "epoch": 18.27,
1231
+ "learning_rate": 2.6282072539484907e-05,
1232
+ "loss": 0.7138,
1233
+ "step": 612000
1234
+ },
1235
+ {
1236
+ "epoch": 18.35,
1237
+ "learning_rate": 2.4925461775230697e-05,
1238
+ "loss": 0.71,
1239
+ "step": 615000
1240
+ },
1241
+ {
1242
+ "epoch": 18.44,
1243
+ "learning_rate": 2.3568851010976486e-05,
1244
+ "loss": 0.7128,
1245
+ "step": 618000
1246
+ },
1247
+ {
1248
+ "epoch": 18.53,
1249
+ "learning_rate": 2.2212240246722276e-05,
1250
+ "loss": 0.7168,
1251
+ "step": 621000
1252
+ },
1253
+ {
1254
+ "epoch": 18.62,
1255
+ "learning_rate": 2.0855629482468066e-05,
1256
+ "loss": 0.7184,
1257
+ "step": 624000
1258
+ },
1259
+ {
1260
+ "epoch": 18.71,
1261
+ "learning_rate": 1.9499018718213856e-05,
1262
+ "loss": 0.7099,
1263
+ "step": 627000
1264
+ },
1265
+ {
1266
+ "epoch": 18.8,
1267
+ "learning_rate": 1.8142407953959646e-05,
1268
+ "loss": 0.7047,
1269
+ "step": 630000
1270
+ },
1271
+ {
1272
+ "epoch": 18.89,
1273
+ "learning_rate": 1.6785797189705435e-05,
1274
+ "loss": 0.7131,
1275
+ "step": 633000
1276
+ },
1277
+ {
1278
+ "epoch": 18.98,
1279
+ "learning_rate": 1.5429186425451222e-05,
1280
+ "loss": 0.7151,
1281
+ "step": 636000
1282
+ },
1283
+ {
1284
+ "epoch": 19.07,
1285
+ "learning_rate": 1.4072575661197012e-05,
1286
+ "loss": 0.7058,
1287
+ "step": 639000
1288
+ },
1289
+ {
1290
+ "epoch": 19.16,
1291
+ "learning_rate": 1.2715964896942801e-05,
1292
+ "loss": 0.6982,
1293
+ "step": 642000
1294
+ },
1295
+ {
1296
+ "epoch": 19.25,
1297
+ "learning_rate": 1.1359354132688591e-05,
1298
+ "loss": 0.6983,
1299
+ "step": 645000
1300
+ },
1301
+ {
1302
+ "epoch": 19.34,
1303
+ "learning_rate": 1.0002743368434381e-05,
1304
+ "loss": 0.6932,
1305
+ "step": 648000
1306
+ },
1307
+ {
1308
+ "epoch": 19.43,
1309
+ "learning_rate": 8.64613260418017e-06,
1310
+ "loss": 0.7025,
1311
+ "step": 651000
1312
+ },
1313
+ {
1314
+ "epoch": 19.52,
1315
+ "learning_rate": 7.289521839925958e-06,
1316
+ "loss": 0.6945,
1317
+ "step": 654000
1318
+ },
1319
+ {
1320
+ "epoch": 19.61,
1321
+ "learning_rate": 5.932911075671748e-06,
1322
+ "loss": 0.7039,
1323
+ "step": 657000
1324
+ },
1325
+ {
1326
+ "epoch": 19.7,
1327
+ "learning_rate": 4.576300311417537e-06,
1328
+ "loss": 0.6921,
1329
+ "step": 660000
1330
+ },
1331
+ {
1332
+ "epoch": 19.79,
1333
+ "learning_rate": 3.2196895471633263e-06,
1334
+ "loss": 0.6914,
1335
+ "step": 663000
1336
+ },
1337
+ {
1338
+ "epoch": 19.88,
1339
+ "learning_rate": 1.863078782909116e-06,
1340
+ "loss": 0.6969,
1341
+ "step": 666000
1342
+ },
1343
+ {
1344
+ "epoch": 19.97,
1345
+ "learning_rate": 5.064680186549053e-07,
1346
+ "loss": 0.6948,
1347
+ "step": 669000
1348
+ },
1349
+ {
1350
+ "epoch": 20.0,
1351
+ "step": 670120,
1352
+ "total_flos": 1.67362005330918e+21,
1353
+ "train_loss": 1.0658713307571661,
1354
+ "train_runtime": 426567.9926,
1355
+ "train_samples_per_second": 25.136,
1356
+ "train_steps_per_second": 1.571
1357
+ },
1358
+ {
1359
+ "epoch": 20.06,
1360
+ "learning_rate": 5.053313149301143e-07,
1361
+ "loss": 0.6923,
1362
+ "step": 672000
1363
+ },
1364
+ {
1365
+ "epoch": 20.15,
1366
+ "learning_rate": 5.035174260075754e-07,
1367
+ "loss": 0.6958,
1368
+ "step": 675000
1369
+ },
1370
+ {
1371
+ "epoch": 20.24,
1372
+ "learning_rate": 5.017035370850364e-07,
1373
+ "loss": 0.6885,
1374
+ "step": 678000
1375
+ },
1376
+ {
1377
+ "epoch": 20.32,
1378
+ "learning_rate": 4.998896481624976e-07,
1379
+ "loss": 0.6976,
1380
+ "step": 681000
1381
+ },
1382
+ {
1383
+ "epoch": 20.41,
1384
+ "learning_rate": 4.980757592399586e-07,
1385
+ "loss": 0.6997,
1386
+ "step": 684000
1387
+ },
1388
+ {
1389
+ "epoch": 20.5,
1390
+ "learning_rate": 4.962618703174198e-07,
1391
+ "loss": 0.6856,
1392
+ "step": 687000
1393
+ },
1394
+ {
1395
+ "epoch": 20.59,
1396
+ "learning_rate": 4.944479813948808e-07,
1397
+ "loss": 0.6866,
1398
+ "step": 690000
1399
+ },
1400
+ {
1401
+ "epoch": 20.68,
1402
+ "learning_rate": 4.926340924723419e-07,
1403
+ "loss": 0.6981,
1404
+ "step": 693000
1405
+ },
1406
+ {
1407
+ "epoch": 20.77,
1408
+ "learning_rate": 4.90820203549803e-07,
1409
+ "loss": 0.695,
1410
+ "step": 696000
1411
+ },
1412
+ {
1413
+ "epoch": 20.86,
1414
+ "learning_rate": 4.890063146272641e-07,
1415
+ "loss": 0.6946,
1416
+ "step": 699000
1417
+ },
1418
+ {
1419
+ "epoch": 20.95,
1420
+ "learning_rate": 4.871924257047252e-07,
1421
+ "loss": 0.6912,
1422
+ "step": 702000
1423
+ },
1424
+ {
1425
+ "epoch": 21.04,
1426
+ "learning_rate": 4.853785367821862e-07,
1427
+ "loss": 0.6885,
1428
+ "step": 705000
1429
+ },
1430
+ {
1431
+ "epoch": 21.13,
1432
+ "learning_rate": 4.835646478596474e-07,
1433
+ "loss": 0.6896,
1434
+ "step": 708000
1435
+ },
1436
+ {
1437
+ "epoch": 21.22,
1438
+ "learning_rate": 4.817507589371084e-07,
1439
+ "loss": 0.694,
1440
+ "step": 711000
1441
+ },
1442
+ {
1443
+ "epoch": 21.31,
1444
+ "learning_rate": 4.799368700145696e-07,
1445
+ "loss": 0.6885,
1446
+ "step": 714000
1447
+ },
1448
+ {
1449
+ "epoch": 21.4,
1450
+ "learning_rate": 4.781229810920306e-07,
1451
+ "loss": 0.6924,
1452
+ "step": 717000
1453
+ },
1454
+ {
1455
+ "epoch": 21.49,
1456
+ "learning_rate": 4.763090921694917e-07,
1457
+ "loss": 0.6928,
1458
+ "step": 720000
1459
+ },
1460
+ {
1461
+ "epoch": 21.58,
1462
+ "learning_rate": 4.744952032469528e-07,
1463
+ "loss": 0.6943,
1464
+ "step": 723000
1465
+ },
1466
+ {
1467
+ "epoch": 21.67,
1468
+ "learning_rate": 4.726813143244139e-07,
1469
+ "loss": 0.6893,
1470
+ "step": 726000
1471
+ },
1472
+ {
1473
+ "epoch": 21.76,
1474
+ "learning_rate": 4.70867425401875e-07,
1475
+ "loss": 0.6895,
1476
+ "step": 729000
1477
+ },
1478
+ {
1479
+ "epoch": 21.85,
1480
+ "learning_rate": 4.690535364793361e-07,
1481
+ "loss": 0.6949,
1482
+ "step": 732000
1483
+ },
1484
+ {
1485
+ "epoch": 21.94,
1486
+ "learning_rate": 4.6723964755679714e-07,
1487
+ "loss": 0.6919,
1488
+ "step": 735000
1489
+ },
1490
+ {
1491
+ "epoch": 22.03,
1492
+ "learning_rate": 4.6542575863425824e-07,
1493
+ "loss": 0.6885,
1494
+ "step": 738000
1495
+ },
1496
+ {
1497
+ "epoch": 22.12,
1498
+ "learning_rate": 4.636118697117194e-07,
1499
+ "loss": 0.6922,
1500
+ "step": 741000
1501
+ },
1502
+ {
1503
+ "epoch": 22.2,
1504
+ "learning_rate": 4.617979807891805e-07,
1505
+ "loss": 0.6863,
1506
+ "step": 744000
1507
+ },
1508
+ {
1509
+ "epoch": 22.29,
1510
+ "learning_rate": 4.599840918666416e-07,
1511
+ "loss": 0.6899,
1512
+ "step": 747000
1513
+ },
1514
+ {
1515
+ "epoch": 22.38,
1516
+ "learning_rate": 4.581702029441027e-07,
1517
+ "loss": 0.6844,
1518
+ "step": 750000
1519
+ },
1520
+ {
1521
+ "epoch": 22.47,
1522
+ "learning_rate": 4.563563140215638e-07,
1523
+ "loss": 0.6956,
1524
+ "step": 753000
1525
+ },
1526
+ {
1527
+ "epoch": 22.56,
1528
+ "learning_rate": 4.545424250990249e-07,
1529
+ "loss": 0.6916,
1530
+ "step": 756000
1531
+ },
1532
+ {
1533
+ "epoch": 22.65,
1534
+ "learning_rate": 4.527285361764859e-07,
1535
+ "loss": 0.6828,
1536
+ "step": 759000
1537
+ },
1538
+ {
1539
+ "epoch": 22.74,
1540
+ "learning_rate": 4.50914647253947e-07,
1541
+ "loss": 0.6865,
1542
+ "step": 762000
1543
+ },
1544
+ {
1545
+ "epoch": 22.83,
1546
+ "learning_rate": 4.491007583314081e-07,
1547
+ "loss": 0.6916,
1548
+ "step": 765000
1549
+ },
1550
+ {
1551
+ "epoch": 22.92,
1552
+ "learning_rate": 4.472868694088692e-07,
1553
+ "loss": 0.6876,
1554
+ "step": 768000
1555
+ },
1556
+ {
1557
+ "epoch": 23.01,
1558
+ "learning_rate": 4.454729804863303e-07,
1559
+ "loss": 0.6936,
1560
+ "step": 771000
1561
+ },
1562
+ {
1563
+ "epoch": 23.1,
1564
+ "learning_rate": 4.436590915637914e-07,
1565
+ "loss": 0.6908,
1566
+ "step": 774000
1567
+ },
1568
+ {
1569
+ "epoch": 23.19,
1570
+ "learning_rate": 4.418452026412525e-07,
1571
+ "loss": 0.6864,
1572
+ "step": 777000
1573
+ },
1574
+ {
1575
+ "epoch": 23.28,
1576
+ "learning_rate": 4.400313137187136e-07,
1577
+ "loss": 0.6823,
1578
+ "step": 780000
1579
+ },
1580
+ {
1581
+ "epoch": 23.37,
1582
+ "learning_rate": 4.3821742479617464e-07,
1583
+ "loss": 0.6914,
1584
+ "step": 783000
1585
+ },
1586
+ {
1587
+ "epoch": 23.46,
1588
+ "learning_rate": 4.3640353587363574e-07,
1589
+ "loss": 0.6915,
1590
+ "step": 786000
1591
+ },
1592
+ {
1593
+ "epoch": 23.55,
1594
+ "learning_rate": 4.3458964695109684e-07,
1595
+ "loss": 0.6873,
1596
+ "step": 789000
1597
+ },
1598
+ {
1599
+ "epoch": 23.64,
1600
+ "learning_rate": 4.3277575802855793e-07,
1601
+ "loss": 0.69,
1602
+ "step": 792000
1603
+ },
1604
+ {
1605
+ "epoch": 23.73,
1606
+ "learning_rate": 4.3096186910601903e-07,
1607
+ "loss": 0.6872,
1608
+ "step": 795000
1609
+ },
1610
+ {
1611
+ "epoch": 23.82,
1612
+ "learning_rate": 4.2914798018348013e-07,
1613
+ "loss": 0.6925,
1614
+ "step": 798000
1615
+ },
1616
+ {
1617
+ "epoch": 23.91,
1618
+ "learning_rate": 4.273340912609412e-07,
1619
+ "loss": 0.6877,
1620
+ "step": 801000
1621
+ },
1622
+ {
1623
+ "epoch": 24.0,
1624
+ "learning_rate": 4.2552020233840227e-07,
1625
+ "loss": 0.6908,
1626
+ "step": 804000
1627
+ },
1628
+ {
1629
+ "epoch": 24.09,
1630
+ "learning_rate": 4.2370631341586337e-07,
1631
+ "loss": 0.6898,
1632
+ "step": 807000
1633
+ },
1634
+ {
1635
+ "epoch": 24.17,
1636
+ "learning_rate": 4.218924244933245e-07,
1637
+ "loss": 0.6855,
1638
+ "step": 810000
1639
+ },
1640
+ {
1641
+ "epoch": 24.26,
1642
+ "learning_rate": 4.200785355707856e-07,
1643
+ "loss": 0.6865,
1644
+ "step": 813000
1645
+ },
1646
+ {
1647
+ "epoch": 24.35,
1648
+ "learning_rate": 4.182646466482467e-07,
1649
+ "loss": 0.685,
1650
+ "step": 816000
1651
+ },
1652
+ {
1653
+ "epoch": 24.44,
1654
+ "learning_rate": 4.164507577257078e-07,
1655
+ "loss": 0.6991,
1656
+ "step": 819000
1657
+ },
1658
+ {
1659
+ "epoch": 24.53,
1660
+ "learning_rate": 4.146368688031689e-07,
1661
+ "loss": 0.6891,
1662
+ "step": 822000
1663
+ },
1664
+ {
1665
+ "epoch": 24.62,
1666
+ "learning_rate": 4.1282297988063e-07,
1667
+ "loss": 0.6871,
1668
+ "step": 825000
1669
+ },
1670
+ {
1671
+ "epoch": 24.71,
1672
+ "learning_rate": 4.1100909095809104e-07,
1673
+ "loss": 0.6867,
1674
+ "step": 828000
1675
+ },
1676
+ {
1677
+ "epoch": 24.8,
1678
+ "learning_rate": 4.0919520203555214e-07,
1679
+ "loss": 0.688,
1680
+ "step": 831000
1681
+ },
1682
+ {
1683
+ "epoch": 24.89,
1684
+ "learning_rate": 4.0738131311301324e-07,
1685
+ "loss": 0.6849,
1686
+ "step": 834000
1687
+ },
1688
+ {
1689
+ "epoch": 24.98,
1690
+ "learning_rate": 4.0556742419047433e-07,
1691
+ "loss": 0.6881,
1692
+ "step": 837000
1693
+ },
1694
+ {
1695
+ "epoch": 25.0,
1696
+ "step": 837650,
1697
+ "total_flos": 2.0920258472167164e+21,
1698
+ "train_loss": 0.13803036045986866,
1699
+ "train_runtime": 107320.4824,
1700
+ "train_samples_per_second": 124.884,
1701
+ "train_steps_per_second": 7.805
1702
+ }
1703
+ ],
1704
+ "logging_steps": 3000,
1705
+ "max_steps": 837650,
1706
+ "num_train_epochs": 25,
1707
+ "save_steps": 500,
1708
+ "total_flos": 2.0920258472167164e+21,
1709
+ "trial_name": null,
1710
+ "trial_params": null
1711
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85b3b6a5e18625ed0537c25eb5a02b86ed14477bf6bc935ecef99791b9ff6f59
3
+ size 4600
vocab.json ADDED
@@ -0,0 +1,3303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\"": 1,
3
+ "+": 2,
4
+ "-": 3,
5
+ "[PAD]": 3300,
6
+ "[UNK]": 3299,
7
+ "]": 4,
8
+ "a": 5,
9
+ "b": 6,
10
+ "c": 7,
11
+ "d": 8,
12
+ "e": 9,
13
+ "f": 10,
14
+ "g": 11,
15
+ "h": 12,
16
+ "i": 13,
17
+ "j": 14,
18
+ "k": 15,
19
+ "l": 16,
20
+ "m": 17,
21
+ "n": 18,
22
+ "o": 19,
23
+ "p": 20,
24
+ "q": 21,
25
+ "r": 22,
26
+ "s": 23,
27
+ "t": 24,
28
+ "u": 25,
29
+ "v": 26,
30
+ "w": 27,
31
+ "x": 28,
32
+ "y": 29,
33
+ "z": 30,
34
+ "|": 0,
35
+ "°": 31,
36
+ "×": 32,
37
+ "à": 33,
38
+ "â": 34,
39
+ "ã": 35,
40
+ "ä": 36,
41
+ "ê": 37,
42
+ "í": 38,
43
+ "ö": 39,
44
+ "ú": 40,
45
+ "ü": 41,
46
+ "ā": 42,
47
+ "ė": 43,
48
+ "ę": 44,
49
+ "ł": 45,
50
+ "ş": 46,
51
+ "ż": 47,
52
+ "α": 48,
53
+ "β": 49,
54
+ "ι": 50,
55
+ "μ": 51,
56
+ "ο": 52,
57
+ "π": 53,
58
+ "а": 54,
59
+ "б": 55,
60
+ "в": 56,
61
+ "д": 57,
62
+ "е": 58,
63
+ "ж": 59,
64
+ "з": 60,
65
+ "и": 61,
66
+ "й": 62,
67
+ "к": 63,
68
+ "л": 64,
69
+ "м": 65,
70
+ "н": 66,
71
+ "о": 67,
72
+ "п": 68,
73
+ "р": 69,
74
+ "с": 70,
75
+ "т": 71,
76
+ "у": 72,
77
+ "х": 73,
78
+ "ц": 74,
79
+ "ч": 75,
80
+ "ш": 76,
81
+ "ы": 77,
82
+ "ь": 78,
83
+ "э": 79,
84
+ "ю": 80,
85
+ "я": 81,
86
+ "א": 82,
87
+ "ה": 83,
88
+ "י": 84,
89
+ "ל": 85,
90
+ "ש": 86,
91
+ "أ": 87,
92
+ "ا": 88,
93
+ "ب": 89,
94
+ "ث": 90,
95
+ "د": 91,
96
+ "س": 92,
97
+ "ل": 93,
98
+ "م": 94,
99
+ "ه": 95,
100
+ "و": 96,
101
+ "ي": 97,
102
+ "پ": 98,
103
+ "ک": 99,
104
+ "ھ": 100,
105
+ "ی": 101,
106
+ "ے": 102,
107
+ "ி": 103,
108
+ "จ": 104,
109
+ "เ": 105,
110
+ "ị": 106,
111
+ "​": 107,
112
+ "‐": 108,
113
+ "―": 109,
114
+ "‘": 110,
115
+ "“": 111,
116
+ "”": 112,
117
+ "‥": 113,
118
+ "…": 114,
119
+ "⁉": 115,
120
+ "℃": 116,
121
+ "ℓ": 117,
122
+ "⅔": 118,
123
+ "ⅱ": 119,
124
+ "ⅲ": 120,
125
+ "ⅴ": 121,
126
+ "ⅿ": 122,
127
+ "→": 123,
128
+ "∞": 124,
129
+ "①": 125,
130
+ "②": 126,
131
+ "③": 127,
132
+ "─": 128,
133
+ "○": 129,
134
+ "●": 130,
135
+ "★": 131,
136
+ "✕": 132,
137
+ "、": 133,
138
+ "。": 134,
139
+ "々": 135,
140
+ "〆": 136,
141
+ "〇": 137,
142
+ "〉": 138,
143
+ "《": 139,
144
+ "》": 140,
145
+ "「": 141,
146
+ "」": 142,
147
+ "『": 143,
148
+ "』": 144,
149
+ "【": 145,
150
+ "】": 146,
151
+ "〜": 147,
152
+ "ぁ": 148,
153
+ "あ": 149,
154
+ "ぃ": 150,
155
+ "い": 151,
156
+ "ぅ": 152,
157
+ "う": 153,
158
+ "ぇ": 154,
159
+ "え": 155,
160
+ "ぉ": 156,
161
+ "お": 157,
162
+ "か": 158,
163
+ "が": 159,
164
+ "き": 160,
165
+ "ぎ": 161,
166
+ "く": 162,
167
+ "ぐ": 163,
168
+ "け": 164,
169
+ "げ": 165,
170
+ "こ": 166,
171
+ "ご": 167,
172
+ "さ": 168,
173
+ "ざ": 169,
174
+ "し": 170,
175
+ "じ": 171,
176
+ "す": 172,
177
+ "ず": 173,
178
+ "せ": 174,
179
+ "ぜ": 175,
180
+ "そ": 176,
181
+ "ぞ": 177,
182
+ "た": 178,
183
+ "だ": 179,
184
+ "ち": 180,
185
+ "ぢ": 181,
186
+ "っ": 182,
187
+ "つ": 183,
188
+ "づ": 184,
189
+ "て": 185,
190
+ "で": 186,
191
+ "と": 187,
192
+ "ど": 188,
193
+ "な": 189,
194
+ "に": 190,
195
+ "ぬ": 191,
196
+ "ね": 192,
197
+ "の": 193,
198
+ "は": 194,
199
+ "ば": 195,
200
+ "ぱ": 196,
201
+ "ひ": 197,
202
+ "び": 198,
203
+ "ぴ": 199,
204
+ "ふ": 200,
205
+ "ぶ": 201,
206
+ "ぷ": 202,
207
+ "へ": 203,
208
+ "べ": 204,
209
+ "ぺ": 205,
210
+ "ほ": 206,
211
+ "ぼ": 207,
212
+ "ぽ": 208,
213
+ "ま": 209,
214
+ "み": 210,
215
+ "む": 211,
216
+ "め": 212,
217
+ "も": 213,
218
+ "ゃ": 214,
219
+ "や": 215,
220
+ "ゅ": 216,
221
+ "ゆ": 217,
222
+ "ょ": 218,
223
+ "よ": 219,
224
+ "ら": 220,
225
+ "り": 221,
226
+ "る": 222,
227
+ "れ": 223,
228
+ "ろ": 224,
229
+ "ゎ": 225,
230
+ "わ": 226,
231
+ "を": 227,
232
+ "ん": 228,
233
+ "ゔ": 229,
234
+ "゛": 230,
235
+ "ァ": 231,
236
+ "ア": 232,
237
+ "ィ": 233,
238
+ "イ": 234,
239
+ "ゥ": 235,
240
+ "ウ": 236,
241
+ "ェ": 237,
242
+ "エ": 238,
243
+ "ォ": 239,
244
+ "オ": 240,
245
+ "カ": 241,
246
+ "ガ": 242,
247
+ "キ": 243,
248
+ "ギ": 244,
249
+ "ク": 245,
250
+ "グ": 246,
251
+ "ケ": 247,
252
+ "ゲ": 248,
253
+ "コ": 249,
254
+ "ゴ": 250,
255
+ "サ": 251,
256
+ "ザ": 252,
257
+ "シ": 253,
258
+ "ジ": 254,
259
+ "ス": 255,
260
+ "ズ": 256,
261
+ "セ": 257,
262
+ "ゼ": 258,
263
+ "ソ": 259,
264
+ "ゾ": 260,
265
+ "タ": 261,
266
+ "ダ": 262,
267
+ "チ": 263,
268
+ "ヂ": 264,
269
+ "ッ": 265,
270
+ "ツ": 266,
271
+ "ヅ": 267,
272
+ "テ": 268,
273
+ "デ": 269,
274
+ "ト": 270,
275
+ "ド": 271,
276
+ "ナ": 272,
277
+ "ニ": 273,
278
+ "ヌ": 274,
279
+ "ネ": 275,
280
+ "ノ": 276,
281
+ "ハ": 277,
282
+ "バ": 278,
283
+ "パ": 279,
284
+ "ヒ": 280,
285
+ "ビ": 281,
286
+ "ピ": 282,
287
+ "フ": 283,
288
+ "ブ": 284,
289
+ "プ": 285,
290
+ "ヘ": 286,
291
+ "ベ": 287,
292
+ "ペ": 288,
293
+ "ホ": 289,
294
+ "ボ": 290,
295
+ "ポ": 291,
296
+ "マ": 292,
297
+ "ミ": 293,
298
+ "ム": 294,
299
+ "メ": 295,
300
+ "モ": 296,
301
+ "ャ": 297,
302
+ "ヤ": 298,
303
+ "ュ": 299,
304
+ "ユ": 300,
305
+ "ョ": 301,
306
+ "ヨ": 302,
307
+ "ラ": 303,
308
+ "リ": 304,
309
+ "ル": 305,
310
+ "レ": 306,
311
+ "ロ": 307,
312
+ "ワ": 308,
313
+ "ン": 309,
314
+ "ヴ": 310,
315
+ "ヵ": 311,
316
+ "ヶ": 312,
317
+ "・": 313,
318
+ "ー": 314,
319
+ "ㄷ": 315,
320
+ "ㅏ": 316,
321
+ "ㅑ": 317,
322
+ "ㅜ": 318,
323
+ "ㅠ": 319,
324
+ "ㅡ": 320,
325
+ "ㇱ": 321,
326
+ "ㇴ": 322,
327
+ "ㇶ": 323,
328
+ "ㇻ": 324,
329
+ "ㇽ": 325,
330
+ "㎏": 326,
331
+ "㎖": 327,
332
+ "㎝": 328,
333
+ "㎞": 329,
334
+ "㏌": 330,
335
+ "一": 331,
336
+ "丁": 332,
337
+ "七": 333,
338
+ "万": 334,
339
+ "丈": 335,
340
+ "三": 336,
341
+ "上": 337,
342
+ "下": 338,
343
+ "不": 339,
344
+ "与": 340,
345
+ "丑": 341,
346
+ "且": 342,
347
+ "世": 343,
348
+ "丘": 344,
349
+ "両": 345,
350
+ "並": 346,
351
+ "中": 347,
352
+ "串": 348,
353
+ "丸": 349,
354
+ "丹": 350,
355
+ "主": 351,
356
+ "丼": 352,
357
+ "乃": 353,
358
+ "久": 354,
359
+ "之": 355,
360
+ "乏": 356,
361
+ "乗": 357,
362
+ "乙": 358,
363
+ "九": 359,
364
+ "乞": 360,
365
+ "也": 361,
366
+ "乱": 362,
367
+ "乳": 363,
368
+ "乾": 364,
369
+ "亀": 365,
370
+ "了": 366,
371
+ "予": 367,
372
+ "争": 368,
373
+ "事": 369,
374
+ "二": 370,
375
+ "云": 371,
376
+ "互": 372,
377
+ "五": 373,
378
+ "井": 374,
379
+ "些": 375,
380
+ "亜": 376,
381
+ "亡": 377,
382
+ "交": 378,
383
+ "京": 379,
384
+ "亭": 380,
385
+ "亮": 381,
386
+ "人": 382,
387
+ "仁": 383,
388
+ "仇": 384,
389
+ "今": 385,
390
+ "介": 386,
391
+ "从": 387,
392
+ "仏": 388,
393
+ "仔": 389,
394
+ "仕": 390,
395
+ "他": 391,
396
+ "付": 392,
397
+ "仙": 393,
398
+ "代": 394,
399
+ "令": 395,
400
+ "以": 396,
401
+ "仮": 397,
402
+ "仰": 398,
403
+ "仲": 399,
404
+ "件": 400,
405
+ "任": 401,
406
+ "份": 402,
407
+ "企": 403,
408
+ "伊": 404,
409
+ "伎": 405,
410
+ "伏": 406,
411
+ "伐": 407,
412
+ "休": 408,
413
+ "会": 409,
414
+ "伝": 410,
415
+ "伯": 411,
416
+ "伴": 412,
417
+ "伶": 413,
418
+ "伸": 414,
419
+ "伺": 415,
420
+ "似": 416,
421
+ "伽": 417,
422
+ "佃": 418,
423
+ "佇": 419,
424
+ "位": 420,
425
+ "低": 421,
426
+ "住": 422,
427
+ "佐": 423,
428
+ "佑": 424,
429
+ "体": 425,
430
+ "何": 426,
431
+ "余": 427,
432
+ "作": 428,
433
+ "你": 429,
434
+ "佳": 430,
435
+ "併": 431,
436
+ "使": 432,
437
+ "來": 433,
438
+ "例": 434,
439
+ "侍": 435,
440
+ "供": 436,
441
+ "依": 437,
442
+ "侠": 438,
443
+ "価": 439,
444
+ "侮": 440,
445
+ "侯": 441,
446
+ "侵": 442,
447
+ "侶": 443,
448
+ "便": 444,
449
+ "係": 445,
450
+ "促": 446,
451
+ "俊": 447,
452
+ "俗": 448,
453
+ "保": 449,
454
+ "信": 450,
455
+ "俣": 451,
456
+ "俩": 452,
457
+ "修": 453,
458
+ "俯": 454,
459
+ "俳": 455,
460
+ "俵": 456,
461
+ "俸": 457,
462
+ "俺": 458,
463
+ "倉": 459,
464
+ "個": 460,
465
+ "倍": 461,
466
+ "倒": 462,
467
+ "倖": 463,
468
+ "候": 464,
469
+ "借": 465,
470
+ "倣": 466,
471
+ "値": 467,
472
+ "倦": 468,
473
+ "倫": 469,
474
+ "倶": 470,
475
+ "倹": 471,
476
+ "假": 472,
477
+ "偉": 473,
478
+ "偏": 474,
479
+ "做": 475,
480
+ "停": 476,
481
+ "健": 477,
482
+ "側": 478,
483
+ "偵": 479,
484
+ "偶": 480,
485
+ "偽": 481,
486
+ "傅": 482,
487
+ "傍": 483,
488
+ "傑": 484,
489
+ "傘": 485,
490
+ "備": 486,
491
+ "催": 487,
492
+ "傭": 488,
493
+ "債": 489,
494
+ "傷": 490,
495
+ "傾": 491,
496
+ "僅": 492,
497
+ "働": 493,
498
+ "像": 494,
499
+ "僕": 495,
500
+ "僚": 496,
501
+ "僧": 497,
502
+ "儀": 498,
503
+ "儂": 499,
504
+ "億": 500,
505
+ "儘": 501,
506
+ "儚": 502,
507
+ "償": 503,
508
+ "優": 504,
509
+ "儲": 505,
510
+ "元": 506,
511
+ "兄": 507,
512
+ "充": 508,
513
+ "兆": 509,
514
+ "先": 510,
515
+ "光": 511,
516
+ "克": 512,
517
+ "免": 513,
518
+ "兎": 514,
519
+ "児": 515,
520
+ "党": 516,
521
+ "兜": 517,
522
+ "入": 518,
523
+ "全": 519,
524
+ "八": 520,
525
+ "公": 521,
526
+ "六": 522,
527
+ "共": 523,
528
+ "兴": 524,
529
+ "兵": 525,
530
+ "其": 526,
531
+ "具": 527,
532
+ "典": 528,
533
+ "兼": 529,
534
+ "内": 530,
535
+ "円": 531,
536
+ "冊": 532,
537
+ "再": 533,
538
+ "冑": 534,
539
+ "冒": 535,
540
+ "冗": 536,
541
+ "写": 537,
542
+ "冠": 538,
543
+ "冤": 539,
544
+ "冥": 540,
545
+ "冨": 541,
546
+ "冬": 542,
547
+ "冰": 543,
548
+ "冲": 544,
549
+ "冴": 545,
550
+ "冶": 546,
551
+ "冷": 547,
552
+ "凄": 548,
553
+ "凌": 549,
554
+ "凍": 550,
555
+ "凛": 551,
556
+ "凝": 552,
557
+ "几": 553,
558
+ "凡": 554,
559
+ "処": 555,
560
+ "凪": 556,
561
+ "凰": 557,
562
+ "凱": 558,
563
+ "凶": 559,
564
+ "凸": 560,
565
+ "凹": 561,
566
+ "出": 562,
567
+ "函": 563,
568
+ "刀": 564,
569
+ "刃": 565,
570
+ "分": 566,
571
+ "切": 567,
572
+ "刈": 568,
573
+ "刊": 569,
574
+ "刑": 570,
575
+ "列": 571,
576
+ "初": 572,
577
+ "判": 573,
578
+ "別": 574,
579
+ "利": 575,
580
+ "刮": 576,
581
+ "到": 577,
582
+ "制": 578,
583
+ "刷": 579,
584
+ "券": 580,
585
+ "刹": 581,
586
+ "刺": 582,
587
+ "刻": 583,
588
+ "剃": 584,
589
+ "則": 585,
590
+ "削": 586,
591
+ "前": 587,
592
+ "剖": 588,
593
+ "剛": 589,
594
+ "剝": 590,
595
+ "剣": 591,
596
+ "剤": 592,
597
+ "剥": 593,
598
+ "剪": 594,
599
+ "副": 595,
600
+ "剰": 596,
601
+ "剱": 597,
602
+ "割": 598,
603
+ "創": 599,
604
+ "剽": 600,
605
+ "劇": 601,
606
+ "劔": 602,
607
+ "力": 603,
608
+ "功": 604,
609
+ "加": 605,
610
+ "劣": 606,
611
+ "动": 607,
612
+ "助": 608,
613
+ "努": 609,
614
+ "劫": 610,
615
+ "励": 611,
616
+ "労": 612,
617
+ "効": 613,
618
+ "勃": 614,
619
+ "勇": 615,
620
+ "勉": 616,
621
+ "動": 617,
622
+ "勘": 618,
623
+ "務": 619,
624
+ "勝": 620,
625
+ "募": 621,
626
+ "勢": 622,
627
+ "勤": 623,
628
+ "勧": 624,
629
+ "勲": 625,
630
+ "勾": 626,
631
+ "勿": 627,
632
+ "匂": 628,
633
+ "包": 629,
634
+ "化": 630,
635
+ "北": 631,
636
+ "匠": 632,
637
+ "匹": 633,
638
+ "区": 634,
639
+ "医": 635,
640
+ "匿": 636,
641
+ "區": 637,
642
+ "十": 638,
643
+ "千": 639,
644
+ "升": 640,
645
+ "午": 641,
646
+ "半": 642,
647
+ "卍": 643,
648
+ "卑": 644,
649
+ "卒": 645,
650
+ "卓": 646,
651
+ "協": 647,
652
+ "南": 648,
653
+ "単": 649,
654
+ "博": 650,
655
+ "占": 651,
656
+ "卦": 652,
657
+ "卭": 653,
658
+ "卯": 654,
659
+ "印": 655,
660
+ "危": 656,
661
+ "即": 657,
662
+ "却": 658,
663
+ "卵": 659,
664
+ "卷": 660,
665
+ "卸": 661,
666
+ "卿": 662,
667
+ "厄": 663,
668
+ "厚": 664,
669
+ "原": 665,
670
+ "厨": 666,
671
+ "厳": 667,
672
+ "去": 668,
673
+ "参": 669,
674
+ "又": 670,
675
+ "叉": 671,
676
+ "及": 672,
677
+ "友": 673,
678
+ "双": 674,
679
+ "反": 675,
680
+ "収": 676,
681
+ "叔": 677,
682
+ "取": 678,
683
+ "受": 679,
684
+ "叙": 680,
685
+ "叡": 681,
686
+ "口": 682,
687
+ "古": 683,
688
+ "句": 684,
689
+ "叩": 685,
690
+ "只": 686,
691
+ "叫": 687,
692
+ "召": 688,
693
+ "可": 689,
694
+ "台": 690,
695
+ "叱": 691,
696
+ "史": 692,
697
+ "右": 693,
698
+ "叶": 694,
699
+ "号": 695,
700
+ "司": 696,
701
+ "各": 697,
702
+ "合": 698,
703
+ "吉": 699,
704
+ "吊": 700,
705
+ "同": 701,
706
+ "名": 702,
707
+ "吐": 703,
708
+ "向": 704,
709
+ "君": 705,
710
+ "吞": 706,
711
+ "吟": 707,
712
+ "吠": 708,
713
+ "否": 709,
714
+ "含": 710,
715
+ "吸": 711,
716
+ "吹": 712,
717
+ "吽": 713,
718
+ "吾": 714,
719
+ "呂": 715,
720
+ "呆": 716,
721
+ "呈": 717,
722
+ "呉": 718,
723
+ "告": 719,
724
+ "呑": 720,
725
+ "呟": 721,
726
+ "周": 722,
727
+ "呪": 723,
728
+ "味": 724,
729
+ "呵": 725,
730
+ "呼": 726,
731
+ "命": 727,
732
+ "咀": 728,
733
+ "和": 729,
734
+ "咎": 730,
735
+ "咬": 731,
736
+ "咲": 732,
737
+ "咳": 733,
738
+ "咽": 734,
739
+ "哀": 735,
740
+ "品": 736,
741
+ "哉": 737,
742
+ "員": 738,
743
+ "哨": 739,
744
+ "哲": 740,
745
+ "哺": 741,
746
+ "唄": 742,
747
+ "唇": 743,
748
+ "唐": 744,
749
+ "唯": 745,
750
+ "唱": 746,
751
+ "唸": 747,
752
+ "唾": 748,
753
+ "商": 749,
754
+ "問": 750,
755
+ "啓": 751,
756
+ "啖": 752,
757
+ "善": 753,
758
+ "喉": 754,
759
+ "喋": 755,
760
+ "喘": 756,
761
+ "喚": 757,
762
+ "喜": 758,
763
+ "喝": 759,
764
+ "喧": 760,
765
+ "喩": 761,
766
+ "喪": 762,
767
+ "喫": 763,
768
+ "喰": 764,
769
+ "営": 765,
770
+ "嗅": 766,
771
+ "嗚": 767,
772
+ "嗜": 768,
773
+ "嗣": 769,
774
+ "嘆": 770,
775
+ "嘉": 771,
776
+ "嘔": 772,
777
+ "嘘": 773,
778
+ "嘩": 774,
779
+ "嘲": 775,
780
+ "噂": 776,
781
+ "噌": 777,
782
+ "噓": 778,
783
+ "噛": 779,
784
+ "器": 780,
785
+ "噴": 781,
786
+ "嚇": 782,
787
+ "嚙": 783,
788
+ "嚥": 784,
789
+ "嚼": 785,
790
+ "囁": 786,
791
+ "囃": 787,
792
+ "囚": 788,
793
+ "四": 789,
794
+ "回": 790,
795
+ "因": 791,
796
+ "団": 792,
797
+ "囮": 793,
798
+ "困": 794,
799
+ "囲": 795,
800
+ "図": 796,
801
+ "固": 797,
802
+ "国": 798,
803
+ "圀": 799,
804
+ "國": 800,
805
+ "圏": 801,
806
+ "園": 802,
807
+ "土": 803,
808
+ "圧": 804,
809
+ "在": 805,
810
+ "圭": 806,
811
+ "地": 807,
812
+ "坂": 808,
813
+ "均": 809,
814
+ "坊": 810,
815
+ "坑": 811,
816
+ "坦": 812,
817
+ "坪": 813,
818
+ "垂": 814,
819
+ "型": 815,
820
+ "垢": 816,
821
+ "垣": 817,
822
+ "埃": 818,
823
+ "埋": 819,
824
+ "城": 820,
825
+ "域": 821,
826
+ "埠": 822,
827
+ "執": 823,
828
+ "培": 824,
829
+ "基": 825,
830
+ "埼": 826,
831
+ "堀": 827,
832
+ "堂": 828,
833
+ "堅": 829,
834
+ "堆": 830,
835
+ "堕": 831,
836
+ "堤": 832,
837
+ "堪": 833,
838
+ "報": 834,
839
+ "場": 835,
840
+ "堵": 836,
841
+ "堺": 837,
842
+ "塀": 838,
843
+ "塁": 839,
844
+ "塊": 840,
845
+ "塔": 841,
846
+ "塗": 842,
847
+ "塘": 843,
848
+ "塚": 844,
849
+ "塞": 845,
850
+ "塩": 846,
851
+ "填": 847,
852
+ "塵": 848,
853
+ "塹": 849,
854
+ "塾": 850,
855
+ "境": 851,
856
+ "墓": 852,
857
+ "増": 853,
858
+ "墜": 854,
859
+ "墟": 855,
860
+ "墨": 856,
861
+ "墳": 857,
862
+ "墾": 858,
863
+ "壁": 859,
864
+ "壇": 860,
865
+ "壊": 861,
866
+ "壌": 862,
867
+ "壕": 863,
868
+ "壢": 864,
869
+ "士": 865,
870
+ "壮": 866,
871
+ "声": 867,
872
+ "壱": 868,
873
+ "売": 869,
874
+ "壺": 870,
875
+ "変": 871,
876
+ "复": 872,
877
+ "夏": 873,
878
+ "夕": 874,
879
+ "外": 875,
880
+ "多": 876,
881
+ "夜": 877,
882
+ "夢": 878,
883
+ "大": 879,
884
+ "天": 880,
885
+ "太": 881,
886
+ "夫": 882,
887
+ "央": 883,
888
+ "失": 884,
889
+ "夷": 885,
890
+ "奄": 886,
891
+ "奇": 887,
892
+ "奈": 888,
893
+ "奉": 889,
894
+ "奏": 890,
895
+ "契": 891,
896
+ "套": 892,
897
+ "奢": 893,
898
+ "奥": 894,
899
+ "奨": 895,
900
+ "奪": 896,
901
+ "奮": 897,
902
+ "女": 898,
903
+ "奴": 899,
904
+ "奶": 900,
905
+ "好": 901,
906
+ "如": 902,
907
+ "妃": 903,
908
+ "妄": 904,
909
+ "妊": 905,
910
+ "妓": 906,
911
+ "妖": 907,
912
+ "妙": 908,
913
+ "妞": 909,
914
+ "妥": 910,
915
+ "妨": 911,
916
+ "妬": 912,
917
+ "妹": 913,
918
+ "妻": 914,
919
+ "姉": 915,
920
+ "始": 916,
921
+ "姓": 917,
922
+ "委": 918,
923
+ "姜": 919,
924
+ "姪": 920,
925
+ "姫": 921,
926
+ "姻": 922,
927
+ "姿": 923,
928
+ "威": 924,
929
+ "娘": 925,
930
+ "娠": 926,
931
+ "娯": 927,
932
+ "娼": 928,
933
+ "婆": 929,
934
+ "婚": 930,
935
+ "婦": 931,
936
+ "婿": 932,
937
+ "媒": 933,
938
+ "媚": 934,
939
+ "媛": 935,
940
+ "嫁": 936,
941
+ "嫉": 937,
942
+ "嫌": 938,
943
+ "嬉": 939,
944
+ "嬌": 940,
945
+ "嬢": 941,
946
+ "子": 942,
947
+ "孔": 943,
948
+ "字": 944,
949
+ "存": 945,
950
+ "孝": 946,
951
+ "孟": 947,
952
+ "季": 948,
953
+ "孤": 949,
954
+ "学": 950,
955
+ "孫": 951,
956
+ "孵": 952,
957
+ "宅": 953,
958
+ "宇": 954,
959
+ "守": 955,
960
+ "安": 956,
961
+ "完": 957,
962
+ "宍": 958,
963
+ "宏": 959,
964
+ "宕": 960,
965
+ "宗": 961,
966
+ "官": 962,
967
+ "宙": 963,
968
+ "定": 964,
969
+ "宛": 965,
970
+ "宜": 966,
971
+ "宝": 967,
972
+ "実": 968,
973
+ "客": 969,
974
+ "宣": 970,
975
+ "室": 971,
976
+ "宥": 972,
977
+ "宮": 973,
978
+ "宰": 974,
979
+ "害": 975,
980
+ "宴": 976,
981
+ "宵": 977,
982
+ "家": 978,
983
+ "容": 979,
984
+ "宿": 980,
985
+ "寂": 981,
986
+ "寄": 982,
987
+ "寅": 983,
988
+ "密": 984,
989
+ "富": 985,
990
+ "寒": 986,
991
+ "寓": 987,
992
+ "寛": 988,
993
+ "寝": 989,
994
+ "察": 990,
995
+ "寡": 991,
996
+ "實": 992,
997
+ "寧": 993,
998
+ "審": 994,
999
+ "寮": 995,
1000
+ "寸": 996,
1001
+ "寺": 997,
1002
+ "対": 998,
1003
+ "寿": 999,
1004
+ "封": 1000,
1005
+ "専": 1001,
1006
+ "射": 1002,
1007
+ "将": 1003,
1008
+ "專": 1004,
1009
+ "尊": 1005,
1010
+ "尋": 1006,
1011
+ "導": 1007,
1012
+ "小": 1008,
1013
+ "少": 1009,
1014
+ "尖": 1010,
1015
+ "尚": 1011,
1016
+ "就": 1012,
1017
+ "尺": 1013,
1018
+ "尻": 1014,
1019
+ "尽": 1015,
1020
+ "尾": 1016,
1021
+ "尿": 1017,
1022
+ "局": 1018,
1023
+ "屁": 1019,
1024
+ "居": 1020,
1025
+ "屈": 1021,
1026
+ "届": 1022,
1027
+ "屋": 1023,
1028
+ "屍": 1024,
1029
+ "屏": 1025,
1030
+ "屑": 1026,
1031
+ "屓": 1027,
1032
+ "展": 1028,
1033
+ "属": 1029,
1034
+ "屠": 1030,
1035
+ "層": 1031,
1036
+ "履": 1032,
1037
+ "屯": 1033,
1038
+ "山": 1034,
1039
+ "岐": 1035,
1040
+ "岡": 1036,
1041
+ "岩": 1037,
1042
+ "岬": 1038,
1043
+ "岳": 1039,
1044
+ "岸": 1040,
1045
+ "峙": 1041,
1046
+ "峠": 1042,
1047
+ "峡": 1043,
1048
+ "峯": 1044,
1049
+ "峰": 1045,
1050
+ "島": 1046,
1051
+ "崇": 1047,
1052
+ "崎": 1048,
1053
+ "崖": 1049,
1054
+ "崗": 1050,
1055
+ "崩": 1051,
1056
+ "嵌": 1052,
1057
+ "嵐": 1053,
1058
+ "嵜": 1054,
1059
+ "嵩": 1055,
1060
+ "嶋": 1056,
1061
+ "嶺": 1057,
1062
+ "嶽": 1058,
1063
+ "川": 1059,
1064
+ "州": 1060,
1065
+ "巡": 1061,
1066
+ "巣": 1062,
1067
+ "工": 1063,
1068
+ "左": 1064,
1069
+ "巧": 1065,
1070
+ "巨": 1066,
1071
+ "巫": 1067,
1072
+ "差": 1068,
1073
+ "己": 1069,
1074
+ "巴": 1070,
1075
+ "巷": 1071,
1076
+ "巻": 1072,
1077
+ "巾": 1073,
1078
+ "市": 1074,
1079
+ "布": 1075,
1080
+ "帆": 1076,
1081
+ "希": 1077,
1082
+ "帖": 1078,
1083
+ "帝": 1079,
1084
+ "師": 1080,
1085
+ "席": 1081,
1086
+ "帯": 1082,
1087
+ "帰": 1083,
1088
+ "帳": 1084,
1089
+ "帶": 1085,
1090
+ "常": 1086,
1091
+ "帽": 1087,
1092
+ "幅": 1088,
1093
+ "幌": 1089,
1094
+ "幕": 1090,
1095
+ "幡": 1091,
1096
+ "幣": 1092,
1097
+ "干": 1093,
1098
+ "平": 1094,
1099
+ "年": 1095,
1100
+ "幸": 1096,
1101
+ "幹": 1097,
1102
+ "幻": 1098,
1103
+ "幼": 1099,
1104
+ "幽": 1100,
1105
+ "幾": 1101,
1106
+ "庁": 1102,
1107
+ "広": 1103,
1108
+ "庄": 1104,
1109
+ "床": 1105,
1110
+ "序": 1106,
1111
+ "底": 1107,
1112
+ "店": 1108,
1113
+ "府": 1109,
1114
+ "度": 1110,
1115
+ "座": 1111,
1116
+ "庫": 1112,
1117
+ "庭": 1113,
1118
+ "庵": 1114,
1119
+ "庶": 1115,
1120
+ "康": 1116,
1121
+ "廃": 1117,
1122
+ "廉": 1118,
1123
+ "廊": 1119,
1124
+ "廚": 1120,
1125
+ "廟": 1121,
1126
+ "延": 1122,
1127
+ "廷": 1123,
1128
+ "建": 1124,
1129
+ "廻": 1125,
1130
+ "弁": 1126,
1131
+ "弄": 1127,
1132
+ "弊": 1128,
1133
+ "式": 1129,
1134
+ "弐": 1130,
1135
+ "弓": 1131,
1136
+ "引": 1132,
1137
+ "弘": 1133,
1138
+ "弛": 1134,
1139
+ "弟": 1135,
1140
+ "弥": 1136,
1141
+ "弦": 1137,
1142
+ "弧": 1138,
1143
+ "弱": 1139,
1144
+ "張": 1140,
1145
+ "強": 1141,
1146
+ "弾": 1142,
1147
+ "彅": 1143,
1148
+ "彊": 1144,
1149
+ "当": 1145,
1150
+ "彗": 1146,
1151
+ "彙": 1147,
1152
+ "形": 1148,
1153
+ "彦": 1149,
1154
+ "彩": 1150,
1155
+ "彫": 1151,
1156
+ "彰": 1152,
1157
+ "影": 1153,
1158
+ "彷": 1154,
1159
+ "役": 1155,
1160
+ "彼": 1156,
1161
+ "彿": 1157,
1162
+ "往": 1158,
1163
+ "征": 1159,
1164
+ "径": 1160,
1165
+ "待": 1161,
1166
+ "很": 1162,
1167
+ "徊": 1163,
1168
+ "律": 1164,
1169
+ "後": 1165,
1170
+ "徐": 1166,
1171
+ "徒": 1167,
1172
+ "従": 1168,
1173
+ "得": 1169,
1174
+ "徘": 1170,
1175
+ "御": 1171,
1176
+ "徨": 1172,
1177
+ "復": 1173,
1178
+ "循": 1174,
1179
+ "微": 1175,
1180
+ "徳": 1176,
1181
+ "徴": 1177,
1182
+ "徹": 1178,
1183
+ "心": 1179,
1184
+ "必": 1180,
1185
+ "忌": 1181,
1186
+ "忍": 1182,
1187
+ "忖": 1183,
1188
+ "志": 1184,
1189
+ "忘": 1185,
1190
+ "忙": 1186,
1191
+ "応": 1187,
1192
+ "忠": 1188,
1193
+ "快": 1189,
1194
+ "念": 1190,
1195
+ "怎": 1191,
1196
+ "怒": 1192,
1197
+ "怖": 1193,
1198
+ "怜": 1194,
1199
+ "思": 1195,
1200
+ "怠": 1196,
1201
+ "急": 1197,
1202
+ "性": 1198,
1203
+ "怨": 1199,
1204
+ "怪": 1200,
1205
+ "怯": 1201,
1206
+ "恋": 1202,
1207
+ "恐": 1203,
1208
+ "恒": 1204,
1209
+ "恥": 1205,
1210
+ "恨": 1206,
1211
+ "恩": 1207,
1212
+ "息": 1208,
1213
+ "恰": 1209,
1214
+ "恵": 1210,
1215
+ "悍": 1211,
1216
+ "悔": 1212,
1217
+ "悟": 1213,
1218
+ "悠": 1214,
1219
+ "患": 1215,
1220
+ "悦": 1216,
1221
+ "悩": 1217,
1222
+ "悪": 1218,
1223
+ "悲": 1219,
1224
+ "悶": 1220,
1225
+ "悼": 1221,
1226
+ "情": 1222,
1227
+ "惑": 1223,
1228
+ "惚": 1224,
1229
+ "惜": 1225,
1230
+ "惣": 1226,
1231
+ "惧": 1227,
1232
+ "惨": 1228,
1233
+ "惰": 1229,
1234
+ "想": 1230,
1235
+ "惹": 1231,
1236
+ "愁": 1232,
1237
+ "愉": 1233,
1238
+ "意": 1234,
1239
+ "愕": 1235,
1240
+ "愚": 1236,
1241
+ "愛": 1237,
1242
+ "感": 1238,
1243
+ "慄": 1239,
1244
+ "慈": 1240,
1245
+ "態": 1241,
1246
+ "慌": 1242,
1247
+ "慎": 1243,
1248
+ "慕": 1244,
1249
+ "慢": 1245,
1250
+ "慣": 1246,
1251
+ "慨": 1247,
1252
+ "慮": 1248,
1253
+ "慰": 1249,
1254
+ "慶": 1250,
1255
+ "憂": 1251,
1256
+ "憎": 1252,
1257
+ "憐": 1253,
1258
+ "憑": 1254,
1259
+ "憤": 1255,
1260
+ "憧": 1256,
1261
+ "憩": 1257,
1262
+ "憫": 1258,
1263
+ "憲": 1259,
1264
+ "憶": 1260,
1265
+ "憾": 1261,
1266
+ "懇": 1262,
1267
+ "應": 1263,
1268
+ "懐": 1264,
1269
+ "懲": 1265,
1270
+ "懸": 1266,
1271
+ "懺": 1267,
1272
+ "成": 1268,
1273
+ "我": 1269,
1274
+ "戒": 1270,
1275
+ "戚": 1271,
1276
+ "戦": 1272,
1277
+ "戯": 1273,
1278
+ "戴": 1274,
1279
+ "戸": 1275,
1280
+ "戻": 1276,
1281
+ "房": 1277,
1282
+ "所": 1278,
1283
+ "扁": 1279,
1284
+ "扇": 1280,
1285
+ "扉": 1281,
1286
+ "手": 1282,
1287
+ "才": 1283,
1288
+ "打": 1284,
1289
+ "払": 1285,
1290
+ "托": 1286,
1291
+ "扮": 1287,
1292
+ "扱": 1288,
1293
+ "扶": 1289,
1294
+ "批": 1290,
1295
+ "承": 1291,
1296
+ "技": 1292,
1297
+ "抉": 1293,
1298
+ "把": 1294,
1299
+ "抑": 1295,
1300
+ "投": 1296,
1301
+ "抗": 1297,
1302
+ "折": 1298,
1303
+ "抜": 1299,
1304
+ "択": 1300,
1305
+ "披": 1301,
1306
+ "抱": 1302,
1307
+ "抵": 1303,
1308
+ "抹": 1304,
1309
+ "押": 1305,
1310
+ "抽": 1306,
1311
+ "担": 1307,
1312
+ "拉": 1308,
1313
+ "拌": 1309,
1314
+ "拍": 1310,
1315
+ "拐": 1311,
1316
+ "拒": 1312,
1317
+ "拓": 1313,
1318
+ "拗": 1314,
1319
+ "拘": 1315,
1320
+ "拙": 1316,
1321
+ "招": 1317,
1322
+ "拝": 1318,
1323
+ "拠": 1319,
1324
+ "拡": 1320,
1325
+ "括": 1321,
1326
+ "拭": 1322,
1327
+ "拳": 1323,
1328
+ "拶": 1324,
1329
+ "拷": 1325,
1330
+ "拾": 1326,
1331
+ "持": 1327,
1332
+ "指": 1328,
1333
+ "按": 1329,
1334
+ "挑": 1330,
1335
+ "挙": 1331,
1336
+ "挟": 1332,
1337
+ "挨": 1333,
1338
+ "挫": 1334,
1339
+ "振": 1335,
1340
+ "挽": 1336,
1341
+ "挿": 1337,
1342
+ "捉": 1338,
1343
+ "捌": 1339,
1344
+ "捕": 1340,
1345
+ "捗": 1341,
1346
+ "捜": 1342,
1347
+ "捧": 1343,
1348
+ "捨": 1344,
1349
+ "据": 1345,
1350
+ "捲": 1346,
1351
+ "捻": 1347,
1352
+ "掃": 1348,
1353
+ "授": 1349,
1354
+ "掌": 1350,
1355
+ "掏": 1351,
1356
+ "排": 1352,
1357
+ "掘": 1353,
1358
+ "掛": 1354,
1359
+ "掠": 1355,
1360
+ "採": 1356,
1361
+ "探": 1357,
1362
+ "接": 1358,
1363
+ "控": 1359,
1364
+ "推": 1360,
1365
+ "措": 1361,
1366
+ "掲": 1362,
1367
+ "掴": 1363,
1368
+ "掻": 1364,
1369
+ "揃": 1365,
1370
+ "揉": 1366,
1371
+ "描": 1367,
1372
+ "提": 1368,
1373
+ "揚": 1369,
1374
+ "換": 1370,
1375
+ "握": 1371,
1376
+ "揮": 1372,
1377
+ "援": 1373,
1378
+ "揺": 1374,
1379
+ "損": 1375,
1380
+ "搔": 1376,
1381
+ "搬": 1377,
1382
+ "搭": 1378,
1383
+ "携": 1379,
1384
+ "搾": 1380,
1385
+ "摂": 1381,
1386
+ "摘": 1382,
1387
+ "摩": 1383,
1388
+ "摯": 1384,
1389
+ "摸": 1385,
1390
+ "摺": 1386,
1391
+ "撃": 1387,
1392
+ "撒": 1388,
1393
+ "撤": 1389,
1394
+ "撥": 1390,
1395
+ "撫": 1391,
1396
+ "播": 1392,
1397
+ "撮": 1393,
1398
+ "撲": 1394,
1399
+ "撹": 1395,
1400
+ "擁": 1396,
1401
+ "操": 1397,
1402
+ "擢": 1398,
1403
+ "擦": 1399,
1404
+ "擬": 1400,
1405
+ "擲": 1401,
1406
+ "攪": 1402,
1407
+ "攫": 1403,
1408
+ "支": 1404,
1409
+ "改": 1405,
1410
+ "攻": 1406,
1411
+ "放": 1407,
1412
+ "政": 1408,
1413
+ "故": 1409,
1414
+ "敏": 1410,
1415
+ "救": 1411,
1416
+ "敗": 1412,
1417
+ "教": 1413,
1418
+ "敢": 1414,
1419
+ "散": 1415,
1420
+ "敦": 1416,
1421
+ "敬": 1417,
1422
+ "数": 1418,
1423
+ "整": 1419,
1424
+ "敵": 1420,
1425
+ "敷": 1421,
1426
+ "文": 1422,
1427
+ "斉": 1423,
1428
+ "斎": 1424,
1429
+ "斐": 1425,
1430
+ "斑": 1426,
1431
+ "斗": 1427,
1432
+ "料": 1428,
1433
+ "斜": 1429,
1434
+ "斤": 1430,
1435
+ "斥": 1431,
1436
+ "斧": 1432,
1437
+ "斬": 1433,
1438
+ "断": 1434,
1439
+ "斯": 1435,
1440
+ "新": 1436,
1441
+ "方": 1437,
1442
+ "施": 1438,
1443
+ "旅": 1439,
1444
+ "旋": 1440,
1445
+ "族": 1441,
1446
+ "旗": 1442,
1447
+ "既": 1443,
1448
+ "日": 1444,
1449
+ "旦": 1445,
1450
+ "旧": 1446,
1451
+ "旨": 1447,
1452
+ "早": 1448,
1453
+ "旬": 1449,
1454
+ "旭": 1450,
1455
+ "旺": 1451,
1456
+ "昆": 1452,
1457
+ "昇": 1453,
1458
+ "昌": 1454,
1459
+ "明": 1455,
1460
+ "昏": 1456,
1461
+ "易": 1457,
1462
+ "昔": 1458,
1463
+ "星": 1459,
1464
+ "映": 1460,
1465
+ "春": 1461,
1466
+ "昧": 1462,
1467
+ "昨": 1463,
1468
+ "昭": 1464,
1469
+ "是": 1465,
1470
+ "昼": 1466,
1471
+ "時": 1467,
1472
+ "晄": 1468,
1473
+ "晋": 1469,
1474
+ "晒": 1470,
1475
+ "晦": 1471,
1476
+ "晩": 1472,
1477
+ "普": 1473,
1478
+ "景": 1474,
1479
+ "晴": 1475,
1480
+ "晶": 1476,
1481
+ "智": 1477,
1482
+ "暁": 1478,
1483
+ "暇": 1479,
1484
+ "暈": 1480,
1485
+ "暉": 1481,
1486
+ "暑": 1482,
1487
+ "暖": 1483,
1488
+ "暗": 1484,
1489
+ "暢": 1485,
1490
+ "暦": 1486,
1491
+ "暫": 1487,
1492
+ "暮": 1488,
1493
+ "暴": 1489,
1494
+ "曇": 1490,
1495
+ "曖": 1491,
1496
+ "曜": 1492,
1497
+ "曝": 1493,
1498
+ "曰": 1494,
1499
+ "曲": 1495,
1500
+ "更": 1496,
1501
+ "書": 1497,
1502
+ "曹": 1498,
1503
+ "曽": 1499,
1504
+ "曾": 1500,
1505
+ "替": 1501,
1506
+ "最": 1502,
1507
+ "會": 1503,
1508
+ "月": 1504,
1509
+ "有": 1505,
1510
+ "朋": 1506,
1511
+ "服": 1507,
1512
+ "朗": 1508,
1513
+ "望": 1509,
1514
+ "朝": 1510,
1515
+ "期": 1511,
1516
+ "朧": 1512,
1517
+ "木": 1513,
1518
+ "未": 1514,
1519
+ "末": 1515,
1520
+ "本": 1516,
1521
+ "札": 1517,
1522
+ "朱": 1518,
1523
+ "朴": 1519,
1524
+ "机": 1520,
1525
+ "朽": 1521,
1526
+ "杉": 1522,
1527
+ "李": 1523,
1528
+ "杏": 1524,
1529
+ "材": 1525,
1530
+ "村": 1526,
1531
+ "杖": 1527,
1532
+ "杜": 1528,
1533
+ "束": 1529,
1534
+ "条": 1530,
1535
+ "来": 1531,
1536
+ "杭": 1532,
1537
+ "杯": 1533,
1538
+ "東": 1534,
1539
+ "松": 1535,
1540
+ "板": 1536,
1541
+ "析": 1537,
1542
+ "枕": 1538,
1543
+ "林": 1539,
1544
+ "枚": 1540,
1545
+ "果": 1541,
1546
+ "枝": 1542,
1547
+ "枠": 1543,
1548
+ "枢": 1544,
1549
+ "枩": 1545,
1550
+ "枯": 1546,
1551
+ "架": 1547,
1552
+ "枷": 1548,
1553
+ "柄": 1549,
1554
+ "柏": 1550,
1555
+ "某": 1551,
1556
+ "柑": 1552,
1557
+ "染": 1553,
1558
+ "柔": 1554,
1559
+ "柚": 1555,
1560
+ "柱": 1556,
1561
+ "柳": 1557,
1562
+ "柴": 1558,
1563
+ "柵": 1559,
1564
+ "査": 1560,
1565
+ "柿": 1561,
1566
+ "栂": 1562,
1567
+ "栃": 1563,
1568
+ "栄": 1564,
1569
+ "栓": 1565,
1570
+ "栖": 1566,
1571
+ "栗": 1567,
1572
+ "校": 1568,
1573
+ "株": 1569,
1574
+ "核": 1570,
1575
+ "根": 1571,
1576
+ "格": 1572,
1577
+ "栽": 1573,
1578
+ "桁": 1574,
1579
+ "桂": 1575,
1580
+ "桃": 1576,
1581
+ "案": 1577,
1582
+ "桐": 1578,
1583
+ "桑": 1579,
1584
+ "桔": 1580,
1585
+ "桜": 1581,
1586
+ "桝": 1582,
1587
+ "桟": 1583,
1588
+ "桶": 1584,
1589
+ "梁": 1585,
1590
+ "梅": 1586,
1591
+ "梗": 1587,
1592
+ "條": 1588,
1593
+ "梟": 1589,
1594
+ "梨": 1590,
1595
+ "梯": 1591,
1596
+ "械": 1592,
1597
+ "梱": 1593,
1598
+ "梵": 1594,
1599
+ "梶": 1595,
1600
+ "棄": 1596,
1601
+ "棉": 1597,
1602
+ "棋": 1598,
1603
+ "棍": 1599,
1604
+ "棒": 1600,
1605
+ "棕": 1601,
1606
+ "棘": 1602,
1607
+ "棚": 1603,
1608
+ "棟": 1604,
1609
+ "森": 1605,
1610
+ "棲": 1606,
1611
+ "椀": 1607,
1612
+ "椄": 1608,
1613
+ "椅": 1609,
1614
+ "植": 1610,
1615
+ "椎": 1611,
1616
+ "椒": 1612,
1617
+ "検": 1613,
1618
+ "椿": 1614,
1619
+ "楊": 1615,
1620
+ "楓": 1616,
1621
+ "楕": 1617,
1622
+ "楚": 1618,
1623
+ "業": 1619,
1624
+ "楯": 1620,
1625
+ "極": 1621,
1626
+ "楼": 1622,
1627
+ "楽": 1623,
1628
+ "概": 1624,
1629
+ "榎": 1625,
1630
+ "榛": 1626,
1631
+ "榴": 1627,
1632
+ "槃": 1628,
1633
+ "構": 1629,
1634
+ "槌": 1630,
1635
+ "槍": 1631,
1636
+ "様": 1632,
1637
+ "槙": 1633,
1638
+ "槻": 1634,
1639
+ "槽": 1635,
1640
+ "樋": 1636,
1641
+ "標": 1637,
1642
+ "模": 1638,
1643
+ "樣": 1639,
1644
+ "権": 1640,
1645
+ "横": 1641,
1646
+ "樫": 1642,
1647
+ "樹": 1643,
1648
+ "樺": 1644,
1649
+ "樽": 1645,
1650
+ "橋": 1646,
1651
+ "橘": 1647,
1652
+ "機": 1648,
1653
+ "檀": 1649,
1654
+ "檎": 1650,
1655
+ "檜": 1651,
1656
+ "檬": 1652,
1657
+ "檳": 1653,
1658
+ "檸": 1654,
1659
+ "檻": 1655,
1660
+ "櫛": 1656,
1661
+ "櫻": 1657,
1662
+ "欄": 1658,
1663
+ "欅": 1659,
1664
+ "欒": 1660,
1665
+ "欠": 1661,
1666
+ "次": 1662,
1667
+ "欧": 1663,
1668
+ "欲": 1664,
1669
+ "欺": 1665,
1670
+ "欽": 1666,
1671
+ "歌": 1667,
1672
+ "歓": 1668,
1673
+ "止": 1669,
1674
+ "正": 1670,
1675
+ "步": 1671,
1676
+ "武": 1672,
1677
+ "歩": 1673,
1678
+ "歪": 1674,
1679
+ "歯": 1675,
1680
+ "歳": 1676,
1681
+ "歴": 1677,
1682
+ "死": 1678,
1683
+ "殆": 1679,
1684
+ "殊": 1680,
1685
+ "残": 1681,
1686
+ "殖": 1682,
1687
+ "殲": 1683,
1688
+ "殴": 1684,
1689
+ "段": 1685,
1690
+ "殺": 1686,
1691
+ "殻": 1687,
1692
+ "殿": 1688,
1693
+ "毀": 1689,
1694
+ "母": 1690,
1695
+ "毎": 1691,
1696
+ "毒": 1692,
1697
+ "比": 1693,
1698
+ "毛": 1694,
1699
+ "毯": 1695,
1700
+ "氏": 1696,
1701
+ "民": 1697,
1702
+ "気": 1698,
1703
+ "水": 1699,
1704
+ "氷": 1700,
1705
+ "永": 1701,
1706
+ "氾": 1702,
1707
+ "汁": 1703,
1708
+ "求": 1704,
1709
+ "汎": 1705,
1710
+ "汐": 1706,
1711
+ "汗": 1707,
1712
+ "汚": 1708,
1713
+ "汝": 1709,
1714
+ "江": 1710,
1715
+ "池": 1711,
1716
+ "汰": 1712,
1717
+ "汲": 1713,
1718
+ "決": 1714,
1719
+ "汽": 1715,
1720
+ "沈": 1716,
1721
+ "沌": 1717,
1722
+ "沐": 1718,
1723
+ "沖": 1719,
1724
+ "沙": 1720,
1725
+ "没": 1721,
1726
+ "沢": 1722,
1727
+ "沫": 1723,
1728
+ "河": 1724,
1729
+ "沸": 1725,
1730
+ "油": 1726,
1731
+ "治": 1727,
1732
+ "沼": 1728,
1733
+ "沿": 1729,
1734
+ "況": 1730,
1735
+ "泄": 1731,
1736
+ "泉": 1732,
1737
+ "泊": 1733,
1738
+ "泌": 1734,
1739
+ "法": 1735,
1740
+ "泡": 1736,
1741
+ "波": 1737,
1742
+ "泣": 1738,
1743
+ "泥": 1739,
1744
+ "注": 1740,
1745
+ "泰": 1741,
1746
+ "泳": 1742,
1747
+ "洋": 1743,
1748
+ "洒": 1744,
1749
+ "洗": 1745,
1750
+ "洞": 1746,
1751
+ "津": 1747,
1752
+ "洩": 1748,
1753
+ "洪": 1749,
1754
+ "洲": 1750,
1755
+ "活": 1751,
1756
+ "派": 1752,
1757
+ "流": 1753,
1758
+ "浄": 1754,
1759
+ "浅": 1755,
1760
+ "浜": 1756,
1761
+ "浦": 1757,
1762
+ "浩": 1758,
1763
+ "浪": 1759,
1764
+ "浮": 1760,
1765
+ "浴": 1761,
1766
+ "海": 1762,
1767
+ "浸": 1763,
1768
+ "涅": 1764,
1769
+ "消": 1765,
1770
+ "涌": 1766,
1771
+ "涙": 1767,
1772
+ "涛": 1768,
1773
+ "涜": 1769,
1774
+ "涯": 1770,
1775
+ "液": 1771,
1776
+ "涸": 1772,
1777
+ "涼": 1773,
1778
+ "淀": 1774,
1779
+ "淑": 1775,
1780
+ "淘": 1776,
1781
+ "淡": 1777,
1782
+ "深": 1778,
1783
+ "淵": 1779,
1784
+ "混": 1780,
1785
+ "淹": 1781,
1786
+ "添": 1782,
1787
+ "清": 1783,
1788
+ "渇": 1784,
1789
+ "済": 1785,
1790
+ "渉": 1786,
1791
+ "渋": 1787,
1792
+ "渓": 1788,
1793
+ "渕": 1789,
1794
+ "渚": 1790,
1795
+ "減": 1791,
1796
+ "渡": 1792,
1797
+ "渦": 1793,
1798
+ "温": 1794,
1799
+ "測": 1795,
1800
+ "港": 1796,
1801
+ "游": 1797,
1802
+ "渾": 1798,
1803
+ "湊": 1799,
1804
+ "湖": 1800,
1805
+ "湘": 1801,
1806
+ "湧": 1802,
1807
+ "湯": 1803,
1808
+ "湾": 1804,
1809
+ "湿": 1805,
1810
+ "満": 1806,
1811
+ "源": 1807,
1812
+ "準": 1808,
1813
+ "溜": 1809,
1814
+ "溝": 1810,
1815
+ "溢": 1811,
1816
+ "溶": 1812,
1817
+ "溺": 1813,
1818
+ "滅": 1814,
1819
+ "滋": 1815,
1820
+ "滑": 1816,
1821
+ "滝": 1817,
1822
+ "滞": 1818,
1823
+ "滲": 1819,
1824
+ "滴": 1820,
1825
+ "漁": 1821,
1826
+ "漂": 1822,
1827
+ "漆": 1823,
1828
+ "漏": 1824,
1829
+ "演": 1825,
1830
+ "漕": 1826,
1831
+ "漠": 1827,
1832
+ "漢": 1828,
1833
+ "漫": 1829,
1834
+ "漬": 1830,
1835
+ "漱": 1831,
1836
+ "潔": 1832,
1837
+ "潜": 1833,
1838
+ "潟": 1834,
1839
+ "潤": 1835,
1840
+ "潮": 1836,
1841
+ "潰": 1837,
1842
+ "澄": 1838,
1843
+ "澤": 1839,
1844
+ "澱": 1840,
1845
+ "激": 1841,
1846
+ "濁": 1842,
1847
+ "濃": 1843,
1848
+ "濡": 1844,
1849
+ "濫": 1845,
1850
+ "濯": 1846,
1851
+ "濱": 1847,
1852
+ "濾": 1848,
1853
+ "瀑": 1849,
1854
+ "瀕": 1850,
1855
+ "瀞": 1851,
1856
+ "瀧": 1852,
1857
+ "瀬": 1853,
1858
+ "灣": 1854,
1859
+ "火": 1855,
1860
+ "灯": 1856,
1861
+ "灰": 1857,
1862
+ "灸": 1858,
1863
+ "灼": 1859,
1864
+ "災": 1860,
1865
+ "炉": 1861,
1866
+ "炊": 1862,
1867
+ "炎": 1863,
1868
+ "炒": 1864,
1869
+ "炙": 1865,
1870
+ "炭": 1866,
1871
+ "炸": 1867,
1872
+ "点": 1868,
1873
+ "為": 1869,
1874
+ "烈": 1870,
1875
+ "烏": 1871,
1876
+ "烙": 1872,
1877
+ "烹": 1873,
1878
+ "焉": 1874,
1879
+ "焙": 1875,
1880
+ "焚": 1876,
1881
+ "無": 1877,
1882
+ "焦": 1878,
1883
+ "然": 1879,
1884
+ "焼": 1880,
1885
+ "煉": 1881,
1886
+ "煌": 1882,
1887
+ "煎": 1883,
1888
+ "煙": 1884,
1889
+ "照": 1885,
1890
+ "煩": 1886,
1891
+ "煮": 1887,
1892
+ "煽": 1888,
1893
+ "熄": 1889,
1894
+ "熊": 1890,
1895
+ "熟": 1891,
1896
+ "熱": 1892,
1897
+ "燃": 1893,
1898
+ "燈": 1894,
1899
+ "燕": 1895,
1900
+ "燗": 1896,
1901
+ "燥": 1897,
1902
+ "燧": 1898,
1903
+ "燭": 1899,
1904
+ "燻": 1900,
1905
+ "爆": 1901,
1906
+ "爪": 1902,
1907
+ "爬": 1903,
1908
+ "爵": 1904,
1909
+ "父": 1905,
1910
+ "爺": 1906,
1911
+ "爽": 1907,
1912
+ "牆": 1908,
1913
+ "片": 1909,
1914
+ "版": 1910,
1915
+ "牌": 1911,
1916
+ "牙": 1912,
1917
+ "牛": 1913,
1918
+ "牡": 1914,
1919
+ "牢": 1915,
1920
+ "牧": 1916,
1921
+ "物": 1917,
1922
+ "牲": 1918,
1923
+ "特": 1919,
1924
+ "牽": 1920,
1925
+ "犀": 1921,
1926
+ "犠": 1922,
1927
+ "犬": 1923,
1928
+ "犯": 1924,
1929
+ "状": 1925,
1930
+ "狂": 1926,
1931
+ "狐": 1927,
1932
+ "狗": 1928,
1933
+ "狙": 1929,
1934
+ "狡": 1930,
1935
+ "狩": 1931,
1936
+ "独": 1932,
1937
+ "狭": 1933,
1938
+ "狸": 1934,
1939
+ "狼": 1935,
1940
+ "猛": 1936,
1941
+ "猜": 1937,
1942
+ "猟": 1938,
1943
+ "猥": 1939,
1944
+ "猪": 1940,
1945
+ "猫": 1941,
1946
+ "献": 1942,
1947
+ "猶": 1943,
1948
+ "猾": 1944,
1949
+ "猿": 1945,
1950
+ "獄": 1946,
1951
+ "獅": 1947,
1952
+ "獣": 1948,
1953
+ "獲": 1949,
1954
+ "獺": 1950,
1955
+ "玄": 1951,
1956
+ "率": 1952,
1957
+ "玉": 1953,
1958
+ "王": 1954,
1959
+ "玲": 1955,
1960
+ "珀": 1956,
1961
+ "珈": 1957,
1962
+ "珍": 1958,
1963
+ "珠": 1959,
1964
+ "班": 1960,
1965
+ "現": 1961,
1966
+ "球": 1962,
1967
+ "理": 1963,
1968
+ "琉": 1964,
1969
+ "琥": 1965,
1970
+ "琲": 1966,
1971
+ "琳": 1967,
1972
+ "琴": 1968,
1973
+ "琵": 1969,
1974
+ "琶": 1970,
1975
+ "瑞": 1971,
1976
+ "瑠": 1972,
1977
+ "璧": 1973,
1978
+ "環": 1974,
1979
+ "瓢": 1975,
1980
+ "瓦": 1976,
1981
+ "瓶": 1977,
1982
+ "甘": 1978,
1983
+ "甚": 1979,
1984
+ "甜": 1980,
1985
+ "生": 1981,
1986
+ "産": 1982,
1987
+ "甥": 1983,
1988
+ "甦": 1984,
1989
+ "用": 1985,
1990
+ "田": 1986,
1991
+ "由": 1987,
1992
+ "甲": 1988,
1993
+ "申": 1989,
1994
+ "男": 1990,
1995
+ "町": 1991,
1996
+ "画": 1992,
1997
+ "界": 1993,
1998
+ "畏": 1994,
1999
+ "畑": 1995,
2000
+ "畔": 1996,
2001
+ "留": 1997,
2002
+ "畜": 1998,
2003
+ "畝": 1999,
2004
+ "略": 2000,
2005
+ "番": 2001,
2006
+ "異": 2002,
2007
+ "畳": 2003,
2008
+ "畿": 2004,
2009
+ "疆": 2005,
2010
+ "疇": 2006,
2011
+ "疎": 2007,
2012
+ "疑": 2008,
2013
+ "疫": 2009,
2014
+ "疱": 2010,
2015
+ "疲": 2011,
2016
+ "疹": 2012,
2017
+ "疼": 2013,
2018
+ "疾": 2014,
2019
+ "病": 2015,
2020
+ "症": 2016,
2021
+ "痍": 2017,
2022
+ "痒": 2018,
2023
+ "痔": 2019,
2024
+ "痕": 2020,
2025
+ "痛": 2021,
2026
+ "痢": 2022,
2027
+ "痣": 2023,
2028
+ "痩": 2024,
2029
+ "痰": 2025,
2030
+ "痱": 2026,
2031
+ "痴": 2027,
2032
+ "痺": 2028,
2033
+ "瘍": 2029,
2034
+ "瘡": 2030,
2035
+ "瘦": 2031,
2036
+ "瘴": 2032,
2037
+ "療": 2033,
2038
+ "癌": 2034,
2039
+ "癒": 2035,
2040
+ "癖": 2036,
2041
+ "癪": 2037,
2042
+ "発": 2038,
2043
+ "登": 2039,
2044
+ "白": 2040,
2045
+ "百": 2041,
2046
+ "的": 2042,
2047
+ "皆": 2043,
2048
+ "皇": 2044,
2049
+ "皮": 2045,
2050
+ "皺": 2046,
2051
+ "皿": 2047,
2052
+ "盂": 2048,
2053
+ "盃": 2049,
2054
+ "盆": 2050,
2055
+ "益": 2051,
2056
+ "盗": 2052,
2057
+ "盛": 2053,
2058
+ "盟": 2054,
2059
+ "監": 2055,
2060
+ "盤": 2056,
2061
+ "盪": 2057,
2062
+ "目": 2058,
2063
+ "盲": 2059,
2064
+ "直": 2060,
2065
+ "相": 2061,
2066
+ "盾": 2062,
2067
+ "省": 2063,
2068
+ "眉": 2064,
2069
+ "看": 2065,
2070
+ "県": 2066,
2071
+ "真": 2067,
2072
+ "眠": 2068,
2073
+ "眩": 2069,
2074
+ "眺": 2070,
2075
+ "眼": 2071,
2076
+ "着": 2072,
2077
+ "睡": 2073,
2078
+ "督": 2074,
2079
+ "睦": 2075,
2080
+ "睨": 2076,
2081
+ "瞑": 2077,
2082
+ "瞬": 2078,
2083
+ "瞭": 2079,
2084
+ "瞰": 2080,
2085
+ "瞳": 2081,
2086
+ "瞼": 2082,
2087
+ "矛": 2083,
2088
+ "矢": 2084,
2089
+ "知": 2085,
2090
+ "矩": 2086,
2091
+ "短": 2087,
2092
+ "矯": 2088,
2093
+ "石": 2089,
2094
+ "砂": 2090,
2095
+ "研": 2091,
2096
+ "砕": 2092,
2097
+ "砦": 2093,
2098
+ "砲": 2094,
2099
+ "破": 2095,
2100
+ "硫": 2096,
2101
+ "硬": 2097,
2102
+ "碁": 2098,
2103
+ "碇": 2099,
2104
+ "碑": 2100,
2105
+ "碕": 2101,
2106
+ "碗": 2102,
2107
+ "碧": 2103,
2108
+ "確": 2104,
2109
+ "碾": 2105,
2110
+ "磁": 2106,
2111
+ "磅": 2107,
2112
+ "磊": 2108,
2113
+ "磐": 2109,
2114
+ "磨": 2110,
2115
+ "磯": 2111,
2116
+ "礁": 2112,
2117
+ "礎": 2113,
2118
+ "示": 2114,
2119
+ "礼": 2115,
2120
+ "社": 2116,
2121
+ "祀": 2117,
2122
+ "祇": 2118,
2123
+ "祈": 2119,
2124
+ "祉": 2120,
2125
+ "祐": 2121,
2126
+ "祓": 2122,
2127
+ "祖": 2123,
2128
+ "祝": 2124,
2129
+ "神": 2125,
2130
+ "祠": 2126,
2131
+ "祥": 2127,
2132
+ "票": 2128,
2133
+ "祭": 2129,
2134
+ "禁": 2130,
2135
+ "禄": 2131,
2136
+ "禅": 2132,
2137
+ "禊": 2133,
2138
+ "禍": 2134,
2139
+ "福": 2135,
2140
+ "禰": 2136,
2141
+ "秀": 2137,
2142
+ "私": 2138,
2143
+ "秋": 2139,
2144
+ "科": 2140,
2145
+ "秒": 2141,
2146
+ "秘": 2142,
2147
+ "秤": 2143,
2148
+ "秦": 2144,
2149
+ "秩": 2145,
2150
+ "称": 2146,
2151
+ "移": 2147,
2152
+ "稀": 2148,
2153
+ "程": 2149,
2154
+ "税": 2150,
2155
+ "稚": 2151,
2156
+ "稜": 2152,
2157
+ "種": 2153,
2158
+ "稱": 2154,
2159
+ "稲": 2155,
2160
+ "稼": 2156,
2161
+ "稽": 2157,
2162
+ "稿": 2158,
2163
+ "穀": 2159,
2164
+ "穂": 2160,
2165
+ "積": 2161,
2166
+ "穏": 2162,
2167
+ "穢": 2163,
2168
+ "穫": 2164,
2169
+ "穴": 2165,
2170
+ "究": 2166,
2171
+ "空": 2167,
2172
+ "穿": 2168,
2173
+ "突": 2169,
2174
+ "窃": 2170,
2175
+ "窒": 2171,
2176
+ "窓": 2172,
2177
+ "窟": 2173,
2178
+ "窪": 2174,
2179
+ "窮": 2175,
2180
+ "窯": 2176,
2181
+ "立": 2177,
2182
+ "竜": 2178,
2183
+ "章": 2179,
2184
+ "童": 2180,
2185
+ "竦": 2181,
2186
+ "端": 2182,
2187
+ "競": 2183,
2188
+ "竹": 2184,
2189
+ "竺": 2185,
2190
+ "竿": 2186,
2191
+ "笑": 2187,
2192
+ "笘": 2188,
2193
+ "笛": 2189,
2194
+ "笠": 2190,
2195
+ "符": 2191,
2196
+ "第": 2192,
2197
+ "笹": 2193,
2198
+ "筆": 2194,
2199
+ "筈": 2195,
2200
+ "等": 2196,
2201
+ "筋": 2197,
2202
+ "筍": 2198,
2203
+ "筏": 2199,
2204
+ "筐": 2200,
2205
+ "筑": 2201,
2206
+ "筒": 2202,
2207
+ "答": 2203,
2208
+ "策": 2204,
2209
+ "箇": 2205,
2210
+ "箋": 2206,
2211
+ "箔": 2207,
2212
+ "箕": 2208,
2213
+ "算": 2209,
2214
+ "管": 2210,
2215
+ "箭": 2211,
2216
+ "箱": 2212,
2217
+ "箸": 2213,
2218
+ "節": 2214,
2219
+ "範": 2215,
2220
+ "築": 2216,
2221
+ "篝": 2217,
2222
+ "篠": 2218,
2223
+ "篭": 2219,
2224
+ "篷": 2220,
2225
+ "簀": 2221,
2226
+ "簡": 2222,
2227
+ "簾": 2223,
2228
+ "簿": 2224,
2229
+ "籍": 2225,
2230
+ "籠": 2226,
2231
+ "米": 2227,
2232
+ "粉": 2228,
2233
+ "粋": 2229,
2234
+ "粒": 2230,
2235
+ "粕": 2231,
2236
+ "粗": 2232,
2237
+ "粘": 2233,
2238
+ "粛": 2234,
2239
+ "粥": 2235,
2240
+ "粧": 2236,
2241
+ "精": 2237,
2242
+ "糊": 2238,
2243
+ "糖": 2239,
2244
+ "糞": 2240,
2245
+ "糧": 2241,
2246
+ "糸": 2242,
2247
+ "系": 2243,
2248
+ "紀": 2244,
2249
+ "約": 2245,
2250
+ "紅": 2246,
2251
+ "紋": 2247,
2252
+ "納": 2248,
2253
+ "紐": 2249,
2254
+ "純": 2250,
2255
+ "紗": 2251,
2256
+ "紙": 2252,
2257
+ "級": 2253,
2258
+ "紛": 2254,
2259
+ "素": 2255,
2260
+ "索": 2256,
2261
+ "紫": 2257,
2262
+ "累": 2258,
2263
+ "細": 2259,
2264
+ "紳": 2260,
2265
+ "紹": 2261,
2266
+ "紺": 2262,
2267
+ "終": 2263,
2268
+ "組": 2264,
2269
+ "絆": 2265,
2270
+ "経": 2266,
2271
+ "結": 2267,
2272
+ "絞": 2268,
2273
+ "絡": 2269,
2274
+ "給": 2270,
2275
+ "絨": 2271,
2276
+ "統": 2272,
2277
+ "絵": 2273,
2278
+ "絶": 2274,
2279
+ "絹": 2275,
2280
+ "継": 2276,
2281
+ "続": 2277,
2282
+ "綜": 2278,
2283
+ "維": 2279,
2284
+ "綱": 2280,
2285
+ "網": 2281,
2286
+ "綴": 2282,
2287
+ "綺": 2283,
2288
+ "綻": 2284,
2289
+ "綾": 2285,
2290
+ "綿": 2286,
2291
+ "緊": 2287,
2292
+ "総": 2288,
2293
+ "緑": 2289,
2294
+ "緒": 2290,
2295
+ "緘": 2291,
2296
+ "線": 2292,
2297
+ "締": 2293,
2298
+ "編": 2294,
2299
+ "緩": 2295,
2300
+ "緯": 2296,
2301
+ "練": 2297,
2302
+ "緻": 2298,
2303
+ "縁": 2299,
2304
+ "縄": 2300,
2305
+ "縋": 2301,
2306
+ "縛": 2302,
2307
+ "縞": 2303,
2308
+ "縢": 2304,
2309
+ "縦": 2305,
2310
+ "縫": 2306,
2311
+ "縮": 2307,
2312
+ "縱": 2308,
2313
+ "績": 2309,
2314
+ "繁": 2310,
2315
+ "繊": 2311,
2316
+ "繋": 2312,
2317
+ "繍": 2313,
2318
+ "織": 2314,
2319
+ "繕": 2315,
2320
+ "繚": 2316,
2321
+ "繡": 2317,
2322
+ "繫": 2318,
2323
+ "繭": 2319,
2324
+ "繰": 2320,
2325
+ "纏": 2321,
2326
+ "缶": 2322,
2327
+ "罠": 2323,
2328
+ "罪": 2324,
2329
+ "置": 2325,
2330
+ "罰": 2326,
2331
+ "署": 2327,
2332
+ "罵": 2328,
2333
+ "罹": 2329,
2334
+ "羅": 2330,
2335
+ "羊": 2331,
2336
+ "美": 2332,
2337
+ "羞": 2333,
2338
+ "群": 2334,
2339
+ "羨": 2335,
2340
+ "義": 2336,
2341
+ "羮": 2337,
2342
+ "羹": 2338,
2343
+ "羽": 2339,
2344
+ "翌": 2340,
2345
+ "習": 2341,
2346
+ "翔": 2342,
2347
+ "翠": 2343,
2348
+ "翻": 2344,
2349
+ "翼": 2345,
2350
+ "耀": 2346,
2351
+ "老": 2347,
2352
+ "考": 2348,
2353
+ "者": 2349,
2354
+ "耐": 2350,
2355
+ "耕": 2351,
2356
+ "耗": 2352,
2357
+ "耳": 2353,
2358
+ "耶": 2354,
2359
+ "聖": 2355,
2360
+ "聘": 2356,
2361
+ "聞": 2357,
2362
+ "聡": 2358,
2363
+ "聴": 2359,
2364
+ "職": 2360,
2365
+ "肉": 2361,
2366
+ "肋": 2362,
2367
+ "肌": 2363,
2368
+ "肖": 2364,
2369
+ "肘": 2365,
2370
+ "肝": 2366,
2371
+ "股": 2367,
2372
+ "肢": 2368,
2373
+ "肥": 2369,
2374
+ "肩": 2370,
2375
+ "肪": 2371,
2376
+ "肯": 2372,
2377
+ "育": 2373,
2378
+ "肴": 2374,
2379
+ "肺": 2375,
2380
+ "胃": 2376,
2381
+ "胆": 2377,
2382
+ "背": 2378,
2383
+ "胎": 2379,
2384
+ "胞": 2380,
2385
+ "胡": 2381,
2386
+ "胱": 2382,
2387
+ "胴": 2383,
2388
+ "胸": 2384,
2389
+ "能": 2385,
2390
+ "脂": 2386,
2391
+ "脅": 2387,
2392
+ "脆": 2388,
2393
+ "脇": 2389,
2394
+ "脈": 2390,
2395
+ "脊": 2391,
2396
+ "脚": 2392,
2397
+ "脱": 2393,
2398
+ "脳": 2394,
2399
+ "脹": 2395,
2400
+ "腎": 2396,
2401
+ "腐": 2397,
2402
+ "腑": 2398,
2403
+ "腔": 2399,
2404
+ "腕": 2400,
2405
+ "腫": 2401,
2406
+ "腰": 2402,
2407
+ "腱": 2403,
2408
+ "腸": 2404,
2409
+ "腹": 2405,
2410
+ "腺": 2406,
2411
+ "腿": 2407,
2412
+ "膀": 2408,
2413
+ "膏": 2409,
2414
+ "膚": 2410,
2415
+ "膜": 2411,
2416
+ "膝": 2412,
2417
+ "膠": 2413,
2418
+ "膨": 2414,
2419
+ "膳": 2415,
2420
+ "膵": 2416,
2421
+ "膿": 2417,
2422
+ "臆": 2418,
2423
+ "臓": 2419,
2424
+ "臣": 2420,
2425
+ "臨": 2421,
2426
+ "自": 2422,
2427
+ "臭": 2423,
2428
+ "至": 2424,
2429
+ "致": 2425,
2430
+ "臼": 2426,
2431
+ "興": 2427,
2432
+ "舌": 2428,
2433
+ "舎": 2429,
2434
+ "舐": 2430,
2435
+ "舗": 2431,
2436
+ "舞": 2432,
2437
+ "舟": 2433,
2438
+ "航": 2434,
2439
+ "般": 2435,
2440
+ "舵": 2436,
2441
+ "舶": 2437,
2442
+ "船": 2438,
2443
+ "艇": 2439,
2444
+ "艦": 2440,
2445
+ "良": 2441,
2446
+ "色": 2442,
2447
+ "艶": 2443,
2448
+ "芋": 2444,
2449
+ "芒": 2445,
2450
+ "芝": 2446,
2451
+ "芭": 2447,
2452
+ "芯": 2448,
2453
+ "花": 2449,
2454
+ "芳": 2450,
2455
+ "芸": 2451,
2456
+ "芻": 2452,
2457
+ "芽": 2453,
2458
+ "苑": 2454,
2459
+ "苔": 2455,
2460
+ "苗": 2456,
2461
+ "苛": 2457,
2462
+ "若": 2458,
2463
+ "苦": 2459,
2464
+ "苫": 2460,
2465
+ "英": 2461,
2466
+ "苺": 2462,
2467
+ "茂": 2463,
2468
+ "茄": 2464,
2469
+ "茅": 2465,
2470
+ "茎": 2466,
2471
+ "茜": 2467,
2472
+ "茨": 2468,
2473
+ "茶": 2469,
2474
+ "茸": 2470,
2475
+ "茹": 2471,
2476
+ "草": 2472,
2477
+ "荒": 2473,
2478
+ "荘": 2474,
2479
+ "荷": 2475,
2480
+ "荻": 2476,
2481
+ "莫": 2477,
2482
+ "菅": 2478,
2483
+ "菊": 2479,
2484
+ "菌": 2480,
2485
+ "菓": 2481,
2486
+ "菜": 2482,
2487
+ "菩": 2483,
2488
+ "華": 2484,
2489
+ "菱": 2485,
2490
+ "萄": 2486,
2491
+ "萌": 2487,
2492
+ "萎": 2488,
2493
+ "萩": 2489,
2494
+ "萬": 2490,
2495
+ "落": 2491,
2496
+ "葉": 2492,
2497
+ "著": 2493,
2498
+ "葛": 2494,
2499
+ "葡": 2495,
2500
+ "葩": 2496,
2501
+ "葬": 2497,
2502
+ "葵": 2498,
2503
+ "蒙": 2499,
2504
+ "蒲": 2500,
2505
+ "蒸": 2501,
2506
+ "蒼": 2502,
2507
+ "蓄": 2503,
2508
+ "蓋": 2504,
2509
+ "蓑": 2505,
2510
+ "蓮": 2506,
2511
+ "蓼": 2507,
2512
+ "蔑": 2508,
2513
+ "蔓": 2509,
2514
+ "蔬": 2510,
2515
+ "蔵": 2511,
2516
+ "蔽": 2512,
2517
+ "蕁": 2513,
2518
+ "蕉": 2514,
2519
+ "蕎": 2515,
2520
+ "蕞": 2516,
2521
+ "蕩": 2517,
2522
+ "蕪": 2518,
2523
+ "蕾": 2519,
2524
+ "薄": 2520,
2525
+ "薇": 2521,
2526
+ "薔": 2522,
2527
+ "薙": 2523,
2528
+ "薦": 2524,
2529
+ "薩": 2525,
2530
+ "薪": 2526,
2531
+ "薫": 2527,
2532
+ "薬": 2528,
2533
+ "薮": 2529,
2534
+ "藁": 2530,
2535
+ "藤": 2531,
2536
+ "藩": 2532,
2537
+ "藻": 2533,
2538
+ "蘇": 2534,
2539
+ "蘭": 2535,
2540
+ "虎": 2536,
2541
+ "虐": 2537,
2542
+ "虔": 2538,
2543
+ "虚": 2539,
2544
+ "虜": 2540,
2545
+ "虫": 2541,
2546
+ "虹": 2542,
2547
+ "蚊": 2543,
2548
+ "蚕": 2544,
2549
+ "蚤": 2545,
2550
+ "蛇": 2546,
2551
+ "蛋": 2547,
2552
+ "蛍": 2548,
2553
+ "蛙": 2549,
2554
+ "蛛": 2550,
2555
+ "蛭": 2551,
2556
+ "蛮": 2552,
2557
+ "蛾": 2553,
2558
+ "蜂": 2554,
2559
+ "蜘": 2555,
2560
+ "蜜": 2556,
2561
+ "蝉": 2557,
2562
+ "蝋": 2558,
2563
+ "蝎": 2559,
2564
+ "蝕": 2560,
2565
+ "蝦": 2561,
2566
+ "蝶": 2562,
2567
+ "融": 2563,
2568
+ "螺": 2564,
2569
+ "蟹": 2565,
2570
+ "蠣": 2566,
2571
+ "血": 2567,
2572
+ "衆": 2568,
2573
+ "行": 2569,
2574
+ "術": 2570,
2575
+ "街": 2571,
2576
+ "衛": 2572,
2577
+ "衝": 2573,
2578
+ "衡": 2574,
2579
+ "衣": 2575,
2580
+ "表": 2576,
2581
+ "衰": 2577,
2582
+ "衿": 2578,
2583
+ "袈": 2579,
2584
+ "袋": 2580,
2585
+ "袖": 2581,
2586
+ "被": 2582,
2587
+ "袴": 2583,
2588
+ "裁": 2584,
2589
+ "裂": 2585,
2590
+ "装": 2586,
2591
+ "裏": 2587,
2592
+ "裔": 2588,
2593
+ "裕": 2589,
2594
+ "裙": 2590,
2595
+ "補": 2591,
2596
+ "裟": 2592,
2597
+ "裸": 2593,
2598
+ "製": 2594,
2599
+ "裾": 2595,
2600
+ "褄": 2596,
2601
+ "複": 2597,
2602
+ "褐": 2598,
2603
+ "褒": 2599,
2604
+ "褪": 2600,
2605
+ "襖": 2601,
2606
+ "襟": 2602,
2607
+ "襲": 2603,
2608
+ "西": 2604,
2609
+ "要": 2605,
2610
+ "覆": 2606,
2611
+ "覇": 2607,
2612
+ "見": 2608,
2613
+ "規": 2609,
2614
+ "視": 2610,
2615
+ "覗": 2611,
2616
+ "覚": 2612,
2617
+ "覧": 2613,
2618
+ "親": 2614,
2619
+ "観": 2615,
2620
+ "角": 2616,
2621
+ "解": 2617,
2622
+ "触": 2618,
2623
+ "言": 2619,
2624
+ "訂": 2620,
2625
+ "訃": 2621,
2626
+ "計": 2622,
2627
+ "討": 2623,
2628
+ "訓": 2624,
2629
+ "託": 2625,
2630
+ "記": 2626,
2631
+ "訛": 2627,
2632
+ "訝": 2628,
2633
+ "訟": 2629,
2634
+ "訣": 2630,
2635
+ "訪": 2631,
2636
+ "設": 2632,
2637
+ "許": 2633,
2638
+ "訳": 2634,
2639
+ "訴": 2635,
2640
+ "診": 2636,
2641
+ "証": 2637,
2642
+ "詐": 2638,
2643
+ "評": 2639,
2644
+ "詞": 2640,
2645
+ "詠": 2641,
2646
+ "詣": 2642,
2647
+ "試": 2643,
2648
+ "詩": 2644,
2649
+ "詫": 2645,
2650
+ "詮": 2646,
2651
+ "詰": 2647,
2652
+ "話": 2648,
2653
+ "該": 2649,
2654
+ "詳": 2650,
2655
+ "誇": 2651,
2656
+ "誉": 2652,
2657
+ "誌": 2653,
2658
+ "認": 2654,
2659
+ "誓": 2655,
2660
+ "誕": 2656,
2661
+ "誘": 2657,
2662
+ "語": 2658,
2663
+ "誠": 2659,
2664
+ "誤": 2660,
2665
+ "説": 2661,
2666
+ "読": 2662,
2667
+ "誰": 2663,
2668
+ "課": 2664,
2669
+ "誹": 2665,
2670
+ "調": 2666,
2671
+ "談": 2667,
2672
+ "請": 2668,
2673
+ "諏": 2669,
2674
+ "論": 2670,
2675
+ "諜": 2671,
2676
+ "諦": 2672,
2677
+ "諭": 2673,
2678
+ "諸": 2674,
2679
+ "諾": 2675,
2680
+ "謀": 2676,
2681
+ "謎": 2677,
2682
+ "謗": 2678,
2683
+ "謙": 2679,
2684
+ "講": 2680,
2685
+ "謝": 2681,
2686
+ "謡": 2682,
2687
+ "謳": 2683,
2688
+ "謹": 2684,
2689
+ "識": 2685,
2690
+ "譜": 2686,
2691
+ "警": 2687,
2692
+ "議": 2688,
2693
+ "譲": 2689,
2694
+ "護": 2690,
2695
+ "讐": 2691,
2696
+ "讓": 2692,
2697
+ "认": 2693,
2698
+ "识": 2694,
2699
+ "谷": 2695,
2700
+ "豆": 2696,
2701
+ "豊": 2697,
2702
+ "豚": 2698,
2703
+ "象": 2699,
2704
+ "豪": 2700,
2705
+ "豹": 2701,
2706
+ "貌": 2702,
2707
+ "貝": 2703,
2708
+ "貞": 2704,
2709
+ "負": 2705,
2710
+ "財": 2706,
2711
+ "貢": 2707,
2712
+ "貧": 2708,
2713
+ "貨": 2709,
2714
+ "販": 2710,
2715
+ "貪": 2711,
2716
+ "貫": 2712,
2717
+ "責": 2713,
2718
+ "貯": 2714,
2719
+ "貰": 2715,
2720
+ "貴": 2716,
2721
+ "貶": 2717,
2722
+ "買": 2718,
2723
+ "貸": 2719,
2724
+ "費": 2720,
2725
+ "貼": 2721,
2726
+ "貿": 2722,
2727
+ "賀": 2723,
2728
+ "賃": 2724,
2729
+ "賄": 2725,
2730
+ "資": 2726,
2731
+ "賊": 2727,
2732
+ "賑": 2728,
2733
+ "賓": 2729,
2734
+ "賛": 2730,
2735
+ "賜": 2731,
2736
+ "賞": 2732,
2737
+ "賠": 2733,
2738
+ "賢": 2734,
2739
+ "質": 2735,
2740
+ "賭": 2736,
2741
+ "購": 2737,
2742
+ "賽": 2738,
2743
+ "贄": 2739,
2744
+ "贅": 2740,
2745
+ "贈": 2741,
2746
+ "贔": 2742,
2747
+ "赤": 2743,
2748
+ "赦": 2744,
2749
+ "走": 2745,
2750
+ "赴": 2746,
2751
+ "起": 2747,
2752
+ "超": 2748,
2753
+ "越": 2749,
2754
+ "趙": 2750,
2755
+ "趣": 2751,
2756
+ "足": 2752,
2757
+ "趾": 2753,
2758
+ "距": 2754,
2759
+ "跟": 2755,
2760
+ "跡": 2756,
2761
+ "跨": 2757,
2762
+ "路": 2758,
2763
+ "跳": 2759,
2764
+ "践": 2760,
2765
+ "踊": 2761,
2766
+ "踏": 2762,
2767
+ "踪": 2763,
2768
+ "蹄": 2764,
2769
+ "蹴": 2765,
2770
+ "躇": 2766,
2771
+ "躊": 2767,
2772
+ "躍": 2768,
2773
+ "躓": 2769,
2774
+ "身": 2770,
2775
+ "躯": 2771,
2776
+ "躰": 2772,
2777
+ "躾": 2773,
2778
+ "車": 2774,
2779
+ "軌": 2775,
2780
+ "軍": 2776,
2781
+ "軒": 2777,
2782
+ "軟": 2778,
2783
+ "転": 2779,
2784
+ "軸": 2780,
2785
+ "軽": 2781,
2786
+ "較": 2782,
2787
+ "載": 2783,
2788
+ "輊": 2784,
2789
+ "輔": 2785,
2790
+ "輝": 2786,
2791
+ "輩": 2787,
2792
+ "輪": 2788,
2793
+ "輯": 2789,
2794
+ "輸": 2790,
2795
+ "輿": 2791,
2796
+ "轄": 2792,
2797
+ "轟": 2793,
2798
+ "轢": 2794,
2799
+ "辛": 2795,
2800
+ "辞": 2796,
2801
+ "辣": 2797,
2802
+ "辰": 2798,
2803
+ "辱": 2799,
2804
+ "農": 2800,
2805
+ "辺": 2801,
2806
+ "辻": 2802,
2807
+ "込": 2803,
2808
+ "辿": 2804,
2809
+ "迂": 2805,
2810
+ "迅": 2806,
2811
+ "迎": 2807,
2812
+ "近": 2808,
2813
+ "返": 2809,
2814
+ "迦": 2810,
2815
+ "迫": 2811,
2816
+ "述": 2812,
2817
+ "迷": 2813,
2818
+ "追": 2814,
2819
+ "退": 2815,
2820
+ "送": 2816,
2821
+ "逃": 2817,
2822
+ "逆": 2818,
2823
+ "透": 2819,
2824
+ "逐": 2820,
2825
+ "途": 2821,
2826
+ "這": 2822,
2827
+ "通": 2823,
2828
+ "逝": 2824,
2829
+ "逞": 2825,
2830
+ "速": 2826,
2831
+ "造": 2827,
2832
+ "逢": 2828,
2833
+ "連": 2829,
2834
+ "逮": 2830,
2835
+ "週": 2831,
2836
+ "進": 2832,
2837
+ "逸": 2833,
2838
+ "遁": 2834,
2839
+ "遂": 2835,
2840
+ "遅": 2836,
2841
+ "遇": 2837,
2842
+ "遊": 2838,
2843
+ "運": 2839,
2844
+ "遍": 2840,
2845
+ "過": 2841,
2846
+ "道": 2842,
2847
+ "達": 2843,
2848
+ "違": 2844,
2849
+ "遜": 2845,
2850
+ "遠": 2846,
2851
+ "遡": 2847,
2852
+ "遣": 2848,
2853
+ "遥": 2849,
2854
+ "適": 2850,
2855
+ "遭": 2851,
2856
+ "遮": 2852,
2857
+ "遲": 2853,
2858
+ "遵": 2854,
2859
+ "遷": 2855,
2860
+ "選": 2856,
2861
+ "遺": 2857,
2862
+ "遼": 2858,
2863
+ "遽": 2859,
2864
+ "避": 2860,
2865
+ "還": 2861,
2866
+ "邑": 2862,
2867
+ "那": 2863,
2868
+ "邦": 2864,
2869
+ "邪": 2865,
2870
+ "邸": 2866,
2871
+ "郁": 2867,
2872
+ "郊": 2868,
2873
+ "郎": 2869,
2874
+ "郞": 2870,
2875
+ "郡": 2871,
2876
+ "部": 2872,
2877
+ "郭": 2873,
2878
+ "郵": 2874,
2879
+ "郷": 2875,
2880
+ "都": 2876,
2881
+ "酉": 2877,
2882
+ "酌": 2878,
2883
+ "配": 2879,
2884
+ "酎": 2880,
2885
+ "酒": 2881,
2886
+ "酔": 2882,
2887
+ "酛": 2883,
2888
+ "酢": 2884,
2889
+ "酬": 2885,
2890
+ "酵": 2886,
2891
+ "酷": 2887,
2892
+ "酸": 2888,
2893
+ "醇": 2889,
2894
+ "醍": 2890,
2895
+ "醐": 2891,
2896
+ "醒": 2892,
2897
+ "醜": 2893,
2898
+ "醤": 2894,
2899
+ "醬": 2895,
2900
+ "醸": 2896,
2901
+ "采": 2897,
2902
+ "釈": 2898,
2903
+ "里": 2899,
2904
+ "重": 2900,
2905
+ "野": 2901,
2906
+ "量": 2902,
2907
+ "金": 2903,
2908
+ "釘": 2904,
2909
+ "釜": 2905,
2910
+ "針": 2906,
2911
+ "釣": 2907,
2912
+ "釧": 2908,
2913
+ "鈍": 2909,
2914
+ "鈴": 2910,
2915
+ "鈿": 2911,
2916
+ "鉄": 2912,
2917
+ "鉛": 2913,
2918
+ "鉢": 2914,
2919
+ "鉤": 2915,
2920
+ "鉱": 2916,
2921
+ "鉾": 2917,
2922
+ "銀": 2918,
2923
+ "銃": 2919,
2924
+ "銅": 2920,
2925
+ "銘": 2921,
2926
+ "銚": 2922,
2927
+ "銭": 2923,
2928
+ "鋏": 2924,
2929
+ "鋭": 2925,
2930
+ "鋲": 2926,
2931
+ "鋸": 2927,
2932
+ "鋼": 2928,
2933
+ "錆": 2929,
2934
+ "錘": 2930,
2935
+ "錠": 2931,
2936
+ "錦": 2932,
2937
+ "錬": 2933,
2938
+ "錯": 2934,
2939
+ "録": 2935,
2940
+ "鍋": 2936,
2941
+ "鍔": 2937,
2942
+ "鍛": 2938,
2943
+ "鍮": 2939,
2944
+ "鍵": 2940,
2945
+ "鍼": 2941,
2946
+ "鍾": 2942,
2947
+ "鎌": 2943,
2948
+ "鎖": 2944,
2949
+ "鎗": 2945,
2950
+ "鎚": 2946,
2951
+ "鎧": 2947,
2952
+ "鎮": 2948,
2953
+ "鏡": 2949,
2954
+ "鐘": 2950,
2955
+ "鑑": 2951,
2956
+ "鑓": 2952,
2957
+ "長": 2953,
2958
+ "門": 2954,
2959
+ "閃": 2955,
2960
+ "閉": 2956,
2961
+ "開": 2957,
2962
+ "閑": 2958,
2963
+ "間": 2959,
2964
+ "関": 2960,
2965
+ "閣": 2961,
2966
+ "閥": 2962,
2967
+ "閲": 2963,
2968
+ "闇": 2964,
2969
+ "闍": 2965,
2970
+ "闘": 2966,
2971
+ "阜": 2967,
2972
+ "阪": 2968,
2973
+ "防": 2969,
2974
+ "阻": 2970,
2975
+ "阿": 2971,
2976
+ "陀": 2972,
2977
+ "降": 2973,
2978
+ "限": 2974,
2979
+ "陛": 2975,
2980
+ "院": 2976,
2981
+ "陣": 2977,
2982
+ "除": 2978,
2983
+ "陥": 2979,
2984
+ "陰": 2980,
2985
+ "陳": 2981,
2986
+ "陵": 2982,
2987
+ "陶": 2983,
2988
+ "陸": 2984,
2989
+ "険": 2985,
2990
+ "陽": 2986,
2991
+ "隅": 2987,
2992
+ "隆": 2988,
2993
+ "隈": 2989,
2994
+ "隊": 2990,
2995
+ "階": 2991,
2996
+ "随": 2992,
2997
+ "隔": 2993,
2998
+ "隕": 2994,
2999
+ "隙": 2995,
3000
+ "際": 2996,
3001
+ "障": 2997,
3002
+ "隠": 2998,
3003
+ "隣": 2999,
3004
+ "隷": 3000,
3005
+ "雀": 3001,
3006
+ "雄": 3002,
3007
+ "雅": 3003,
3008
+ "集": 3004,
3009
+ "雇": 3005,
3010
+ "雉": 3006,
3011
+ "雌": 3007,
3012
+ "雑": 3008,
3013
+ "雛": 3009,
3014
+ "離": 3010,
3015
+ "難": 3011,
3016
+ "雨": 3012,
3017
+ "雪": 3013,
3018
+ "雫": 3014,
3019
+ "雰": 3015,
3020
+ "雲": 3016,
3021
+ "零": 3017,
3022
+ "雷": 3018,
3023
+ "電": 3019,
3024
+ "需": 3020,
3025
+ "震": 3021,
3026
+ "霊": 3022,
3027
+ "霜": 3023,
3028
+ "霞": 3024,
3029
+ "霧": 3025,
3030
+ "露": 3026,
3031
+ "霹": 3027,
3032
+ "靂": 3028,
3033
+ "靄": 3029,
3034
+ "青": 3030,
3035
+ "靖": 3031,
3036
+ "静": 3032,
3037
+ "靜": 3033,
3038
+ "非": 3034,
3039
+ "靡": 3035,
3040
+ "面": 3036,
3041
+ "革": 3037,
3042
+ "靭": 3038,
3043
+ "靴": 3039,
3044
+ "鞄": 3040,
3045
+ "鞍": 3041,
3046
+ "鞘": 3042,
3047
+ "鞭": 3043,
3048
+ "韓": 3044,
3049
+ "韮": 3045,
3050
+ "音": 3046,
3051
+ "韻": 3047,
3052
+ "響": 3048,
3053
+ "頂": 3049,
3054
+ "頃": 3050,
3055
+ "項": 3051,
3056
+ "順": 3052,
3057
+ "須": 3053,
3058
+ "預": 3054,
3059
+ "頑": 3055,
3060
+ "頓": 3056,
3061
+ "領": 3057,
3062
+ "頬": 3058,
3063
+ "頭": 3059,
3064
+ "頷": 3060,
3065
+ "頻": 3061,
3066
+ "頼": 3062,
3067
+ "顆": 3063,
3068
+ "題": 3064,
3069
+ "額": 3065,
3070
+ "顎": 3066,
3071
+ "顔": 3067,
3072
+ "顕": 3068,
3073
+ "願": 3069,
3074
+ "類": 3070,
3075
+ "顧": 3071,
3076
+ "風": 3072,
3077
+ "颯": 3073,
3078
+ "飛": 3074,
3079
+ "食": 3075,
3080
+ "飢": 3076,
3081
+ "飯": 3077,
3082
+ "飲": 3078,
3083
+ "飴": 3079,
3084
+ "飼": 3080,
3085
+ "飽": 3081,
3086
+ "飾": 3082,
3087
+ "餃": 3083,
3088
+ "餅": 3084,
3089
+ "養": 3085,
3090
+ "餌": 3086,
3091
+ "餐": 3087,
3092
+ "餓": 3088,
3093
+ "餞": 3089,
3094
+ "餡": 3090,
3095
+ "館": 3091,
3096
+ "饅": 3092,
3097
+ "饒": 3093,
3098
+ "首": 3094,
3099
+ "香": 3095,
3100
+ "馬": 3096,
3101
+ "馳": 3097,
3102
+ "馴": 3098,
3103
+ "駄": 3099,
3104
+ "駅": 3100,
3105
+ "駆": 3101,
3106
+ "駐": 3102,
3107
+ "駒": 3103,
3108
+ "駕": 3104,
3109
+ "駿": 3105,
3110
+ "騎": 3106,
3111
+ "騒": 3107,
3112
+ "験": 3108,
3113
+ "騙": 3109,
3114
+ "騨": 3110,
3115
+ "騰": 3111,
3116
+ "驚": 3112,
3117
+ "骨": 3113,
3118
+ "骸": 3114,
3119
+ "髄": 3115,
3120
+ "高": 3116,
3121
+ "髪": 3117,
3122
+ "髭": 3118,
3123
+ "鬱": 3119,
3124
+ "鬼": 3120,
3125
+ "魁": 3121,
3126
+ "魂": 3122,
3127
+ "魄": 3123,
3128
+ "魅": 3124,
3129
+ "魔": 3125,
3130
+ "魚": 3126,
3131
+ "鮎": 3127,
3132
+ "鮑": 3128,
3133
+ "鮪": 3129,
3134
+ "鮫": 3130,
3135
+ "鮭": 3131,
3136
+ "鮮": 3132,
3137
+ "鯉": 3133,
3138
+ "鯖": 3134,
3139
+ "鯛": 3135,
3140
+ "鯨": 3136,
3141
+ "鰐": 3137,
3142
+ "鰹": 3138,
3143
+ "鱈": 3139,
3144
+ "鱗": 3140,
3145
+ "鲁": 3141,
3146
+ "鳥": 3142,
3147
+ "鳩": 3143,
3148
+ "鳳": 3144,
3149
+ "鳴": 3145,
3150
+ "鴨": 3146,
3151
+ "鴻": 3147,
3152
+ "鵜": 3148,
3153
+ "鵡": 3149,
3154
+ "鶏": 3150,
3155
+ "鶯": 3151,
3156
+ "鶴": 3152,
3157
+ "鷲": 3153,
3158
+ "鷹": 3154,
3159
+ "鷺": 3155,
3160
+ "鸚": 3156,
3161
+ "鹸": 3157,
3162
+ "鹿": 3158,
3163
+ "麒": 3159,
3164
+ "麓": 3160,
3165
+ "麗": 3161,
3166
+ "麟": 3162,
3167
+ "麦": 3163,
3168
+ "麩": 3164,
3169
+ "麵": 3165,
3170
+ "麹": 3166,
3171
+ "麺": 3167,
3172
+ "麻": 3168,
3173
+ "麼": 3169,
3174
+ "黄": 3170,
3175
+ "黑": 3171,
3176
+ "黒": 3172,
3177
+ "黙": 3173,
3178
+ "點": 3174,
3179
+ "鼈": 3175,
3180
+ "鼓": 3176,
3181
+ "鼻": 3177,
3182
+ "鼾": 3178,
3183
+ "齋": 3179,
3184
+ "齎": 3180,
3185
+ "齟": 3181,
3186
+ "齢": 3182,
3187
+ "齧": 3183,
3188
+ "齬": 3184,
3189
+ "龍": 3185,
3190
+ "각": 3186,
3191
+ "걸": 3187,
3192
+ "검": 3188,
3193
+ "과": 3189,
3194
+ "귀": 3190,
3195
+ "급": 3191,
3196
+ "기": 3192,
3197
+ "는": 3193,
3198
+ "니": 3194,
3199
+ "님": 3195,
3200
+ "다": 3196,
3201
+ "됩": 3197,
3202
+ "두": 3198,
3203
+ "로": 3199,
3204
+ "름": 3200,
3205
+ "마": 3201,
3206
+ "모": 3202,
3207
+ "문": 3203,
3208
+ "받": 3204,
3209
+ "부": 3205,
3210
+ "사": 3206,
3211
+ "생": 3207,
3212
+ "스": 3208,
3213
+ "안": 3209,
3214
+ "알": 3210,
3215
+ "았": 3211,
3216
+ "앞": 3212,
3217
+ "어": 3213,
3218
+ "었": 3214,
3219
+ "에": 3215,
3220
+ "요": 3216,
3221
+ "은": 3217,
3222
+ "이": 3218,
3223
+ "입": 3219,
3224
+ "장": 3220,
3225
+ "정": 3221,
3226
+ "제": 3222,
3227
+ "중": 3223,
3228
+ "초": 3224,
3229
+ "출": 3225,
3230
+ "치": 3226,
3231
+ "카": 3227,
3232
+ "커": 3228,
3233
+ "하": 3229,
3234
+ "합": 3230,
3235
+ "효": 3231,
3236
+ "行": 3232,
3237
+ "️": 3233,
3238
+ "!": 3234,
3239
+ "%": 3235,
3240
+ "&": 3236,
3241
+ "(": 3237,
3242
+ ")": 3238,
3243
+ "+": 3239,
3244
+ ",": 3240,
3245
+ "-": 3241,
3246
+ ".": 3242,
3247
+ "/": 3243,
3248
+ "0": 3244,
3249
+ "1": 3245,
3250
+ "2": 3246,
3251
+ "3": 3247,
3252
+ "4": 3248,
3253
+ "5": 3249,
3254
+ "6": 3250,
3255
+ "7": 3251,
3256
+ "8": 3252,
3257
+ "9": 3253,
3258
+ ":": 3254,
3259
+ "=": 3255,
3260
+ ">": 3256,
3261
+ "?": 3257,
3262
+ "@": 3258,
3263
+ "_": 3259,
3264
+ "a": 3260,
3265
+ "b": 3261,
3266
+ "c": 3262,
3267
+ "d": 3263,
3268
+ "f": 3264,
3269
+ "g": 3265,
3270
+ "h": 3266,
3271
+ "j": 3267,
3272
+ "k": 3268,
3273
+ "l": 3269,
3274
+ "m": 3270,
3275
+ "n": 3271,
3276
+ "o": 3272,
3277
+ "p": 3273,
3278
+ "r": 3274,
3279
+ "s": 3275,
3280
+ "t": 3276,
3281
+ "u": 3277,
3282
+ "v": 3278,
3283
+ "w": 3279,
3284
+ "x": 3280,
3285
+ "z": 3281,
3286
+ "~": 3282,
3287
+ "、": 3283,
3288
+ "ア": 3284,
3289
+ "オ": 3285,
3290
+ "ト": 3286,
3291
+ "ネ": 3287,
3292
+ "ル": 3288,
3293
+ "゙": 3289,
3294
+ "¥": 3290,
3295
+ "�": 3291,
3296
+ "🌵": 3292,
3297
+ "🍻": 3293,
3298
+ "🐼": 3294,
3299
+ "📢": 3295,
3300
+ "🔥": 3296,
3301
+ "🖥": 3297,
3302
+ "𠮟": 3298
3303
+ }