yesj1234 commited on
Commit
b0aac66
1 Parent(s): b09f369

Upload folder using huggingface_hub

Browse files
Files changed (42) hide show
  1. README.md +60 -0
  2. added_tokens.json +4 -0
  3. all_results.json +8 -0
  4. checkpoint-1160333/added_tokens.json +4 -0
  5. checkpoint-1160333/config.json +117 -0
  6. checkpoint-1160333/model.safetensors +3 -0
  7. checkpoint-1160333/optimizer.pt +3 -0
  8. checkpoint-1160333/preprocessor_config.json +10 -0
  9. checkpoint-1160333/rng_state_0.pth +3 -0
  10. checkpoint-1160333/rng_state_1.pth +3 -0
  11. checkpoint-1160333/rng_state_2.pth +3 -0
  12. checkpoint-1160333/rng_state_3.pth +3 -0
  13. checkpoint-1160333/scheduler.pt +3 -0
  14. checkpoint-1160333/special_tokens_map.json +30 -0
  15. checkpoint-1160333/tokenizer_config.json +51 -0
  16. checkpoint-1160333/trainer_state.json +2335 -0
  17. checkpoint-1160333/training_args.bin +3 -0
  18. checkpoint-1160333/vocab.json +2225 -0
  19. checkpoint-1200330/added_tokens.json +4 -0
  20. checkpoint-1200330/config.json +117 -0
  21. checkpoint-1200330/model.safetensors +3 -0
  22. checkpoint-1200330/optimizer.pt +3 -0
  23. checkpoint-1200330/preprocessor_config.json +10 -0
  24. checkpoint-1200330/rng_state_0.pth +3 -0
  25. checkpoint-1200330/rng_state_1.pth +3 -0
  26. checkpoint-1200330/rng_state_2.pth +3 -0
  27. checkpoint-1200330/rng_state_3.pth +3 -0
  28. checkpoint-1200330/scheduler.pt +3 -0
  29. checkpoint-1200330/special_tokens_map.json +30 -0
  30. checkpoint-1200330/tokenizer_config.json +51 -0
  31. checkpoint-1200330/trainer_state.json +2419 -0
  32. checkpoint-1200330/training_args.bin +3 -0
  33. checkpoint-1200330/vocab.json +2225 -0
  34. config.json +117 -0
  35. model.safetensors +3 -0
  36. preprocessor_config.json +10 -0
  37. special_tokens_map.json +30 -0
  38. tokenizer_config.json +51 -0
  39. train_results.json +8 -0
  40. trainer_state.json +2428 -0
  41. training_args.bin +3 -0
  42. vocab.json +2225 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-large-xlsr-53
4
+ tags:
5
+ - automatic-speech-recognition
6
+ - ./train_dataset.py
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: koen_xlsr_100p_run1
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # koen_xlsr_100p_run1
17
+
18
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./TRAIN_DATASET.PY - NA dataset.
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0003
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - distributed_type: multi-GPU
42
+ - num_devices: 4
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 16
45
+ - total_eval_batch_size: 32
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.01
49
+ - num_epochs: 30
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.35.2
58
+ - Pytorch 2.1.1+cu121
59
+ - Datasets 2.15.0
60
+ - Tokenizers 0.15.0
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "</s>": 2224,
3
+ "<s>": 2223
4
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 30.0,
3
+ "train_loss": 0.5222103027782066,
4
+ "train_runtime": 708527.1323,
5
+ "train_samples": 640184,
6
+ "train_samples_per_second": 27.106,
7
+ "train_steps_per_second": 1.694
8
+ }
checkpoint-1160333/added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "</s>": 2224,
3
+ "<s>": 2223
4
+ }
checkpoint-1160333/config.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForCTC"
11
+ ],
12
+ "attention_dropout": 0.05,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 768,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "mean",
46
+ "ctc_zero_infinity": true,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.05,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "gradient_checkpointing": false,
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.05,
59
+ "hidden_size": 1024,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 4096,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.05,
64
+ "mask_channel_length": 10,
65
+ "mask_channel_min_space": 1,
66
+ "mask_channel_other": 0.0,
67
+ "mask_channel_prob": 0.0,
68
+ "mask_channel_selection": "static",
69
+ "mask_feature_length": 10,
70
+ "mask_feature_min_masks": 0,
71
+ "mask_feature_prob": 0.0,
72
+ "mask_time_length": 10,
73
+ "mask_time_min_masks": 2,
74
+ "mask_time_min_space": 1,
75
+ "mask_time_other": 0.0,
76
+ "mask_time_prob": 0.05,
77
+ "mask_time_selection": "static",
78
+ "model_type": "wav2vec2",
79
+ "num_adapter_layers": 3,
80
+ "num_attention_heads": 16,
81
+ "num_codevector_groups": 2,
82
+ "num_codevectors_per_group": 320,
83
+ "num_conv_pos_embedding_groups": 16,
84
+ "num_conv_pos_embeddings": 128,
85
+ "num_feat_extract_layers": 7,
86
+ "num_hidden_layers": 24,
87
+ "num_negatives": 100,
88
+ "output_hidden_size": 1024,
89
+ "pad_token_id": 2222,
90
+ "proj_codevector_dim": 768,
91
+ "tdnn_dilation": [
92
+ 1,
93
+ 2,
94
+ 3,
95
+ 1,
96
+ 1
97
+ ],
98
+ "tdnn_dim": [
99
+ 512,
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 1500
104
+ ],
105
+ "tdnn_kernel": [
106
+ 5,
107
+ 3,
108
+ 3,
109
+ 1,
110
+ 1
111
+ ],
112
+ "torch_dtype": "float32",
113
+ "transformers_version": "4.35.2",
114
+ "use_weighted_layer_sum": false,
115
+ "vocab_size": 2225,
116
+ "xvector_output_dim": 512
117
+ }
checkpoint-1160333/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d15ecdf3b22b6620e18521b19f826e3652d662d9c7d9d7f48108e0e4827c9a3
3
+ size 1270930004
checkpoint-1160333/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efdc3cd859f923b70e38323088dce89228775c1c2eff128d20f6c9f4cc14c6dd
3
+ size 2508404790
checkpoint-1160333/preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
checkpoint-1160333/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18efd07774428ed188e86bcc35144b7e95cda2f2d797c42d1394fc7bffa3d8f9
3
+ size 15024
checkpoint-1160333/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0948dcb83ead33068e36409b32b3b06291fc95fc23c318ae040caa0a31a47b90
3
+ size 15024
checkpoint-1160333/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c310bf380256ebdd82cacc51170bf5fc9b4deaa7d8edb9cad3fb149784c306b
3
+ size 15088
checkpoint-1160333/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:533c1227883737371bc714436c9ce6cbca52824d99528b3fb6fd49d4daa283d3
3
+ size 15088
checkpoint-1160333/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0a0779573c648ceda4604f0587c3d0a80897b2402f47e0f8074ce33a9d3e94b
3
+ size 1064
checkpoint-1160333/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "[UNK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": true,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1160333/tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "2221": {
4
+ "content": "[UNK]",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "2222": {
12
+ "content": "[PAD]",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "2223": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "2224": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": true,
38
+ "config": null,
39
+ "do_lower_case": false,
40
+ "eos_token": "</s>",
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "[PAD]",
43
+ "processor_class": "Wav2Vec2Processor",
44
+ "replace_word_delimiter_char": " ",
45
+ "target_lang": null,
46
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
47
+ "tokenizer_type": "wav2vec2",
48
+ "trust_remote_code": false,
49
+ "unk_token": "[UNK]",
50
+ "word_delimiter_token": "|"
51
+ }
checkpoint-1160333/trainer_state.json ADDED
@@ -0,0 +1,2335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 28.999987503592717,
5
+ "eval_steps": 500,
6
+ "global_step": 1160333,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.07,
13
+ "learning_rate": 7.497500833055648e-05,
14
+ "loss": 11.5654,
15
+ "step": 3000
16
+ },
17
+ {
18
+ "epoch": 0.15,
19
+ "learning_rate": 0.00014995001666111296,
20
+ "loss": 1.9313,
21
+ "step": 6000
22
+ },
23
+ {
24
+ "epoch": 0.22,
25
+ "learning_rate": 0.0002249250249916694,
26
+ "loss": 1.3886,
27
+ "step": 9000
28
+ },
29
+ {
30
+ "epoch": 0.3,
31
+ "learning_rate": 0.0002999000333222259,
32
+ "loss": 1.3023,
33
+ "step": 12000
34
+ },
35
+ {
36
+ "epoch": 0.37,
37
+ "learning_rate": 0.0002992436418962473,
38
+ "loss": 1.2746,
39
+ "step": 15000
40
+ },
41
+ {
42
+ "epoch": 0.45,
43
+ "learning_rate": 0.0002984862739685911,
44
+ "loss": 1.2224,
45
+ "step": 18000
46
+ },
47
+ {
48
+ "epoch": 0.52,
49
+ "learning_rate": 0.00029772890604093486,
50
+ "loss": 1.1809,
51
+ "step": 21000
52
+ },
53
+ {
54
+ "epoch": 0.6,
55
+ "learning_rate": 0.00029697153811327864,
56
+ "loss": 1.1405,
57
+ "step": 24000
58
+ },
59
+ {
60
+ "epoch": 0.67,
61
+ "learning_rate": 0.0002962141701856224,
62
+ "loss": 1.1178,
63
+ "step": 27000
64
+ },
65
+ {
66
+ "epoch": 0.75,
67
+ "learning_rate": 0.0002954568022579662,
68
+ "loss": 1.0984,
69
+ "step": 30000
70
+ },
71
+ {
72
+ "epoch": 0.82,
73
+ "learning_rate": 0.00029469943433031,
74
+ "loss": 1.0659,
75
+ "step": 33000
76
+ },
77
+ {
78
+ "epoch": 0.9,
79
+ "learning_rate": 0.0002939420664026538,
80
+ "loss": 1.0466,
81
+ "step": 36000
82
+ },
83
+ {
84
+ "epoch": 0.97,
85
+ "learning_rate": 0.0002931846984749976,
86
+ "loss": 1.0377,
87
+ "step": 39000
88
+ },
89
+ {
90
+ "epoch": 1.05,
91
+ "learning_rate": 0.00029242733054734134,
92
+ "loss": 1.005,
93
+ "step": 42000
94
+ },
95
+ {
96
+ "epoch": 1.12,
97
+ "learning_rate": 0.0002916699626196851,
98
+ "loss": 0.9926,
99
+ "step": 45000
100
+ },
101
+ {
102
+ "epoch": 1.2,
103
+ "learning_rate": 0.00029091259469202896,
104
+ "loss": 0.9863,
105
+ "step": 48000
106
+ },
107
+ {
108
+ "epoch": 1.27,
109
+ "learning_rate": 0.0002901552267643727,
110
+ "loss": 0.9723,
111
+ "step": 51000
112
+ },
113
+ {
114
+ "epoch": 1.35,
115
+ "learning_rate": 0.00028939785883671653,
116
+ "loss": 0.9571,
117
+ "step": 54000
118
+ },
119
+ {
120
+ "epoch": 1.42,
121
+ "learning_rate": 0.0002886404909090603,
122
+ "loss": 0.933,
123
+ "step": 57000
124
+ },
125
+ {
126
+ "epoch": 1.5,
127
+ "learning_rate": 0.00028788312298140404,
128
+ "loss": 0.9296,
129
+ "step": 60000
130
+ },
131
+ {
132
+ "epoch": 1.57,
133
+ "learning_rate": 0.0002871257550537479,
134
+ "loss": 0.9255,
135
+ "step": 63000
136
+ },
137
+ {
138
+ "epoch": 1.65,
139
+ "learning_rate": 0.00028636838712609166,
140
+ "loss": 0.9173,
141
+ "step": 66000
142
+ },
143
+ {
144
+ "epoch": 1.72,
145
+ "learning_rate": 0.0002856110191984354,
146
+ "loss": 0.9063,
147
+ "step": 69000
148
+ },
149
+ {
150
+ "epoch": 1.8,
151
+ "learning_rate": 0.00028485365127077923,
152
+ "loss": 0.9004,
153
+ "step": 72000
154
+ },
155
+ {
156
+ "epoch": 1.87,
157
+ "learning_rate": 0.000284096283343123,
158
+ "loss": 0.8997,
159
+ "step": 75000
160
+ },
161
+ {
162
+ "epoch": 1.95,
163
+ "learning_rate": 0.00028333891541546674,
164
+ "loss": 0.8943,
165
+ "step": 78000
166
+ },
167
+ {
168
+ "epoch": 2.02,
169
+ "learning_rate": 0.0002825815474878106,
170
+ "loss": 0.8797,
171
+ "step": 81000
172
+ },
173
+ {
174
+ "epoch": 2.1,
175
+ "learning_rate": 0.00028182417956015436,
176
+ "loss": 0.8501,
177
+ "step": 84000
178
+ },
179
+ {
180
+ "epoch": 2.17,
181
+ "learning_rate": 0.0002810668116324981,
182
+ "loss": 0.8479,
183
+ "step": 87000
184
+ },
185
+ {
186
+ "epoch": 2.25,
187
+ "learning_rate": 0.00028030944370484193,
188
+ "loss": 0.8451,
189
+ "step": 90000
190
+ },
191
+ {
192
+ "epoch": 2.32,
193
+ "learning_rate": 0.0002795520757771857,
194
+ "loss": 0.8315,
195
+ "step": 93000
196
+ },
197
+ {
198
+ "epoch": 2.4,
199
+ "learning_rate": 0.0002787947078495295,
200
+ "loss": 0.8353,
201
+ "step": 96000
202
+ },
203
+ {
204
+ "epoch": 2.47,
205
+ "learning_rate": 0.0002780373399218733,
206
+ "loss": 0.8271,
207
+ "step": 99000
208
+ },
209
+ {
210
+ "epoch": 2.55,
211
+ "learning_rate": 0.00027727997199421706,
212
+ "loss": 0.8129,
213
+ "step": 102000
214
+ },
215
+ {
216
+ "epoch": 2.62,
217
+ "learning_rate": 0.00027652260406656084,
218
+ "loss": 0.8125,
219
+ "step": 105000
220
+ },
221
+ {
222
+ "epoch": 2.7,
223
+ "learning_rate": 0.0002757652361389046,
224
+ "loss": 0.8119,
225
+ "step": 108000
226
+ },
227
+ {
228
+ "epoch": 2.77,
229
+ "learning_rate": 0.0002750078682112484,
230
+ "loss": 0.8,
231
+ "step": 111000
232
+ },
233
+ {
234
+ "epoch": 2.85,
235
+ "learning_rate": 0.0002742505002835922,
236
+ "loss": 0.7979,
237
+ "step": 114000
238
+ },
239
+ {
240
+ "epoch": 2.92,
241
+ "learning_rate": 0.000273493132355936,
242
+ "loss": 0.7914,
243
+ "step": 117000
244
+ },
245
+ {
246
+ "epoch": 3.0,
247
+ "learning_rate": 0.00027273576442827976,
248
+ "loss": 0.7916,
249
+ "step": 120000
250
+ },
251
+ {
252
+ "epoch": 3.07,
253
+ "learning_rate": 0.00027197839650062354,
254
+ "loss": 0.7542,
255
+ "step": 123000
256
+ },
257
+ {
258
+ "epoch": 3.15,
259
+ "learning_rate": 0.0002712210285729673,
260
+ "loss": 0.7643,
261
+ "step": 126000
262
+ },
263
+ {
264
+ "epoch": 3.22,
265
+ "learning_rate": 0.0002704636606453111,
266
+ "loss": 0.7576,
267
+ "step": 129000
268
+ },
269
+ {
270
+ "epoch": 3.3,
271
+ "learning_rate": 0.0002697062927176549,
272
+ "loss": 0.7551,
273
+ "step": 132000
274
+ },
275
+ {
276
+ "epoch": 3.37,
277
+ "learning_rate": 0.0002689489247899987,
278
+ "loss": 0.7537,
279
+ "step": 135000
280
+ },
281
+ {
282
+ "epoch": 3.45,
283
+ "learning_rate": 0.00026819155686234246,
284
+ "loss": 0.7536,
285
+ "step": 138000
286
+ },
287
+ {
288
+ "epoch": 3.52,
289
+ "learning_rate": 0.00026743418893468624,
290
+ "loss": 0.7466,
291
+ "step": 141000
292
+ },
293
+ {
294
+ "epoch": 3.6,
295
+ "learning_rate": 0.00026667682100703,
296
+ "loss": 0.7488,
297
+ "step": 144000
298
+ },
299
+ {
300
+ "epoch": 3.67,
301
+ "learning_rate": 0.0002659194530793738,
302
+ "loss": 0.7445,
303
+ "step": 147000
304
+ },
305
+ {
306
+ "epoch": 3.75,
307
+ "learning_rate": 0.0002651620851517176,
308
+ "loss": 0.7396,
309
+ "step": 150000
310
+ },
311
+ {
312
+ "epoch": 3.82,
313
+ "learning_rate": 0.0002644047172240614,
314
+ "loss": 0.7387,
315
+ "step": 153000
316
+ },
317
+ {
318
+ "epoch": 3.9,
319
+ "learning_rate": 0.00026364734929640516,
320
+ "loss": 0.7324,
321
+ "step": 156000
322
+ },
323
+ {
324
+ "epoch": 3.97,
325
+ "learning_rate": 0.00026288998136874894,
326
+ "loss": 0.7297,
327
+ "step": 159000
328
+ },
329
+ {
330
+ "epoch": 4.05,
331
+ "learning_rate": 0.0002621326134410928,
332
+ "loss": 0.7069,
333
+ "step": 162000
334
+ },
335
+ {
336
+ "epoch": 4.12,
337
+ "learning_rate": 0.0002613752455134365,
338
+ "loss": 0.7001,
339
+ "step": 165000
340
+ },
341
+ {
342
+ "epoch": 4.2,
343
+ "learning_rate": 0.0002606178775857803,
344
+ "loss": 0.6945,
345
+ "step": 168000
346
+ },
347
+ {
348
+ "epoch": 4.27,
349
+ "learning_rate": 0.00025986050965812413,
350
+ "loss": 0.7017,
351
+ "step": 171000
352
+ },
353
+ {
354
+ "epoch": 4.35,
355
+ "learning_rate": 0.00025910314173046786,
356
+ "loss": 0.7018,
357
+ "step": 174000
358
+ },
359
+ {
360
+ "epoch": 4.42,
361
+ "learning_rate": 0.00025834577380281164,
362
+ "loss": 0.6977,
363
+ "step": 177000
364
+ },
365
+ {
366
+ "epoch": 4.5,
367
+ "learning_rate": 0.0002575884058751555,
368
+ "loss": 0.6923,
369
+ "step": 180000
370
+ },
371
+ {
372
+ "epoch": 4.57,
373
+ "learning_rate": 0.0002568310379474992,
374
+ "loss": 0.6972,
375
+ "step": 183000
376
+ },
377
+ {
378
+ "epoch": 4.65,
379
+ "learning_rate": 0.000256073670019843,
380
+ "loss": 0.685,
381
+ "step": 186000
382
+ },
383
+ {
384
+ "epoch": 4.72,
385
+ "learning_rate": 0.00025531630209218683,
386
+ "loss": 0.6857,
387
+ "step": 189000
388
+ },
389
+ {
390
+ "epoch": 4.8,
391
+ "learning_rate": 0.00025455893416453056,
392
+ "loss": 0.6846,
393
+ "step": 192000
394
+ },
395
+ {
396
+ "epoch": 4.87,
397
+ "learning_rate": 0.00025380156623687434,
398
+ "loss": 0.6848,
399
+ "step": 195000
400
+ },
401
+ {
402
+ "epoch": 4.95,
403
+ "learning_rate": 0.0002530441983092182,
404
+ "loss": 0.6783,
405
+ "step": 198000
406
+ },
407
+ {
408
+ "epoch": 5.02,
409
+ "learning_rate": 0.00025228683038156196,
410
+ "loss": 0.6676,
411
+ "step": 201000
412
+ },
413
+ {
414
+ "epoch": 5.1,
415
+ "learning_rate": 0.0002515294624539057,
416
+ "loss": 0.6514,
417
+ "step": 204000
418
+ },
419
+ {
420
+ "epoch": 5.17,
421
+ "learning_rate": 0.00025077209452624953,
422
+ "loss": 0.6469,
423
+ "step": 207000
424
+ },
425
+ {
426
+ "epoch": 5.25,
427
+ "learning_rate": 0.0002500147265985933,
428
+ "loss": 0.6483,
429
+ "step": 210000
430
+ },
431
+ {
432
+ "epoch": 5.32,
433
+ "learning_rate": 0.00024925735867093704,
434
+ "loss": 0.6525,
435
+ "step": 213000
436
+ },
437
+ {
438
+ "epoch": 5.4,
439
+ "learning_rate": 0.0002484999907432809,
440
+ "loss": 0.6487,
441
+ "step": 216000
442
+ },
443
+ {
444
+ "epoch": 5.47,
445
+ "learning_rate": 0.00024774262281562466,
446
+ "loss": 0.6495,
447
+ "step": 219000
448
+ },
449
+ {
450
+ "epoch": 5.55,
451
+ "learning_rate": 0.00024698525488796845,
452
+ "loss": 0.645,
453
+ "step": 222000
454
+ },
455
+ {
456
+ "epoch": 5.62,
457
+ "learning_rate": 0.00024622788696031223,
458
+ "loss": 0.6517,
459
+ "step": 225000
460
+ },
461
+ {
462
+ "epoch": 5.7,
463
+ "learning_rate": 0.000245470519032656,
464
+ "loss": 0.6459,
465
+ "step": 228000
466
+ },
467
+ {
468
+ "epoch": 5.77,
469
+ "learning_rate": 0.0002447131511049998,
470
+ "loss": 0.6451,
471
+ "step": 231000
472
+ },
473
+ {
474
+ "epoch": 5.85,
475
+ "learning_rate": 0.00024395578317734358,
476
+ "loss": 0.6412,
477
+ "step": 234000
478
+ },
479
+ {
480
+ "epoch": 5.92,
481
+ "learning_rate": 0.00024319841524968736,
482
+ "loss": 0.6457,
483
+ "step": 237000
484
+ },
485
+ {
486
+ "epoch": 6.0,
487
+ "learning_rate": 0.00024244104732203112,
488
+ "loss": 0.64,
489
+ "step": 240000
490
+ },
491
+ {
492
+ "epoch": 6.07,
493
+ "learning_rate": 0.00024168367939437493,
494
+ "loss": 0.6137,
495
+ "step": 243000
496
+ },
497
+ {
498
+ "epoch": 6.15,
499
+ "learning_rate": 0.0002409263114667187,
500
+ "loss": 0.6131,
501
+ "step": 246000
502
+ },
503
+ {
504
+ "epoch": 6.22,
505
+ "learning_rate": 0.0002401689435390625,
506
+ "loss": 0.6153,
507
+ "step": 249000
508
+ },
509
+ {
510
+ "epoch": 6.3,
511
+ "learning_rate": 0.00023941157561140628,
512
+ "loss": 0.6193,
513
+ "step": 252000
514
+ },
515
+ {
516
+ "epoch": 6.37,
517
+ "learning_rate": 0.00023865420768375006,
518
+ "loss": 0.6161,
519
+ "step": 255000
520
+ },
521
+ {
522
+ "epoch": 6.45,
523
+ "learning_rate": 0.00023789683975609387,
524
+ "loss": 0.614,
525
+ "step": 258000
526
+ },
527
+ {
528
+ "epoch": 6.52,
529
+ "learning_rate": 0.00023713947182843763,
530
+ "loss": 0.6142,
531
+ "step": 261000
532
+ },
533
+ {
534
+ "epoch": 6.6,
535
+ "learning_rate": 0.0002363821039007814,
536
+ "loss": 0.6181,
537
+ "step": 264000
538
+ },
539
+ {
540
+ "epoch": 6.67,
541
+ "learning_rate": 0.00023562473597312522,
542
+ "loss": 0.6098,
543
+ "step": 267000
544
+ },
545
+ {
546
+ "epoch": 6.75,
547
+ "learning_rate": 0.00023486736804546898,
548
+ "loss": 0.6165,
549
+ "step": 270000
550
+ },
551
+ {
552
+ "epoch": 6.82,
553
+ "learning_rate": 0.00023411000011781276,
554
+ "loss": 0.612,
555
+ "step": 273000
556
+ },
557
+ {
558
+ "epoch": 6.9,
559
+ "learning_rate": 0.00023335263219015657,
560
+ "loss": 0.6109,
561
+ "step": 276000
562
+ },
563
+ {
564
+ "epoch": 6.97,
565
+ "learning_rate": 0.00023259526426250033,
566
+ "loss": 0.6141,
567
+ "step": 279000
568
+ },
569
+ {
570
+ "epoch": 7.05,
571
+ "learning_rate": 0.0002318378963348441,
572
+ "loss": 0.5912,
573
+ "step": 282000
574
+ },
575
+ {
576
+ "epoch": 7.12,
577
+ "learning_rate": 0.00023108052840718792,
578
+ "loss": 0.5838,
579
+ "step": 285000
580
+ },
581
+ {
582
+ "epoch": 7.2,
583
+ "learning_rate": 0.00023032316047953168,
584
+ "loss": 0.5823,
585
+ "step": 288000
586
+ },
587
+ {
588
+ "epoch": 7.27,
589
+ "learning_rate": 0.00022956579255187546,
590
+ "loss": 0.5836,
591
+ "step": 291000
592
+ },
593
+ {
594
+ "epoch": 7.35,
595
+ "learning_rate": 0.00022880842462421927,
596
+ "loss": 0.5857,
597
+ "step": 294000
598
+ },
599
+ {
600
+ "epoch": 7.42,
601
+ "learning_rate": 0.00022805105669656303,
602
+ "loss": 0.5872,
603
+ "step": 297000
604
+ },
605
+ {
606
+ "epoch": 7.5,
607
+ "learning_rate": 0.0002272936887689068,
608
+ "loss": 0.59,
609
+ "step": 300000
610
+ },
611
+ {
612
+ "epoch": 7.57,
613
+ "learning_rate": 0.00022653632084125062,
614
+ "loss": 0.5808,
615
+ "step": 303000
616
+ },
617
+ {
618
+ "epoch": 7.65,
619
+ "learning_rate": 0.0002257789529135944,
620
+ "loss": 0.5826,
621
+ "step": 306000
622
+ },
623
+ {
624
+ "epoch": 7.72,
625
+ "learning_rate": 0.00022502158498593816,
626
+ "loss": 0.5813,
627
+ "step": 309000
628
+ },
629
+ {
630
+ "epoch": 7.8,
631
+ "learning_rate": 0.00022426421705828197,
632
+ "loss": 0.5883,
633
+ "step": 312000
634
+ },
635
+ {
636
+ "epoch": 7.87,
637
+ "learning_rate": 0.00022350684913062576,
638
+ "loss": 0.5852,
639
+ "step": 315000
640
+ },
641
+ {
642
+ "epoch": 7.95,
643
+ "learning_rate": 0.00022274948120296954,
644
+ "loss": 0.5824,
645
+ "step": 318000
646
+ },
647
+ {
648
+ "epoch": 8.02,
649
+ "learning_rate": 0.00022199211327531332,
650
+ "loss": 0.575,
651
+ "step": 321000
652
+ },
653
+ {
654
+ "epoch": 8.1,
655
+ "learning_rate": 0.0002212347453476571,
656
+ "loss": 0.5561,
657
+ "step": 324000
658
+ },
659
+ {
660
+ "epoch": 8.17,
661
+ "learning_rate": 0.0002204773774200009,
662
+ "loss": 0.5596,
663
+ "step": 327000
664
+ },
665
+ {
666
+ "epoch": 8.25,
667
+ "learning_rate": 0.00021972000949234467,
668
+ "loss": 0.5603,
669
+ "step": 330000
670
+ },
671
+ {
672
+ "epoch": 8.32,
673
+ "learning_rate": 0.00021896264156468846,
674
+ "loss": 0.5575,
675
+ "step": 333000
676
+ },
677
+ {
678
+ "epoch": 8.4,
679
+ "learning_rate": 0.00021820527363703224,
680
+ "loss": 0.5545,
681
+ "step": 336000
682
+ },
683
+ {
684
+ "epoch": 8.47,
685
+ "learning_rate": 0.00021744790570937602,
686
+ "loss": 0.5629,
687
+ "step": 339000
688
+ },
689
+ {
690
+ "epoch": 8.55,
691
+ "learning_rate": 0.00021669053778171983,
692
+ "loss": 0.5572,
693
+ "step": 342000
694
+ },
695
+ {
696
+ "epoch": 8.62,
697
+ "learning_rate": 0.0002159331698540636,
698
+ "loss": 0.5602,
699
+ "step": 345000
700
+ },
701
+ {
702
+ "epoch": 8.7,
703
+ "learning_rate": 0.00021517580192640737,
704
+ "loss": 0.5521,
705
+ "step": 348000
706
+ },
707
+ {
708
+ "epoch": 8.77,
709
+ "learning_rate": 0.00021441843399875118,
710
+ "loss": 0.5582,
711
+ "step": 351000
712
+ },
713
+ {
714
+ "epoch": 8.85,
715
+ "learning_rate": 0.00021366106607109497,
716
+ "loss": 0.5539,
717
+ "step": 354000
718
+ },
719
+ {
720
+ "epoch": 8.92,
721
+ "learning_rate": 0.00021290369814343872,
722
+ "loss": 0.5589,
723
+ "step": 357000
724
+ },
725
+ {
726
+ "epoch": 9.0,
727
+ "learning_rate": 0.00021214633021578253,
728
+ "loss": 0.5549,
729
+ "step": 360000
730
+ },
731
+ {
732
+ "epoch": 9.07,
733
+ "learning_rate": 0.00021138896228812632,
734
+ "loss": 0.525,
735
+ "step": 363000
736
+ },
737
+ {
738
+ "epoch": 9.15,
739
+ "learning_rate": 0.00021063159436047007,
740
+ "loss": 0.5304,
741
+ "step": 366000
742
+ },
743
+ {
744
+ "epoch": 9.22,
745
+ "learning_rate": 0.00020987422643281388,
746
+ "loss": 0.5331,
747
+ "step": 369000
748
+ },
749
+ {
750
+ "epoch": 9.3,
751
+ "learning_rate": 0.00020911685850515766,
752
+ "loss": 0.5341,
753
+ "step": 372000
754
+ },
755
+ {
756
+ "epoch": 9.37,
757
+ "learning_rate": 0.00020835949057750142,
758
+ "loss": 0.5319,
759
+ "step": 375000
760
+ },
761
+ {
762
+ "epoch": 9.45,
763
+ "learning_rate": 0.00020760212264984523,
764
+ "loss": 0.5318,
765
+ "step": 378000
766
+ },
767
+ {
768
+ "epoch": 9.52,
769
+ "learning_rate": 0.00020684475472218901,
770
+ "loss": 0.5368,
771
+ "step": 381000
772
+ },
773
+ {
774
+ "epoch": 9.6,
775
+ "learning_rate": 0.00020608738679453277,
776
+ "loss": 0.532,
777
+ "step": 384000
778
+ },
779
+ {
780
+ "epoch": 9.67,
781
+ "learning_rate": 0.00020533001886687658,
782
+ "loss": 0.5353,
783
+ "step": 387000
784
+ },
785
+ {
786
+ "epoch": 9.75,
787
+ "learning_rate": 0.00020457265093922036,
788
+ "loss": 0.5329,
789
+ "step": 390000
790
+ },
791
+ {
792
+ "epoch": 9.82,
793
+ "learning_rate": 0.00020381528301156415,
794
+ "loss": 0.5354,
795
+ "step": 393000
796
+ },
797
+ {
798
+ "epoch": 9.9,
799
+ "learning_rate": 0.00020305791508390793,
800
+ "loss": 0.5375,
801
+ "step": 396000
802
+ },
803
+ {
804
+ "epoch": 9.97,
805
+ "learning_rate": 0.00020230054715625171,
806
+ "loss": 0.5377,
807
+ "step": 399000
808
+ },
809
+ {
810
+ "epoch": 10.05,
811
+ "learning_rate": 0.0002015431792285955,
812
+ "loss": 0.5191,
813
+ "step": 402000
814
+ },
815
+ {
816
+ "epoch": 10.12,
817
+ "learning_rate": 0.00020078581130093928,
818
+ "loss": 0.5057,
819
+ "step": 405000
820
+ },
821
+ {
822
+ "epoch": 10.2,
823
+ "learning_rate": 0.00020002844337328306,
824
+ "loss": 0.508,
825
+ "step": 408000
826
+ },
827
+ {
828
+ "epoch": 10.27,
829
+ "learning_rate": 0.00019927107544562687,
830
+ "loss": 0.5117,
831
+ "step": 411000
832
+ },
833
+ {
834
+ "epoch": 10.35,
835
+ "learning_rate": 0.00019851370751797063,
836
+ "loss": 0.5135,
837
+ "step": 414000
838
+ },
839
+ {
840
+ "epoch": 10.42,
841
+ "learning_rate": 0.00019775633959031441,
842
+ "loss": 0.5129,
843
+ "step": 417000
844
+ },
845
+ {
846
+ "epoch": 10.5,
847
+ "learning_rate": 0.00019699897166265822,
848
+ "loss": 0.511,
849
+ "step": 420000
850
+ },
851
+ {
852
+ "epoch": 10.57,
853
+ "learning_rate": 0.00019624160373500198,
854
+ "loss": 0.5095,
855
+ "step": 423000
856
+ },
857
+ {
858
+ "epoch": 10.65,
859
+ "learning_rate": 0.0001954842358073458,
860
+ "loss": 0.5129,
861
+ "step": 426000
862
+ },
863
+ {
864
+ "epoch": 10.72,
865
+ "learning_rate": 0.00019472686787968957,
866
+ "loss": 0.5124,
867
+ "step": 429000
868
+ },
869
+ {
870
+ "epoch": 10.8,
871
+ "learning_rate": 0.00019396949995203333,
872
+ "loss": 0.5138,
873
+ "step": 432000
874
+ },
875
+ {
876
+ "epoch": 10.87,
877
+ "learning_rate": 0.00019321213202437714,
878
+ "loss": 0.5125,
879
+ "step": 435000
880
+ },
881
+ {
882
+ "epoch": 10.95,
883
+ "learning_rate": 0.00019245476409672092,
884
+ "loss": 0.5153,
885
+ "step": 438000
886
+ },
887
+ {
888
+ "epoch": 11.02,
889
+ "learning_rate": 0.00019169739616906468,
890
+ "loss": 0.5022,
891
+ "step": 441000
892
+ },
893
+ {
894
+ "epoch": 11.1,
895
+ "learning_rate": 0.0001909400282414085,
896
+ "loss": 0.4908,
897
+ "step": 444000
898
+ },
899
+ {
900
+ "epoch": 11.17,
901
+ "learning_rate": 0.00019018266031375227,
902
+ "loss": 0.4908,
903
+ "step": 447000
904
+ },
905
+ {
906
+ "epoch": 11.25,
907
+ "learning_rate": 0.00018942529238609603,
908
+ "loss": 0.4907,
909
+ "step": 450000
910
+ },
911
+ {
912
+ "epoch": 11.32,
913
+ "learning_rate": 0.00018866792445843984,
914
+ "loss": 0.4895,
915
+ "step": 453000
916
+ },
917
+ {
918
+ "epoch": 11.4,
919
+ "learning_rate": 0.00018791055653078362,
920
+ "loss": 0.4948,
921
+ "step": 456000
922
+ },
923
+ {
924
+ "epoch": 11.47,
925
+ "learning_rate": 0.00018715318860312743,
926
+ "loss": 0.4908,
927
+ "step": 459000
928
+ },
929
+ {
930
+ "epoch": 11.55,
931
+ "learning_rate": 0.0001863958206754712,
932
+ "loss": 0.4931,
933
+ "step": 462000
934
+ },
935
+ {
936
+ "epoch": 11.62,
937
+ "learning_rate": 0.00018563845274781497,
938
+ "loss": 0.4945,
939
+ "step": 465000
940
+ },
941
+ {
942
+ "epoch": 11.7,
943
+ "learning_rate": 0.00018488108482015878,
944
+ "loss": 0.5005,
945
+ "step": 468000
946
+ },
947
+ {
948
+ "epoch": 11.77,
949
+ "learning_rate": 0.00018412371689250254,
950
+ "loss": 0.4974,
951
+ "step": 471000
952
+ },
953
+ {
954
+ "epoch": 11.85,
955
+ "learning_rate": 0.00018336634896484632,
956
+ "loss": 0.4997,
957
+ "step": 474000
958
+ },
959
+ {
960
+ "epoch": 11.92,
961
+ "learning_rate": 0.00018260898103719013,
962
+ "loss": 0.5027,
963
+ "step": 477000
964
+ },
965
+ {
966
+ "epoch": 12.0,
967
+ "learning_rate": 0.0001818516131095339,
968
+ "loss": 0.4962,
969
+ "step": 480000
970
+ },
971
+ {
972
+ "epoch": 12.07,
973
+ "learning_rate": 0.00018109424518187767,
974
+ "loss": 0.4766,
975
+ "step": 483000
976
+ },
977
+ {
978
+ "epoch": 12.15,
979
+ "learning_rate": 0.00018033687725422148,
980
+ "loss": 0.4782,
981
+ "step": 486000
982
+ },
983
+ {
984
+ "epoch": 12.22,
985
+ "learning_rate": 0.00017957950932656524,
986
+ "loss": 0.4793,
987
+ "step": 489000
988
+ },
989
+ {
990
+ "epoch": 12.3,
991
+ "learning_rate": 0.00017882214139890902,
992
+ "loss": 0.4769,
993
+ "step": 492000
994
+ },
995
+ {
996
+ "epoch": 12.37,
997
+ "learning_rate": 0.00017806477347125283,
998
+ "loss": 0.4801,
999
+ "step": 495000
1000
+ },
1001
+ {
1002
+ "epoch": 12.45,
1003
+ "learning_rate": 0.0001773074055435966,
1004
+ "loss": 0.4783,
1005
+ "step": 498000
1006
+ },
1007
+ {
1008
+ "epoch": 12.52,
1009
+ "learning_rate": 0.0001765500376159404,
1010
+ "loss": 0.4804,
1011
+ "step": 501000
1012
+ },
1013
+ {
1014
+ "epoch": 12.6,
1015
+ "learning_rate": 0.00017579266968828418,
1016
+ "loss": 0.4758,
1017
+ "step": 504000
1018
+ },
1019
+ {
1020
+ "epoch": 12.67,
1021
+ "learning_rate": 0.00017503530176062794,
1022
+ "loss": 0.4761,
1023
+ "step": 507000
1024
+ },
1025
+ {
1026
+ "epoch": 12.75,
1027
+ "learning_rate": 0.00017427793383297175,
1028
+ "loss": 0.473,
1029
+ "step": 510000
1030
+ },
1031
+ {
1032
+ "epoch": 12.82,
1033
+ "learning_rate": 0.00017352056590531553,
1034
+ "loss": 0.4793,
1035
+ "step": 513000
1036
+ },
1037
+ {
1038
+ "epoch": 12.9,
1039
+ "learning_rate": 0.00017276319797765932,
1040
+ "loss": 0.4772,
1041
+ "step": 516000
1042
+ },
1043
+ {
1044
+ "epoch": 12.97,
1045
+ "learning_rate": 0.0001720058300500031,
1046
+ "loss": 0.4752,
1047
+ "step": 519000
1048
+ },
1049
+ {
1050
+ "epoch": 13.05,
1051
+ "learning_rate": 0.00017124846212234688,
1052
+ "loss": 0.4611,
1053
+ "step": 522000
1054
+ },
1055
+ {
1056
+ "epoch": 13.12,
1057
+ "learning_rate": 0.0001704910941946907,
1058
+ "loss": 0.4549,
1059
+ "step": 525000
1060
+ },
1061
+ {
1062
+ "epoch": 13.2,
1063
+ "learning_rate": 0.00016973372626703445,
1064
+ "loss": 0.456,
1065
+ "step": 528000
1066
+ },
1067
+ {
1068
+ "epoch": 13.27,
1069
+ "learning_rate": 0.00016897635833937823,
1070
+ "loss": 0.4596,
1071
+ "step": 531000
1072
+ },
1073
+ {
1074
+ "epoch": 13.35,
1075
+ "learning_rate": 0.00016821899041172204,
1076
+ "loss": 0.4629,
1077
+ "step": 534000
1078
+ },
1079
+ {
1080
+ "epoch": 13.42,
1081
+ "learning_rate": 0.0001674616224840658,
1082
+ "loss": 0.463,
1083
+ "step": 537000
1084
+ },
1085
+ {
1086
+ "epoch": 13.5,
1087
+ "learning_rate": 0.00016670425455640958,
1088
+ "loss": 0.461,
1089
+ "step": 540000
1090
+ },
1091
+ {
1092
+ "epoch": 13.57,
1093
+ "learning_rate": 0.0001659468866287534,
1094
+ "loss": 0.4631,
1095
+ "step": 543000
1096
+ },
1097
+ {
1098
+ "epoch": 13.65,
1099
+ "learning_rate": 0.00016518951870109715,
1100
+ "loss": 0.4627,
1101
+ "step": 546000
1102
+ },
1103
+ {
1104
+ "epoch": 13.72,
1105
+ "learning_rate": 0.00016443215077344093,
1106
+ "loss": 0.4639,
1107
+ "step": 549000
1108
+ },
1109
+ {
1110
+ "epoch": 13.8,
1111
+ "learning_rate": 0.00016367478284578474,
1112
+ "loss": 0.4663,
1113
+ "step": 552000
1114
+ },
1115
+ {
1116
+ "epoch": 13.87,
1117
+ "learning_rate": 0.0001629174149181285,
1118
+ "loss": 0.46,
1119
+ "step": 555000
1120
+ },
1121
+ {
1122
+ "epoch": 13.95,
1123
+ "learning_rate": 0.00016216004699047228,
1124
+ "loss": 0.4661,
1125
+ "step": 558000
1126
+ },
1127
+ {
1128
+ "epoch": 14.02,
1129
+ "learning_rate": 0.0001614026790628161,
1130
+ "loss": 0.4564,
1131
+ "step": 561000
1132
+ },
1133
+ {
1134
+ "epoch": 14.1,
1135
+ "learning_rate": 0.00016064531113515988,
1136
+ "loss": 0.4391,
1137
+ "step": 564000
1138
+ },
1139
+ {
1140
+ "epoch": 14.17,
1141
+ "learning_rate": 0.00015988794320750363,
1142
+ "loss": 0.4479,
1143
+ "step": 567000
1144
+ },
1145
+ {
1146
+ "epoch": 14.25,
1147
+ "learning_rate": 0.00015913057527984744,
1148
+ "loss": 0.4427,
1149
+ "step": 570000
1150
+ },
1151
+ {
1152
+ "epoch": 14.32,
1153
+ "learning_rate": 0.00015837320735219123,
1154
+ "loss": 0.4425,
1155
+ "step": 573000
1156
+ },
1157
+ {
1158
+ "epoch": 14.4,
1159
+ "learning_rate": 0.00015761583942453498,
1160
+ "loss": 0.4412,
1161
+ "step": 576000
1162
+ },
1163
+ {
1164
+ "epoch": 14.47,
1165
+ "learning_rate": 0.0001568584714968788,
1166
+ "loss": 0.4488,
1167
+ "step": 579000
1168
+ },
1169
+ {
1170
+ "epoch": 14.55,
1171
+ "learning_rate": 0.00015610110356922258,
1172
+ "loss": 0.4464,
1173
+ "step": 582000
1174
+ },
1175
+ {
1176
+ "epoch": 14.62,
1177
+ "learning_rate": 0.00015534373564156636,
1178
+ "loss": 0.4507,
1179
+ "step": 585000
1180
+ },
1181
+ {
1182
+ "epoch": 14.7,
1183
+ "learning_rate": 0.00015458636771391014,
1184
+ "loss": 0.4476,
1185
+ "step": 588000
1186
+ },
1187
+ {
1188
+ "epoch": 14.77,
1189
+ "learning_rate": 0.00015382899978625393,
1190
+ "loss": 0.4462,
1191
+ "step": 591000
1192
+ },
1193
+ {
1194
+ "epoch": 14.85,
1195
+ "learning_rate": 0.0001530716318585977,
1196
+ "loss": 0.4493,
1197
+ "step": 594000
1198
+ },
1199
+ {
1200
+ "epoch": 14.92,
1201
+ "learning_rate": 0.0001523142639309415,
1202
+ "loss": 0.4478,
1203
+ "step": 597000
1204
+ },
1205
+ {
1206
+ "epoch": 15.0,
1207
+ "learning_rate": 0.00015155689600328528,
1208
+ "loss": 0.4483,
1209
+ "step": 600000
1210
+ },
1211
+ {
1212
+ "epoch": 15.07,
1213
+ "learning_rate": 0.00015079952807562906,
1214
+ "loss": 0.4276,
1215
+ "step": 603000
1216
+ },
1217
+ {
1218
+ "epoch": 15.15,
1219
+ "learning_rate": 0.00015004216014797284,
1220
+ "loss": 0.4259,
1221
+ "step": 606000
1222
+ },
1223
+ {
1224
+ "epoch": 15.22,
1225
+ "learning_rate": 0.00014928479222031665,
1226
+ "loss": 0.4263,
1227
+ "step": 609000
1228
+ },
1229
+ {
1230
+ "epoch": 15.3,
1231
+ "learning_rate": 0.0001485274242926604,
1232
+ "loss": 0.4302,
1233
+ "step": 612000
1234
+ },
1235
+ {
1236
+ "epoch": 15.37,
1237
+ "learning_rate": 0.0001477700563650042,
1238
+ "loss": 0.4302,
1239
+ "step": 615000
1240
+ },
1241
+ {
1242
+ "epoch": 15.45,
1243
+ "learning_rate": 0.000147012688437348,
1244
+ "loss": 0.4289,
1245
+ "step": 618000
1246
+ },
1247
+ {
1248
+ "epoch": 15.52,
1249
+ "learning_rate": 0.00014625532050969176,
1250
+ "loss": 0.4311,
1251
+ "step": 621000
1252
+ },
1253
+ {
1254
+ "epoch": 15.6,
1255
+ "learning_rate": 0.00014549795258203554,
1256
+ "loss": 0.4327,
1257
+ "step": 624000
1258
+ },
1259
+ {
1260
+ "epoch": 15.67,
1261
+ "learning_rate": 0.00014474058465437935,
1262
+ "loss": 0.4315,
1263
+ "step": 627000
1264
+ },
1265
+ {
1266
+ "epoch": 15.75,
1267
+ "learning_rate": 0.0001439832167267231,
1268
+ "loss": 0.4305,
1269
+ "step": 630000
1270
+ },
1271
+ {
1272
+ "epoch": 15.82,
1273
+ "learning_rate": 0.00014322584879906692,
1274
+ "loss": 0.429,
1275
+ "step": 633000
1276
+ },
1277
+ {
1278
+ "epoch": 15.9,
1279
+ "learning_rate": 0.0001424684808714107,
1280
+ "loss": 0.4288,
1281
+ "step": 636000
1282
+ },
1283
+ {
1284
+ "epoch": 15.97,
1285
+ "learning_rate": 0.00014171111294375449,
1286
+ "loss": 0.4309,
1287
+ "step": 639000
1288
+ },
1289
+ {
1290
+ "epoch": 16.05,
1291
+ "learning_rate": 0.00014095374501609827,
1292
+ "loss": 0.4179,
1293
+ "step": 642000
1294
+ },
1295
+ {
1296
+ "epoch": 16.12,
1297
+ "learning_rate": 0.00014019637708844205,
1298
+ "loss": 0.4098,
1299
+ "step": 645000
1300
+ },
1301
+ {
1302
+ "epoch": 16.2,
1303
+ "learning_rate": 0.00013943900916078584,
1304
+ "loss": 0.4136,
1305
+ "step": 648000
1306
+ },
1307
+ {
1308
+ "epoch": 16.27,
1309
+ "learning_rate": 0.00013868164123312962,
1310
+ "loss": 0.4115,
1311
+ "step": 651000
1312
+ },
1313
+ {
1314
+ "epoch": 16.35,
1315
+ "learning_rate": 0.0001379242733054734,
1316
+ "loss": 0.4192,
1317
+ "step": 654000
1318
+ },
1319
+ {
1320
+ "epoch": 16.42,
1321
+ "learning_rate": 0.00013716690537781719,
1322
+ "loss": 0.4159,
1323
+ "step": 657000
1324
+ },
1325
+ {
1326
+ "epoch": 16.5,
1327
+ "learning_rate": 0.00013640953745016097,
1328
+ "loss": 0.4176,
1329
+ "step": 660000
1330
+ },
1331
+ {
1332
+ "epoch": 16.57,
1333
+ "learning_rate": 0.00013565216952250475,
1334
+ "loss": 0.4166,
1335
+ "step": 663000
1336
+ },
1337
+ {
1338
+ "epoch": 16.65,
1339
+ "learning_rate": 0.00013489480159484854,
1340
+ "loss": 0.4214,
1341
+ "step": 666000
1342
+ },
1343
+ {
1344
+ "epoch": 16.72,
1345
+ "learning_rate": 0.00013413743366719232,
1346
+ "loss": 0.4121,
1347
+ "step": 669000
1348
+ },
1349
+ {
1350
+ "epoch": 16.8,
1351
+ "learning_rate": 0.0001333800657395361,
1352
+ "loss": 0.414,
1353
+ "step": 672000
1354
+ },
1355
+ {
1356
+ "epoch": 16.87,
1357
+ "learning_rate": 0.00013262269781187989,
1358
+ "loss": 0.4159,
1359
+ "step": 675000
1360
+ },
1361
+ {
1362
+ "epoch": 16.95,
1363
+ "learning_rate": 0.00013186532988422367,
1364
+ "loss": 0.4135,
1365
+ "step": 678000
1366
+ },
1367
+ {
1368
+ "epoch": 17.02,
1369
+ "learning_rate": 0.00013110796195656748,
1370
+ "loss": 0.4098,
1371
+ "step": 681000
1372
+ },
1373
+ {
1374
+ "epoch": 17.1,
1375
+ "learning_rate": 0.00013035059402891124,
1376
+ "loss": 0.3947,
1377
+ "step": 684000
1378
+ },
1379
+ {
1380
+ "epoch": 17.17,
1381
+ "learning_rate": 0.00012959322610125502,
1382
+ "loss": 0.4026,
1383
+ "step": 687000
1384
+ },
1385
+ {
1386
+ "epoch": 17.25,
1387
+ "learning_rate": 0.00012883585817359883,
1388
+ "loss": 0.397,
1389
+ "step": 690000
1390
+ },
1391
+ {
1392
+ "epoch": 17.32,
1393
+ "learning_rate": 0.0001280784902459426,
1394
+ "loss": 0.3998,
1395
+ "step": 693000
1396
+ },
1397
+ {
1398
+ "epoch": 17.39,
1399
+ "learning_rate": 0.00012732112231828637,
1400
+ "loss": 0.3988,
1401
+ "step": 696000
1402
+ },
1403
+ {
1404
+ "epoch": 17.47,
1405
+ "learning_rate": 0.00012656375439063018,
1406
+ "loss": 0.4015,
1407
+ "step": 699000
1408
+ },
1409
+ {
1410
+ "epoch": 17.54,
1411
+ "learning_rate": 0.00012580638646297396,
1412
+ "loss": 0.402,
1413
+ "step": 702000
1414
+ },
1415
+ {
1416
+ "epoch": 17.62,
1417
+ "learning_rate": 0.00012504901853531775,
1418
+ "loss": 0.4018,
1419
+ "step": 705000
1420
+ },
1421
+ {
1422
+ "epoch": 17.69,
1423
+ "learning_rate": 0.00012429165060766153,
1424
+ "loss": 0.3987,
1425
+ "step": 708000
1426
+ },
1427
+ {
1428
+ "epoch": 17.77,
1429
+ "learning_rate": 0.0001235342826800053,
1430
+ "loss": 0.3974,
1431
+ "step": 711000
1432
+ },
1433
+ {
1434
+ "epoch": 17.84,
1435
+ "learning_rate": 0.0001227769147523491,
1436
+ "loss": 0.4006,
1437
+ "step": 714000
1438
+ },
1439
+ {
1440
+ "epoch": 17.92,
1441
+ "learning_rate": 0.00012201954682469288,
1442
+ "loss": 0.4028,
1443
+ "step": 717000
1444
+ },
1445
+ {
1446
+ "epoch": 17.99,
1447
+ "learning_rate": 0.00012126217889703665,
1448
+ "loss": 0.4019,
1449
+ "step": 720000
1450
+ },
1451
+ {
1452
+ "epoch": 18.07,
1453
+ "learning_rate": 0.00012050481096938045,
1454
+ "loss": 0.3853,
1455
+ "step": 723000
1456
+ },
1457
+ {
1458
+ "epoch": 18.14,
1459
+ "learning_rate": 0.00011974744304172423,
1460
+ "loss": 0.387,
1461
+ "step": 726000
1462
+ },
1463
+ {
1464
+ "epoch": 18.22,
1465
+ "learning_rate": 0.00011899007511406801,
1466
+ "loss": 0.3822,
1467
+ "step": 729000
1468
+ },
1469
+ {
1470
+ "epoch": 18.29,
1471
+ "learning_rate": 0.0001182327071864118,
1472
+ "loss": 0.3861,
1473
+ "step": 732000
1474
+ },
1475
+ {
1476
+ "epoch": 18.37,
1477
+ "learning_rate": 0.00011747533925875558,
1478
+ "loss": 0.3877,
1479
+ "step": 735000
1480
+ },
1481
+ {
1482
+ "epoch": 18.44,
1483
+ "learning_rate": 0.00011671797133109938,
1484
+ "loss": 0.3867,
1485
+ "step": 738000
1486
+ },
1487
+ {
1488
+ "epoch": 18.52,
1489
+ "learning_rate": 0.00011596060340344316,
1490
+ "loss": 0.388,
1491
+ "step": 741000
1492
+ },
1493
+ {
1494
+ "epoch": 18.59,
1495
+ "learning_rate": 0.00011520323547578693,
1496
+ "loss": 0.3889,
1497
+ "step": 744000
1498
+ },
1499
+ {
1500
+ "epoch": 18.67,
1501
+ "learning_rate": 0.00011444586754813073,
1502
+ "loss": 0.3867,
1503
+ "step": 747000
1504
+ },
1505
+ {
1506
+ "epoch": 18.74,
1507
+ "learning_rate": 0.00011368849962047451,
1508
+ "loss": 0.3897,
1509
+ "step": 750000
1510
+ },
1511
+ {
1512
+ "epoch": 18.82,
1513
+ "learning_rate": 0.00011293113169281828,
1514
+ "loss": 0.3873,
1515
+ "step": 753000
1516
+ },
1517
+ {
1518
+ "epoch": 18.89,
1519
+ "learning_rate": 0.00011217376376516208,
1520
+ "loss": 0.3881,
1521
+ "step": 756000
1522
+ },
1523
+ {
1524
+ "epoch": 18.97,
1525
+ "learning_rate": 0.00011141639583750586,
1526
+ "loss": 0.3915,
1527
+ "step": 759000
1528
+ },
1529
+ {
1530
+ "epoch": 19.04,
1531
+ "learning_rate": 0.00011065902790984966,
1532
+ "loss": 0.3766,
1533
+ "step": 762000
1534
+ },
1535
+ {
1536
+ "epoch": 19.12,
1537
+ "learning_rate": 0.00010990165998219343,
1538
+ "loss": 0.3757,
1539
+ "step": 765000
1540
+ },
1541
+ {
1542
+ "epoch": 19.19,
1543
+ "learning_rate": 0.00010914429205453721,
1544
+ "loss": 0.3705,
1545
+ "step": 768000
1546
+ },
1547
+ {
1548
+ "epoch": 19.27,
1549
+ "learning_rate": 0.000108386924126881,
1550
+ "loss": 0.3728,
1551
+ "step": 771000
1552
+ },
1553
+ {
1554
+ "epoch": 19.34,
1555
+ "learning_rate": 0.00010762955619922477,
1556
+ "loss": 0.3756,
1557
+ "step": 774000
1558
+ },
1559
+ {
1560
+ "epoch": 19.42,
1561
+ "learning_rate": 0.00010687218827156856,
1562
+ "loss": 0.3772,
1563
+ "step": 777000
1564
+ },
1565
+ {
1566
+ "epoch": 19.49,
1567
+ "learning_rate": 0.00010611482034391236,
1568
+ "loss": 0.3761,
1569
+ "step": 780000
1570
+ },
1571
+ {
1572
+ "epoch": 19.57,
1573
+ "learning_rate": 0.00010535745241625614,
1574
+ "loss": 0.3739,
1575
+ "step": 783000
1576
+ },
1577
+ {
1578
+ "epoch": 19.64,
1579
+ "learning_rate": 0.00010460008448859992,
1580
+ "loss": 0.371,
1581
+ "step": 786000
1582
+ },
1583
+ {
1584
+ "epoch": 19.72,
1585
+ "learning_rate": 0.0001038427165609437,
1586
+ "loss": 0.3721,
1587
+ "step": 789000
1588
+ },
1589
+ {
1590
+ "epoch": 19.79,
1591
+ "learning_rate": 0.00010308534863328749,
1592
+ "loss": 0.3733,
1593
+ "step": 792000
1594
+ },
1595
+ {
1596
+ "epoch": 19.87,
1597
+ "learning_rate": 0.00010232798070563129,
1598
+ "loss": 0.3742,
1599
+ "step": 795000
1600
+ },
1601
+ {
1602
+ "epoch": 19.94,
1603
+ "learning_rate": 0.00010157061277797505,
1604
+ "loss": 0.3732,
1605
+ "step": 798000
1606
+ },
1607
+ {
1608
+ "epoch": 20.02,
1609
+ "learning_rate": 0.00010081324485031884,
1610
+ "loss": 0.3703,
1611
+ "step": 801000
1612
+ },
1613
+ {
1614
+ "epoch": 20.09,
1615
+ "learning_rate": 0.00010005587692266263,
1616
+ "loss": 0.3609,
1617
+ "step": 804000
1618
+ },
1619
+ {
1620
+ "epoch": 20.17,
1621
+ "learning_rate": 9.92985089950064e-05,
1622
+ "loss": 0.3604,
1623
+ "step": 807000
1624
+ },
1625
+ {
1626
+ "epoch": 20.24,
1627
+ "learning_rate": 9.85411410673502e-05,
1628
+ "loss": 0.3614,
1629
+ "step": 810000
1630
+ },
1631
+ {
1632
+ "epoch": 20.32,
1633
+ "learning_rate": 9.778377313969398e-05,
1634
+ "loss": 0.3617,
1635
+ "step": 813000
1636
+ },
1637
+ {
1638
+ "epoch": 20.39,
1639
+ "learning_rate": 9.702640521203775e-05,
1640
+ "loss": 0.3611,
1641
+ "step": 816000
1642
+ },
1643
+ {
1644
+ "epoch": 20.47,
1645
+ "learning_rate": 9.626903728438155e-05,
1646
+ "loss": 0.3607,
1647
+ "step": 819000
1648
+ },
1649
+ {
1650
+ "epoch": 20.54,
1651
+ "learning_rate": 9.551166935672533e-05,
1652
+ "loss": 0.3605,
1653
+ "step": 822000
1654
+ },
1655
+ {
1656
+ "epoch": 20.62,
1657
+ "learning_rate": 9.475430142906912e-05,
1658
+ "loss": 0.3589,
1659
+ "step": 825000
1660
+ },
1661
+ {
1662
+ "epoch": 20.69,
1663
+ "learning_rate": 9.39969335014129e-05,
1664
+ "loss": 0.3586,
1665
+ "step": 828000
1666
+ },
1667
+ {
1668
+ "epoch": 20.77,
1669
+ "learning_rate": 9.323956557375668e-05,
1670
+ "loss": 0.3626,
1671
+ "step": 831000
1672
+ },
1673
+ {
1674
+ "epoch": 20.84,
1675
+ "learning_rate": 9.248219764610048e-05,
1676
+ "loss": 0.3616,
1677
+ "step": 834000
1678
+ },
1679
+ {
1680
+ "epoch": 20.92,
1681
+ "learning_rate": 9.172482971844426e-05,
1682
+ "loss": 0.3595,
1683
+ "step": 837000
1684
+ },
1685
+ {
1686
+ "epoch": 20.99,
1687
+ "learning_rate": 9.096746179078803e-05,
1688
+ "loss": 0.3624,
1689
+ "step": 840000
1690
+ },
1691
+ {
1692
+ "epoch": 21.07,
1693
+ "learning_rate": 9.021009386313183e-05,
1694
+ "loss": 0.3468,
1695
+ "step": 843000
1696
+ },
1697
+ {
1698
+ "epoch": 21.14,
1699
+ "learning_rate": 8.945272593547561e-05,
1700
+ "loss": 0.3475,
1701
+ "step": 846000
1702
+ },
1703
+ {
1704
+ "epoch": 21.22,
1705
+ "learning_rate": 8.869535800781938e-05,
1706
+ "loss": 0.3486,
1707
+ "step": 849000
1708
+ },
1709
+ {
1710
+ "epoch": 21.29,
1711
+ "learning_rate": 8.793799008016318e-05,
1712
+ "loss": 0.3454,
1713
+ "step": 852000
1714
+ },
1715
+ {
1716
+ "epoch": 21.37,
1717
+ "learning_rate": 8.718062215250696e-05,
1718
+ "loss": 0.3496,
1719
+ "step": 855000
1720
+ },
1721
+ {
1722
+ "epoch": 21.44,
1723
+ "learning_rate": 8.642325422485073e-05,
1724
+ "loss": 0.3478,
1725
+ "step": 858000
1726
+ },
1727
+ {
1728
+ "epoch": 21.52,
1729
+ "learning_rate": 8.566588629719453e-05,
1730
+ "loss": 0.346,
1731
+ "step": 861000
1732
+ },
1733
+ {
1734
+ "epoch": 21.59,
1735
+ "learning_rate": 8.490851836953831e-05,
1736
+ "loss": 0.3513,
1737
+ "step": 864000
1738
+ },
1739
+ {
1740
+ "epoch": 21.67,
1741
+ "learning_rate": 8.415115044188211e-05,
1742
+ "loss": 0.3524,
1743
+ "step": 867000
1744
+ },
1745
+ {
1746
+ "epoch": 21.74,
1747
+ "learning_rate": 8.339378251422588e-05,
1748
+ "loss": 0.3494,
1749
+ "step": 870000
1750
+ },
1751
+ {
1752
+ "epoch": 21.82,
1753
+ "learning_rate": 8.263641458656966e-05,
1754
+ "loss": 0.3521,
1755
+ "step": 873000
1756
+ },
1757
+ {
1758
+ "epoch": 21.89,
1759
+ "learning_rate": 8.187904665891346e-05,
1760
+ "loss": 0.3509,
1761
+ "step": 876000
1762
+ },
1763
+ {
1764
+ "epoch": 21.97,
1765
+ "learning_rate": 8.112167873125724e-05,
1766
+ "loss": 0.3501,
1767
+ "step": 879000
1768
+ },
1769
+ {
1770
+ "epoch": 22.04,
1771
+ "learning_rate": 8.036431080360101e-05,
1772
+ "loss": 0.3394,
1773
+ "step": 882000
1774
+ },
1775
+ {
1776
+ "epoch": 22.12,
1777
+ "learning_rate": 7.960694287594481e-05,
1778
+ "loss": 0.3357,
1779
+ "step": 885000
1780
+ },
1781
+ {
1782
+ "epoch": 22.19,
1783
+ "learning_rate": 7.88495749482886e-05,
1784
+ "loss": 0.3378,
1785
+ "step": 888000
1786
+ },
1787
+ {
1788
+ "epoch": 22.27,
1789
+ "learning_rate": 7.809220702063239e-05,
1790
+ "loss": 0.3362,
1791
+ "step": 891000
1792
+ },
1793
+ {
1794
+ "epoch": 22.34,
1795
+ "learning_rate": 7.733483909297616e-05,
1796
+ "loss": 0.3382,
1797
+ "step": 894000
1798
+ },
1799
+ {
1800
+ "epoch": 22.42,
1801
+ "learning_rate": 7.657747116531994e-05,
1802
+ "loss": 0.3407,
1803
+ "step": 897000
1804
+ },
1805
+ {
1806
+ "epoch": 22.49,
1807
+ "learning_rate": 7.582010323766374e-05,
1808
+ "loss": 0.3381,
1809
+ "step": 900000
1810
+ },
1811
+ {
1812
+ "epoch": 22.57,
1813
+ "learning_rate": 7.506273531000751e-05,
1814
+ "loss": 0.3378,
1815
+ "step": 903000
1816
+ },
1817
+ {
1818
+ "epoch": 22.64,
1819
+ "learning_rate": 7.430536738235131e-05,
1820
+ "loss": 0.3368,
1821
+ "step": 906000
1822
+ },
1823
+ {
1824
+ "epoch": 22.72,
1825
+ "learning_rate": 7.354799945469509e-05,
1826
+ "loss": 0.3384,
1827
+ "step": 909000
1828
+ },
1829
+ {
1830
+ "epoch": 22.79,
1831
+ "learning_rate": 7.279063152703887e-05,
1832
+ "loss": 0.3351,
1833
+ "step": 912000
1834
+ },
1835
+ {
1836
+ "epoch": 22.87,
1837
+ "learning_rate": 7.203326359938266e-05,
1838
+ "loss": 0.3399,
1839
+ "step": 915000
1840
+ },
1841
+ {
1842
+ "epoch": 22.94,
1843
+ "learning_rate": 7.127589567172644e-05,
1844
+ "loss": 0.3366,
1845
+ "step": 918000
1846
+ },
1847
+ {
1848
+ "epoch": 23.02,
1849
+ "learning_rate": 7.051852774407022e-05,
1850
+ "loss": 0.3313,
1851
+ "step": 921000
1852
+ },
1853
+ {
1854
+ "epoch": 23.09,
1855
+ "learning_rate": 6.976115981641401e-05,
1856
+ "loss": 0.3291,
1857
+ "step": 924000
1858
+ },
1859
+ {
1860
+ "epoch": 23.17,
1861
+ "learning_rate": 6.900379188875779e-05,
1862
+ "loss": 0.3269,
1863
+ "step": 927000
1864
+ },
1865
+ {
1866
+ "epoch": 23.24,
1867
+ "learning_rate": 6.824642396110157e-05,
1868
+ "loss": 0.324,
1869
+ "step": 930000
1870
+ },
1871
+ {
1872
+ "epoch": 23.32,
1873
+ "learning_rate": 6.748905603344537e-05,
1874
+ "loss": 0.3249,
1875
+ "step": 933000
1876
+ },
1877
+ {
1878
+ "epoch": 23.39,
1879
+ "learning_rate": 6.673168810578914e-05,
1880
+ "loss": 0.3257,
1881
+ "step": 936000
1882
+ },
1883
+ {
1884
+ "epoch": 23.47,
1885
+ "learning_rate": 6.597432017813294e-05,
1886
+ "loss": 0.3266,
1887
+ "step": 939000
1888
+ },
1889
+ {
1890
+ "epoch": 23.54,
1891
+ "learning_rate": 6.521695225047672e-05,
1892
+ "loss": 0.3275,
1893
+ "step": 942000
1894
+ },
1895
+ {
1896
+ "epoch": 23.62,
1897
+ "learning_rate": 6.44595843228205e-05,
1898
+ "loss": 0.3279,
1899
+ "step": 945000
1900
+ },
1901
+ {
1902
+ "epoch": 23.69,
1903
+ "learning_rate": 6.370221639516429e-05,
1904
+ "loss": 0.3255,
1905
+ "step": 948000
1906
+ },
1907
+ {
1908
+ "epoch": 23.77,
1909
+ "learning_rate": 6.294484846750807e-05,
1910
+ "loss": 0.3255,
1911
+ "step": 951000
1912
+ },
1913
+ {
1914
+ "epoch": 23.84,
1915
+ "learning_rate": 6.218748053985185e-05,
1916
+ "loss": 0.3233,
1917
+ "step": 954000
1918
+ },
1919
+ {
1920
+ "epoch": 23.92,
1921
+ "learning_rate": 6.143011261219564e-05,
1922
+ "loss": 0.3267,
1923
+ "step": 957000
1924
+ },
1925
+ {
1926
+ "epoch": 23.99,
1927
+ "learning_rate": 6.067274468453942e-05,
1928
+ "loss": 0.3234,
1929
+ "step": 960000
1930
+ },
1931
+ {
1932
+ "epoch": 24.07,
1933
+ "learning_rate": 5.991537675688321e-05,
1934
+ "loss": 0.3174,
1935
+ "step": 963000
1936
+ },
1937
+ {
1938
+ "epoch": 24.14,
1939
+ "learning_rate": 5.9158008829226994e-05,
1940
+ "loss": 0.3149,
1941
+ "step": 966000
1942
+ },
1943
+ {
1944
+ "epoch": 24.22,
1945
+ "learning_rate": 5.840064090157077e-05,
1946
+ "loss": 0.314,
1947
+ "step": 969000
1948
+ },
1949
+ {
1950
+ "epoch": 24.29,
1951
+ "learning_rate": 5.764327297391456e-05,
1952
+ "loss": 0.318,
1953
+ "step": 972000
1954
+ },
1955
+ {
1956
+ "epoch": 24.37,
1957
+ "learning_rate": 5.6885905046258344e-05,
1958
+ "loss": 0.3147,
1959
+ "step": 975000
1960
+ },
1961
+ {
1962
+ "epoch": 24.44,
1963
+ "learning_rate": 5.6128537118602134e-05,
1964
+ "loss": 0.3158,
1965
+ "step": 978000
1966
+ },
1967
+ {
1968
+ "epoch": 24.52,
1969
+ "learning_rate": 5.537116919094591e-05,
1970
+ "loss": 0.3164,
1971
+ "step": 981000
1972
+ },
1973
+ {
1974
+ "epoch": 24.59,
1975
+ "learning_rate": 5.46138012632897e-05,
1976
+ "loss": 0.3162,
1977
+ "step": 984000
1978
+ },
1979
+ {
1980
+ "epoch": 24.67,
1981
+ "learning_rate": 5.3856433335633483e-05,
1982
+ "loss": 0.3153,
1983
+ "step": 987000
1984
+ },
1985
+ {
1986
+ "epoch": 24.74,
1987
+ "learning_rate": 5.3099065407977274e-05,
1988
+ "loss": 0.3165,
1989
+ "step": 990000
1990
+ },
1991
+ {
1992
+ "epoch": 24.82,
1993
+ "learning_rate": 5.234169748032105e-05,
1994
+ "loss": 0.315,
1995
+ "step": 993000
1996
+ },
1997
+ {
1998
+ "epoch": 24.89,
1999
+ "learning_rate": 5.158432955266483e-05,
2000
+ "loss": 0.3132,
2001
+ "step": 996000
2002
+ },
2003
+ {
2004
+ "epoch": 24.97,
2005
+ "learning_rate": 5.0826961625008623e-05,
2006
+ "loss": 0.3163,
2007
+ "step": 999000
2008
+ },
2009
+ {
2010
+ "epoch": 25.04,
2011
+ "learning_rate": 5.006959369735241e-05,
2012
+ "loss": 0.3107,
2013
+ "step": 1002000
2014
+ },
2015
+ {
2016
+ "epoch": 25.12,
2017
+ "learning_rate": 4.931222576969619e-05,
2018
+ "loss": 0.3062,
2019
+ "step": 1005000
2020
+ },
2021
+ {
2022
+ "epoch": 25.19,
2023
+ "learning_rate": 4.855485784203997e-05,
2024
+ "loss": 0.3083,
2025
+ "step": 1008000
2026
+ },
2027
+ {
2028
+ "epoch": 25.27,
2029
+ "learning_rate": 4.779748991438376e-05,
2030
+ "loss": 0.3096,
2031
+ "step": 1011000
2032
+ },
2033
+ {
2034
+ "epoch": 25.34,
2035
+ "learning_rate": 4.704012198672755e-05,
2036
+ "loss": 0.3056,
2037
+ "step": 1014000
2038
+ },
2039
+ {
2040
+ "epoch": 25.42,
2041
+ "learning_rate": 4.628275405907132e-05,
2042
+ "loss": 0.3042,
2043
+ "step": 1017000
2044
+ },
2045
+ {
2046
+ "epoch": 25.49,
2047
+ "learning_rate": 4.552538613141511e-05,
2048
+ "loss": 0.3063,
2049
+ "step": 1020000
2050
+ },
2051
+ {
2052
+ "epoch": 25.57,
2053
+ "learning_rate": 4.4768018203758897e-05,
2054
+ "loss": 0.3025,
2055
+ "step": 1023000
2056
+ },
2057
+ {
2058
+ "epoch": 25.64,
2059
+ "learning_rate": 4.4010650276102687e-05,
2060
+ "loss": 0.3056,
2061
+ "step": 1026000
2062
+ },
2063
+ {
2064
+ "epoch": 25.72,
2065
+ "learning_rate": 4.325328234844646e-05,
2066
+ "loss": 0.3081,
2067
+ "step": 1029000
2068
+ },
2069
+ {
2070
+ "epoch": 25.79,
2071
+ "learning_rate": 4.249591442079025e-05,
2072
+ "loss": 0.3082,
2073
+ "step": 1032000
2074
+ },
2075
+ {
2076
+ "epoch": 25.87,
2077
+ "learning_rate": 4.1738546493134036e-05,
2078
+ "loss": 0.3054,
2079
+ "step": 1035000
2080
+ },
2081
+ {
2082
+ "epoch": 25.94,
2083
+ "learning_rate": 4.0981178565477827e-05,
2084
+ "loss": 0.3052,
2085
+ "step": 1038000
2086
+ },
2087
+ {
2088
+ "epoch": 26.02,
2089
+ "learning_rate": 4.02238106378216e-05,
2090
+ "loss": 0.3013,
2091
+ "step": 1041000
2092
+ },
2093
+ {
2094
+ "epoch": 26.09,
2095
+ "learning_rate": 3.9466442710165386e-05,
2096
+ "loss": 0.2982,
2097
+ "step": 1044000
2098
+ },
2099
+ {
2100
+ "epoch": 26.17,
2101
+ "learning_rate": 3.8709074782509176e-05,
2102
+ "loss": 0.2962,
2103
+ "step": 1047000
2104
+ },
2105
+ {
2106
+ "epoch": 26.24,
2107
+ "learning_rate": 3.795170685485296e-05,
2108
+ "loss": 0.2961,
2109
+ "step": 1050000
2110
+ },
2111
+ {
2112
+ "epoch": 26.32,
2113
+ "learning_rate": 3.719433892719674e-05,
2114
+ "loss": 0.2993,
2115
+ "step": 1053000
2116
+ },
2117
+ {
2118
+ "epoch": 26.39,
2119
+ "learning_rate": 3.6436970999540526e-05,
2120
+ "loss": 0.2941,
2121
+ "step": 1056000
2122
+ },
2123
+ {
2124
+ "epoch": 26.47,
2125
+ "learning_rate": 3.5679603071884316e-05,
2126
+ "loss": 0.2948,
2127
+ "step": 1059000
2128
+ },
2129
+ {
2130
+ "epoch": 26.54,
2131
+ "learning_rate": 3.492223514422809e-05,
2132
+ "loss": 0.2966,
2133
+ "step": 1062000
2134
+ },
2135
+ {
2136
+ "epoch": 26.62,
2137
+ "learning_rate": 3.4164867216571876e-05,
2138
+ "loss": 0.2964,
2139
+ "step": 1065000
2140
+ },
2141
+ {
2142
+ "epoch": 26.69,
2143
+ "learning_rate": 3.3407499288915666e-05,
2144
+ "loss": 0.2971,
2145
+ "step": 1068000
2146
+ },
2147
+ {
2148
+ "epoch": 26.77,
2149
+ "learning_rate": 3.265013136125945e-05,
2150
+ "loss": 0.2974,
2151
+ "step": 1071000
2152
+ },
2153
+ {
2154
+ "epoch": 26.84,
2155
+ "learning_rate": 3.189276343360323e-05,
2156
+ "loss": 0.2963,
2157
+ "step": 1074000
2158
+ },
2159
+ {
2160
+ "epoch": 26.92,
2161
+ "learning_rate": 3.1135395505947016e-05,
2162
+ "loss": 0.2954,
2163
+ "step": 1077000
2164
+ },
2165
+ {
2166
+ "epoch": 26.99,
2167
+ "learning_rate": 3.0378027578290803e-05,
2168
+ "loss": 0.2941,
2169
+ "step": 1080000
2170
+ },
2171
+ {
2172
+ "epoch": 27.07,
2173
+ "learning_rate": 2.9620659650634586e-05,
2174
+ "loss": 0.2896,
2175
+ "step": 1083000
2176
+ },
2177
+ {
2178
+ "epoch": 27.14,
2179
+ "learning_rate": 2.8863291722978373e-05,
2180
+ "loss": 0.289,
2181
+ "step": 1086000
2182
+ },
2183
+ {
2184
+ "epoch": 27.22,
2185
+ "learning_rate": 2.8105923795322156e-05,
2186
+ "loss": 0.2899,
2187
+ "step": 1089000
2188
+ },
2189
+ {
2190
+ "epoch": 27.29,
2191
+ "learning_rate": 2.7348555867665943e-05,
2192
+ "loss": 0.2878,
2193
+ "step": 1092000
2194
+ },
2195
+ {
2196
+ "epoch": 27.37,
2197
+ "learning_rate": 2.6591187940009723e-05,
2198
+ "loss": 0.2858,
2199
+ "step": 1095000
2200
+ },
2201
+ {
2202
+ "epoch": 27.44,
2203
+ "learning_rate": 2.583382001235351e-05,
2204
+ "loss": 0.2901,
2205
+ "step": 1098000
2206
+ },
2207
+ {
2208
+ "epoch": 27.52,
2209
+ "learning_rate": 2.5076452084697293e-05,
2210
+ "loss": 0.2885,
2211
+ "step": 1101000
2212
+ },
2213
+ {
2214
+ "epoch": 27.59,
2215
+ "learning_rate": 2.431908415704108e-05,
2216
+ "loss": 0.2903,
2217
+ "step": 1104000
2218
+ },
2219
+ {
2220
+ "epoch": 27.67,
2221
+ "learning_rate": 2.3561716229384863e-05,
2222
+ "loss": 0.2904,
2223
+ "step": 1107000
2224
+ },
2225
+ {
2226
+ "epoch": 27.74,
2227
+ "learning_rate": 2.280434830172865e-05,
2228
+ "loss": 0.2869,
2229
+ "step": 1110000
2230
+ },
2231
+ {
2232
+ "epoch": 27.82,
2233
+ "learning_rate": 2.2046980374072432e-05,
2234
+ "loss": 0.2902,
2235
+ "step": 1113000
2236
+ },
2237
+ {
2238
+ "epoch": 27.89,
2239
+ "learning_rate": 2.128961244641622e-05,
2240
+ "loss": 0.2867,
2241
+ "step": 1116000
2242
+ },
2243
+ {
2244
+ "epoch": 27.97,
2245
+ "learning_rate": 2.053224451876e-05,
2246
+ "loss": 0.2869,
2247
+ "step": 1119000
2248
+ },
2249
+ {
2250
+ "epoch": 28.04,
2251
+ "learning_rate": 1.9774876591103786e-05,
2252
+ "loss": 0.2844,
2253
+ "step": 1122000
2254
+ },
2255
+ {
2256
+ "epoch": 28.12,
2257
+ "learning_rate": 1.901750866344757e-05,
2258
+ "loss": 0.283,
2259
+ "step": 1125000
2260
+ },
2261
+ {
2262
+ "epoch": 28.19,
2263
+ "learning_rate": 1.8260140735791356e-05,
2264
+ "loss": 0.2816,
2265
+ "step": 1128000
2266
+ },
2267
+ {
2268
+ "epoch": 28.27,
2269
+ "learning_rate": 1.750277280813514e-05,
2270
+ "loss": 0.2848,
2271
+ "step": 1131000
2272
+ },
2273
+ {
2274
+ "epoch": 28.34,
2275
+ "learning_rate": 1.6745404880478922e-05,
2276
+ "loss": 0.2811,
2277
+ "step": 1134000
2278
+ },
2279
+ {
2280
+ "epoch": 28.42,
2281
+ "learning_rate": 1.598803695282271e-05,
2282
+ "loss": 0.283,
2283
+ "step": 1137000
2284
+ },
2285
+ {
2286
+ "epoch": 28.49,
2287
+ "learning_rate": 1.5230669025166492e-05,
2288
+ "loss": 0.2814,
2289
+ "step": 1140000
2290
+ },
2291
+ {
2292
+ "epoch": 28.57,
2293
+ "learning_rate": 1.4473301097510277e-05,
2294
+ "loss": 0.2793,
2295
+ "step": 1143000
2296
+ },
2297
+ {
2298
+ "epoch": 28.64,
2299
+ "learning_rate": 1.3715933169854062e-05,
2300
+ "loss": 0.2834,
2301
+ "step": 1146000
2302
+ },
2303
+ {
2304
+ "epoch": 28.72,
2305
+ "learning_rate": 1.2958565242197847e-05,
2306
+ "loss": 0.2798,
2307
+ "step": 1149000
2308
+ },
2309
+ {
2310
+ "epoch": 28.79,
2311
+ "learning_rate": 1.220119731454163e-05,
2312
+ "loss": 0.2807,
2313
+ "step": 1152000
2314
+ },
2315
+ {
2316
+ "epoch": 28.87,
2317
+ "learning_rate": 1.1443829386885416e-05,
2318
+ "loss": 0.28,
2319
+ "step": 1155000
2320
+ },
2321
+ {
2322
+ "epoch": 28.94,
2323
+ "learning_rate": 1.06864614592292e-05,
2324
+ "loss": 0.2762,
2325
+ "step": 1158000
2326
+ }
2327
+ ],
2328
+ "logging_steps": 3000,
2329
+ "max_steps": 1200330,
2330
+ "num_train_epochs": 30,
2331
+ "save_steps": 500,
2332
+ "total_flos": 2.386202875193427e+21,
2333
+ "trial_name": null,
2334
+ "trial_params": null
2335
+ }
checkpoint-1160333/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff7ae9d54cc1360db5a7700f9173378cae476f65a389ce03cabb59678aca5527
3
+ size 4600
checkpoint-1160333/vocab.json ADDED
@@ -0,0 +1,2225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\b": 0,
3
+ "\"": 2,
4
+ ";": 3,
5
+ "=": 4,
6
+ ">": 5,
7
+ "[": 6,
8
+ "[PAD]": 2222,
9
+ "[UNK]": 2221,
10
+ "\\": 7,
11
+ "_": 8,
12
+ "|": 1,
13
+ "°": 9,
14
+ "×": 10,
15
+ "ö": 11,
16
+ "ł": 12,
17
+ "ᆷ": 13,
18
+ "ᆻ": 14,
19
+ "​": 15,
20
+ "℃": 16,
21
+ "ℓ": 17,
22
+ "お": 18,
23
+ "ㄱ": 19,
24
+ "ㄴ": 20,
25
+ "ㄷ": 21,
26
+ "ㄹ": 22,
27
+ "ㅁ": 23,
28
+ "ㅅ": 24,
29
+ "ㅇ": 25,
30
+ "ㅈ": 26,
31
+ "ㅊ": 27,
32
+ "ㅋ": 28,
33
+ "ㅌ": 29,
34
+ "ㅍ": 30,
35
+ "ㅎ": 31,
36
+ "ㅒ": 32,
37
+ "ㅗ": 33,
38
+ "ㅠ": 34,
39
+ "ㅡ": 35,
40
+ "㎛": 36,
41
+ "子": 37,
42
+ "菓": 38,
43
+ "가": 39,
44
+ "각": 40,
45
+ "간": 41,
46
+ "갇": 42,
47
+ "갈": 43,
48
+ "갉": 44,
49
+ "감": 45,
50
+ "갑": 46,
51
+ "값": 47,
52
+ "갓": 48,
53
+ "갔": 49,
54
+ "강": 50,
55
+ "갖": 51,
56
+ "갗": 52,
57
+ "갘": 53,
58
+ "같": 54,
59
+ "갚": 55,
60
+ "갛": 56,
61
+ "개": 57,
62
+ "객": 58,
63
+ "갠": 59,
64
+ "갤": 60,
65
+ "갬": 61,
66
+ "갭": 62,
67
+ "갯": 63,
68
+ "갰": 64,
69
+ "갱": 65,
70
+ "갸": 66,
71
+ "갹": 67,
72
+ "걀": 68,
73
+ "걈": 69,
74
+ "걍": 70,
75
+ "걔": 71,
76
+ "걘": 72,
77
+ "거": 73,
78
+ "걱": 74,
79
+ "건": 75,
80
+ "걷": 76,
81
+ "걸": 77,
82
+ "검": 78,
83
+ "겁": 79,
84
+ "것": 80,
85
+ "겄": 81,
86
+ "겅": 82,
87
+ "겉": 83,
88
+ "겊": 84,
89
+ "겋": 85,
90
+ "게": 86,
91
+ "겍": 87,
92
+ "겐": 88,
93
+ "겔": 89,
94
+ "겜": 90,
95
+ "겟": 91,
96
+ "겠": 92,
97
+ "겡": 93,
98
+ "겨": 94,
99
+ "격": 95,
100
+ "겪": 96,
101
+ "견": 97,
102
+ "결": 98,
103
+ "겸": 99,
104
+ "겹": 100,
105
+ "겻": 101,
106
+ "겼": 102,
107
+ "경": 103,
108
+ "곁": 104,
109
+ "계": 105,
110
+ "곈": 106,
111
+ "곗": 107,
112
+ "곘": 108,
113
+ "고": 109,
114
+ "곡": 110,
115
+ "곤": 111,
116
+ "곧": 112,
117
+ "골": 113,
118
+ "곪": 114,
119
+ "곯": 115,
120
+ "곰": 116,
121
+ "곱": 117,
122
+ "곳": 118,
123
+ "공": 119,
124
+ "곶": 120,
125
+ "곷": 121,
126
+ "과": 122,
127
+ "곽": 123,
128
+ "관": 124,
129
+ "괄": 125,
130
+ "괌": 126,
131
+ "광": 127,
132
+ "괘": 128,
133
+ "괜": 129,
134
+ "괭": 130,
135
+ "괴": 131,
136
+ "괸": 132,
137
+ "굉": 133,
138
+ "교": 134,
139
+ "굔": 135,
140
+ "굗": 136,
141
+ "굘": 137,
142
+ "굣": 138,
143
+ "굥": 139,
144
+ "구": 140,
145
+ "국": 141,
146
+ "군": 142,
147
+ "굳": 143,
148
+ "굴": 144,
149
+ "굵": 145,
150
+ "굶": 146,
151
+ "굷": 147,
152
+ "굼": 148,
153
+ "굽": 149,
154
+ "굿": 150,
155
+ "궁": 151,
156
+ "궂": 152,
157
+ "궈": 153,
158
+ "권": 154,
159
+ "궐": 155,
160
+ "궜": 156,
161
+ "궝": 157,
162
+ "궤": 158,
163
+ "귀": 159,
164
+ "귄": 160,
165
+ "귈": 161,
166
+ "귓": 162,
167
+ "귔": 163,
168
+ "규": 164,
169
+ "균": 165,
170
+ "귤": 166,
171
+ "그": 167,
172
+ "극": 168,
173
+ "근": 169,
174
+ "귿": 170,
175
+ "글": 171,
176
+ "긁": 172,
177
+ "금": 173,
178
+ "급": 174,
179
+ "긋": 175,
180
+ "긍": 176,
181
+ "긎": 177,
182
+ "긓": 178,
183
+ "긔": 179,
184
+ "기": 180,
185
+ "긱": 181,
186
+ "긴": 182,
187
+ "길": 183,
188
+ "김": 184,
189
+ "깁": 185,
190
+ "깃": 186,
191
+ "깄": 187,
192
+ "깅": 188,
193
+ "깆": 189,
194
+ "깊": 190,
195
+ "까": 191,
196
+ "깍": 192,
197
+ "깎": 193,
198
+ "깐": 194,
199
+ "깓": 195,
200
+ "깔": 196,
201
+ "깜": 197,
202
+ "깝": 198,
203
+ "깟": 199,
204
+ "깠": 200,
205
+ "깡": 201,
206
+ "깥": 202,
207
+ "깨": 203,
208
+ "깬": 204,
209
+ "깰": 205,
210
+ "깸": 206,
211
+ "깹": 207,
212
+ "깻": 208,
213
+ "깼": 209,
214
+ "깽": 210,
215
+ "꺄": 211,
216
+ "꺅": 212,
217
+ "꺙": 213,
218
+ "꺠": 214,
219
+ "꺨": 215,
220
+ "꺵": 216,
221
+ "꺼": 217,
222
+ "꺽": 218,
223
+ "꺾": 219,
224
+ "껀": 220,
225
+ "껄": 221,
226
+ "껌": 222,
227
+ "껍": 223,
228
+ "껏": 224,
229
+ "껐": 225,
230
+ "껑": 226,
231
+ "껗": 227,
232
+ "께": 228,
233
+ "껜": 229,
234
+ "껫": 230,
235
+ "껬": 231,
236
+ "껴": 232,
237
+ "껼": 233,
238
+ "꼇": 234,
239
+ "꼈": 235,
240
+ "꼉": 236,
241
+ "꼐": 237,
242
+ "꼬": 238,
243
+ "꼭": 239,
244
+ "꼰": 240,
245
+ "꼴": 241,
246
+ "꼼": 242,
247
+ "꼽": 243,
248
+ "꼿": 244,
249
+ "꽁": 245,
250
+ "꽂": 246,
251
+ "꽃": 247,
252
+ "꽈": 248,
253
+ "꽉": 249,
254
+ "꽌": 250,
255
+ "꽐": 251,
256
+ "꽜": 252,
257
+ "꽝": 253,
258
+ "꽤": 254,
259
+ "꽥": 255,
260
+ "꽨": 256,
261
+ "꾀": 257,
262
+ "꾤": 258,
263
+ "꾸": 259,
264
+ "꾹": 260,
265
+ "꾼": 261,
266
+ "꿀": 262,
267
+ "꿇": 263,
268
+ "꿈": 264,
269
+ "꿉": 265,
270
+ "꿋": 266,
271
+ "꿍": 267,
272
+ "꿎": 268,
273
+ "꿔": 269,
274
+ "꿨": 270,
275
+ "꿩": 271,
276
+ "꿰": 272,
277
+ "뀌": 273,
278
+ "뀐": 274,
279
+ "뀔": 275,
280
+ "뀜": 276,
281
+ "뀝": 277,
282
+ "뀠": 278,
283
+ "뀨": 279,
284
+ "뀽": 280,
285
+ "끄": 281,
286
+ "끅": 282,
287
+ "끈": 283,
288
+ "끊": 284,
289
+ "끌": 285,
290
+ "끍": 286,
291
+ "끓": 287,
292
+ "끔": 288,
293
+ "끕": 289,
294
+ "끗": 290,
295
+ "끙": 291,
296
+ "끝": 292,
297
+ "끼": 293,
298
+ "끽": 294,
299
+ "낀": 295,
300
+ "낄": 296,
301
+ "낌": 297,
302
+ "낍": 298,
303
+ "낏": 299,
304
+ "낑": 300,
305
+ "나": 301,
306
+ "낙": 302,
307
+ "낚": 303,
308
+ "난": 304,
309
+ "날": 305,
310
+ "낡": 306,
311
+ "낧": 307,
312
+ "남": 308,
313
+ "납": 309,
314
+ "낫": 310,
315
+ "났": 311,
316
+ "낭": 312,
317
+ "낮": 313,
318
+ "낯": 314,
319
+ "낱": 315,
320
+ "낳": 316,
321
+ "내": 317,
322
+ "낵": 318,
323
+ "낸": 319,
324
+ "낼": 320,
325
+ "냄": 321,
326
+ "냅": 322,
327
+ "냇": 323,
328
+ "냈": 324,
329
+ "냉": 325,
330
+ "냐": 326,
331
+ "냑": 327,
332
+ "냔": 328,
333
+ "냠": 329,
334
+ "냥": 330,
335
+ "냬": 331,
336
+ "넀": 332,
337
+ "너": 333,
338
+ "넉": 334,
339
+ "넋": 335,
340
+ "넌": 336,
341
+ "널": 337,
342
+ "넓": 338,
343
+ "넗": 339,
344
+ "넘": 340,
345
+ "넙": 341,
346
+ "넛": 342,
347
+ "넜": 343,
348
+ "넝": 344,
349
+ "넣": 345,
350
+ "네": 346,
351
+ "넥": 347,
352
+ "넨": 348,
353
+ "넫": 349,
354
+ "넬": 350,
355
+ "넴": 351,
356
+ "넵": 352,
357
+ "넷": 353,
358
+ "넹": 354,
359
+ "녀": 355,
360
+ "녁": 356,
361
+ "년": 357,
362
+ "념": 358,
363
+ "녔": 359,
364
+ "녕": 360,
365
+ "녘": 361,
366
+ "녜": 362,
367
+ "노": 363,
368
+ "녹": 364,
369
+ "논": 365,
370
+ "놀": 366,
371
+ "놈": 367,
372
+ "놉": 368,
373
+ "놋": 369,
374
+ "농": 370,
375
+ "높": 371,
376
+ "놓": 372,
377
+ "놔": 373,
378
+ "놘": 374,
379
+ "놥": 375,
380
+ "놨": 376,
381
+ "놯": 377,
382
+ "뇌": 378,
383
+ "뇨": 379,
384
+ "뇬": 380,
385
+ "뇸": 381,
386
+ "뇽": 382,
387
+ "누": 383,
388
+ "눅": 384,
389
+ "눈": 385,
390
+ "눌": 386,
391
+ "눔": 387,
392
+ "눕": 388,
393
+ "눗": 389,
394
+ "눙": 390,
395
+ "눟": 391,
396
+ "눠": 392,
397
+ "눴": 393,
398
+ "눼": 394,
399
+ "뉘": 395,
400
+ "뉜": 396,
401
+ "뉠": 397,
402
+ "뉩": 398,
403
+ "뉴": 399,
404
+ "뉵": 400,
405
+ "뉸": 401,
406
+ "뉼": 402,
407
+ "늄": 403,
408
+ "늉": 404,
409
+ "느": 405,
410
+ "늑": 406,
411
+ "는": 407,
412
+ "늘": 408,
413
+ "늙": 409,
414
+ "늠": 410,
415
+ "늡": 411,
416
+ "능": 412,
417
+ "늦": 413,
418
+ "늪": 414,
419
+ "늫": 415,
420
+ "늬": 416,
421
+ "늴": 417,
422
+ "늼": 418,
423
+ "니": 419,
424
+ "닉": 420,
425
+ "닌": 421,
426
+ "닏": 422,
427
+ "닐": 423,
428
+ "님": 424,
429
+ "닙": 425,
430
+ "닛": 426,
431
+ "닝": 427,
432
+ "닢": 428,
433
+ "다": 429,
434
+ "닥": 430,
435
+ "닦": 431,
436
+ "단": 432,
437
+ "닫": 433,
438
+ "달": 434,
439
+ "닭": 435,
440
+ "닮": 436,
441
+ "닯": 437,
442
+ "닳": 438,
443
+ "담": 439,
444
+ "답": 440,
445
+ "닷": 441,
446
+ "당": 442,
447
+ "닺": 443,
448
+ "닻": 444,
449
+ "닿": 445,
450
+ "대": 446,
451
+ "댁": 447,
452
+ "댄": 448,
453
+ "댈": 449,
454
+ "댐": 450,
455
+ "댑": 451,
456
+ "댓": 452,
457
+ "댔": 453,
458
+ "댕": 454,
459
+ "댜": 455,
460
+ "댯": 456,
461
+ "댱": 457,
462
+ "더": 458,
463
+ "덕": 459,
464
+ "덖": 460,
465
+ "던": 461,
466
+ "덜": 462,
467
+ "덞": 463,
468
+ "덟": 464,
469
+ "덤": 465,
470
+ "덥": 466,
471
+ "덧": 467,
472
+ "덨": 468,
473
+ "덩": 469,
474
+ "덫": 470,
475
+ "덮": 471,
476
+ "데": 472,
477
+ "덱": 473,
478
+ "덴": 474,
479
+ "델": 475,
480
+ "뎀": 476,
481
+ "뎁": 477,
482
+ "뎃": 478,
483
+ "뎅": 479,
484
+ "뎈": 480,
485
+ "뎌": 481,
486
+ "뎝": 482,
487
+ "뎠": 483,
488
+ "뎡": 484,
489
+ "도": 485,
490
+ "독": 486,
491
+ "돈": 487,
492
+ "돋": 488,
493
+ "돌": 489,
494
+ "돔": 490,
495
+ "돕": 491,
496
+ "돗": 492,
497
+ "동": 493,
498
+ "돚": 494,
499
+ "돠": 495,
500
+ "돼": 496,
501
+ "됄": 497,
502
+ "됌": 498,
503
+ "됐": 499,
504
+ "되": 500,
505
+ "된": 501,
506
+ "될": 502,
507
+ "됨": 503,
508
+ "됩": 504,
509
+ "됬": 505,
510
+ "됴": 506,
511
+ "두": 507,
512
+ "둑": 508,
513
+ "둔": 509,
514
+ "둘": 510,
515
+ "둠": 511,
516
+ "둡": 512,
517
+ "둣": 513,
518
+ "둥": 514,
519
+ "둬": 515,
520
+ "뒀": 516,
521
+ "뒈": 517,
522
+ "뒤": 518,
523
+ "뒨": 519,
524
+ "뒷": 520,
525
+ "뒹": 521,
526
+ "듀": 522,
527
+ "듄": 523,
528
+ "듈": 524,
529
+ "듐": 525,
530
+ "듕": 526,
531
+ "드": 527,
532
+ "득": 528,
533
+ "든": 529,
534
+ "듣": 530,
535
+ "들": 531,
536
+ "듦": 532,
537
+ "듬": 533,
538
+ "듭": 534,
539
+ "듯": 535,
540
+ "등": 536,
541
+ "듸": 537,
542
+ "디": 538,
543
+ "딕": 539,
544
+ "딘": 540,
545
+ "딛": 541,
546
+ "딜": 542,
547
+ "딤": 543,
548
+ "딥": 544,
549
+ "딧": 545,
550
+ "딨": 546,
551
+ "딩": 547,
552
+ "딪": 548,
553
+ "딯": 549,
554
+ "따": 550,
555
+ "딱": 551,
556
+ "딲": 552,
557
+ "딴": 553,
558
+ "딸": 554,
559
+ "땀": 555,
560
+ "땁": 556,
561
+ "땃": 557,
562
+ "땄": 558,
563
+ "땅": 559,
564
+ "땋": 560,
565
+ "때": 561,
566
+ "땐": 562,
567
+ "땜": 563,
568
+ "땝": 564,
569
+ "땟": 565,
570
+ "땠": 566,
571
+ "땡": 567,
572
+ "땨": 568,
573
+ "떄": 569,
574
+ "떈": 570,
575
+ "떔": 571,
576
+ "떙": 572,
577
+ "떠": 573,
578
+ "떡": 574,
579
+ "떤": 575,
580
+ "떨": 576,
581
+ "떫": 577,
582
+ "떱": 578,
583
+ "떳": 579,
584
+ "떴": 580,
585
+ "떵": 581,
586
+ "떻": 582,
587
+ "떼": 583,
588
+ "뗀": 584,
589
+ "뗄": 585,
590
+ "뗍": 586,
591
+ "뗏": 587,
592
+ "뗐": 588,
593
+ "뗘": 589,
594
+ "뗬": 590,
595
+ "뗴": 591,
596
+ "또": 592,
597
+ "똑": 593,
598
+ "똔": 594,
599
+ "똘": 595,
600
+ "똠": 596,
601
+ "똡": 597,
602
+ "똥": 598,
603
+ "똬": 599,
604
+ "뙜": 600,
605
+ "뙤": 601,
606
+ "뚀": 602,
607
+ "뚜": 603,
608
+ "뚝": 604,
609
+ "뚠": 605,
610
+ "뚤": 606,
611
+ "뚫": 607,
612
+ "뚬": 608,
613
+ "뚱": 609,
614
+ "뛰": 610,
615
+ "뛴": 611,
616
+ "뛸": 612,
617
+ "뜀": 613,
618
+ "뜁": 614,
619
+ "뜨": 615,
620
+ "뜩": 616,
621
+ "뜬": 617,
622
+ "뜯": 618,
623
+ "뜰": 619,
624
+ "뜷": 620,
625
+ "뜸": 621,
626
+ "뜹": 622,
627
+ "뜻": 623,
628
+ "뜽": 624,
629
+ "띄": 625,
630
+ "띈": 626,
631
+ "띌": 627,
632
+ "띕": 628,
633
+ "띠": 629,
634
+ "띡": 630,
635
+ "띤": 631,
636
+ "띨": 632,
637
+ "띰": 633,
638
+ "띱": 634,
639
+ "띵": 635,
640
+ "라": 636,
641
+ "락": 637,
642
+ "란": 638,
643
+ "랄": 639,
644
+ "람": 640,
645
+ "랍": 641,
646
+ "랏": 642,
647
+ "랐": 643,
648
+ "랑": 644,
649
+ "랖": 645,
650
+ "랗": 646,
651
+ "래": 647,
652
+ "랙": 648,
653
+ "랜": 649,
654
+ "랠": 650,
655
+ "램": 651,
656
+ "랩": 652,
657
+ "랫": 653,
658
+ "랬": 654,
659
+ "랭": 655,
660
+ "랴": 656,
661
+ "략": 657,
662
+ "럈": 658,
663
+ "량": 659,
664
+ "러": 660,
665
+ "럭": 661,
666
+ "런": 662,
667
+ "럴": 663,
668
+ "럼": 664,
669
+ "럽": 665,
670
+ "럿": 666,
671
+ "렀": 667,
672
+ "렁": 668,
673
+ "렇": 669,
674
+ "레": 670,
675
+ "렉": 671,
676
+ "렌": 672,
677
+ "렐": 673,
678
+ "렘": 674,
679
+ "렙": 675,
680
+ "렛": 676,
681
+ "렜": 677,
682
+ "렝": 678,
683
+ "렣": 679,
684
+ "려": 680,
685
+ "력": 681,
686
+ "련": 682,
687
+ "렬": 683,
688
+ "렴": 684,
689
+ "렵": 685,
690
+ "렷": 686,
691
+ "��": 687,
692
+ "령": 688,
693
+ "렼": 689,
694
+ "렿": 690,
695
+ "례": 691,
696
+ "로": 692,
697
+ "록": 693,
698
+ "론": 694,
699
+ "롤": 695,
700
+ "롬": 696,
701
+ "롭": 697,
702
+ "롯": 698,
703
+ "롱": 699,
704
+ "롷": 700,
705
+ "롸": 701,
706
+ "롹": 702,
707
+ "뢰": 703,
708
+ "료": 704,
709
+ "룐": 705,
710
+ "룔": 706,
711
+ "룝": 707,
712
+ "룟": 708,
713
+ "룡": 709,
714
+ "루": 710,
715
+ "룩": 711,
716
+ "룬": 712,
717
+ "룰": 713,
718
+ "룸": 714,
719
+ "룹": 715,
720
+ "룻": 716,
721
+ "룽": 717,
722
+ "뤄": 718,
723
+ "뤘": 719,
724
+ "뤠": 720,
725
+ "뤼": 721,
726
+ "뤽": 722,
727
+ "류": 723,
728
+ "륙": 724,
729
+ "륜": 725,
730
+ "률": 726,
731
+ "륨": 727,
732
+ "륭": 728,
733
+ "르": 729,
734
+ "륵": 730,
735
+ "른": 731,
736
+ "를": 732,
737
+ "름": 733,
738
+ "릅": 734,
739
+ "릇": 735,
740
+ "릉": 736,
741
+ "릎": 737,
742
+ "릏": 738,
743
+ "리": 739,
744
+ "릭": 740,
745
+ "린": 741,
746
+ "릴": 742,
747
+ "림": 743,
748
+ "립": 744,
749
+ "릿": 745,
750
+ "맀": 746,
751
+ "링": 747,
752
+ "마": 748,
753
+ "막": 749,
754
+ "만": 750,
755
+ "맍": 751,
756
+ "많": 752,
757
+ "맏": 753,
758
+ "말": 754,
759
+ "맑": 755,
760
+ "맘": 756,
761
+ "맙": 757,
762
+ "맛": 758,
763
+ "맜": 759,
764
+ "망": 760,
765
+ "맞": 761,
766
+ "맟": 762,
767
+ "맡": 763,
768
+ "맣": 764,
769
+ "매": 765,
770
+ "맥": 766,
771
+ "맨": 767,
772
+ "맬": 768,
773
+ "맴": 769,
774
+ "맵": 770,
775
+ "맷": 771,
776
+ "맸": 772,
777
+ "맹": 773,
778
+ "맺": 774,
779
+ "맻": 775,
780
+ "맽": 776,
781
+ "먀": 777,
782
+ "먄": 778,
783
+ "먆": 779,
784
+ "먕": 780,
785
+ "머": 781,
786
+ "먹": 782,
787
+ "먼": 783,
788
+ "멀": 784,
789
+ "멈": 785,
790
+ "멉": 786,
791
+ "멋": 787,
792
+ "멍": 788,
793
+ "멎": 789,
794
+ "멓": 790,
795
+ "메": 791,
796
+ "멕": 792,
797
+ "멘": 793,
798
+ "멜": 794,
799
+ "멤": 795,
800
+ "멥": 796,
801
+ "멧": 797,
802
+ "멨": 798,
803
+ "멩": 799,
804
+ "며": 800,
805
+ "멱": 801,
806
+ "면": 802,
807
+ "멸": 803,
808
+ "몀": 804,
809
+ "몄": 805,
810
+ "명": 806,
811
+ "몇": 807,
812
+ "몉": 808,
813
+ "모": 809,
814
+ "목": 810,
815
+ "몫": 811,
816
+ "몬": 812,
817
+ "몰": 813,
818
+ "몵": 814,
819
+ "몸": 815,
820
+ "몹": 816,
821
+ "못": 817,
822
+ "몽": 818,
823
+ "뫠": 819,
824
+ "묄": 820,
825
+ "묘": 821,
826
+ "묙": 822,
827
+ "묜": 823,
828
+ "묨": 824,
829
+ "묩": 825,
830
+ "무": 826,
831
+ "묵": 827,
832
+ "묶": 828,
833
+ "문": 829,
834
+ "묻": 830,
835
+ "물": 831,
836
+ "묽": 832,
837
+ "뭄": 833,
838
+ "뭅": 834,
839
+ "뭇": 835,
840
+ "뭉": 836,
841
+ "뭍": 837,
842
+ "뭐": 838,
843
+ "뭑": 839,
844
+ "뭔": 840,
845
+ "뭘": 841,
846
+ "뭡": 842,
847
+ "뭣": 843,
848
+ "뭥": 844,
849
+ "뭪": 845,
850
+ "뭬": 846,
851
+ "뮈": 847,
852
+ "뮌": 848,
853
+ "뮤": 849,
854
+ "뮨": 850,
855
+ "뮬": 851,
856
+ "뮵": 852,
857
+ "뮹": 853,
858
+ "므": 854,
859
+ "믁": 855,
860
+ "믄": 856,
861
+ "믈": 857,
862
+ "믐": 858,
863
+ "미": 859,
864
+ "믹": 860,
865
+ "민": 861,
866
+ "믾": 862,
867
+ "믿": 863,
868
+ "밀": 864,
869
+ "밈": 865,
870
+ "밉": 866,
871
+ "밋": 867,
872
+ "밌": 868,
873
+ "밍": 869,
874
+ "밎": 870,
875
+ "및": 871,
876
+ "밑": 872,
877
+ "바": 873,
878
+ "박": 874,
879
+ "밖": 875,
880
+ "반": 876,
881
+ "받": 877,
882
+ "발": 878,
883
+ "밝": 879,
884
+ "밟": 880,
885
+ "밤": 881,
886
+ "밥": 882,
887
+ "밧": 883,
888
+ "밨": 884,
889
+ "방": 885,
890
+ "밭": 886,
891
+ "배": 887,
892
+ "백": 888,
893
+ "밴": 889,
894
+ "밸": 890,
895
+ "뱀": 891,
896
+ "뱁": 892,
897
+ "뱃": 893,
898
+ "뱄": 894,
899
+ "뱅": 895,
900
+ "뱉": 896,
901
+ "뱌": 897,
902
+ "버": 898,
903
+ "벅": 899,
904
+ "번": 900,
905
+ "벌": 901,
906
+ "범": 902,
907
+ "법": 903,
908
+ "벗": 904,
909
+ "벘": 905,
910
+ "벙": 906,
911
+ "벚": 907,
912
+ "베": 908,
913
+ "벡": 909,
914
+ "벤": 910,
915
+ "벨": 911,
916
+ "벳": 912,
917
+ "벵": 913,
918
+ "벹": 914,
919
+ "벼": 915,
920
+ "벽": 916,
921
+ "변": 917,
922
+ "별": 918,
923
+ "볍": 919,
924
+ "볏": 920,
925
+ "볐": 921,
926
+ "병": 922,
927
+ "볕": 923,
928
+ "보": 924,
929
+ "복": 925,
930
+ "볶": 926,
931
+ "본": 927,
932
+ "볼": 928,
933
+ "봄": 929,
934
+ "봅": 930,
935
+ "봇": 931,
936
+ "봈": 932,
937
+ "봉": 933,
938
+ "봐": 934,
939
+ "봔": 935,
940
+ "봘": 936,
941
+ "봤": 937,
942
+ "봬": 938,
943
+ "봰": 939,
944
+ "봴": 940,
945
+ "봽": 941,
946
+ "뵀": 942,
947
+ "뵈": 943,
948
+ "뵌": 944,
949
+ "뵐": 945,
950
+ "뵙": 946,
951
+ "뵜": 947,
952
+ "뵤": 948,
953
+ "뵹": 949,
954
+ "부": 950,
955
+ "북": 951,
956
+ "분": 952,
957
+ "붇": 953,
958
+ "불": 954,
959
+ "붉": 955,
960
+ "붐": 956,
961
+ "붑": 957,
962
+ "붓": 958,
963
+ "붕": 959,
964
+ "붙": 960,
965
+ "붜": 961,
966
+ "뷔": 962,
967
+ "뷰": 963,
968
+ "뷸": 964,
969
+ "븅": 965,
970
+ "브": 966,
971
+ "븐": 967,
972
+ "블": 968,
973
+ "븡": 969,
974
+ "비": 970,
975
+ "빅": 971,
976
+ "빈": 972,
977
+ "빌": 973,
978
+ "빔": 974,
979
+ "빕": 975,
980
+ "빗": 976,
981
+ "빘": 977,
982
+ "빙": 978,
983
+ "빚": 979,
984
+ "빛": 980,
985
+ "빠": 981,
986
+ "빡": 982,
987
+ "빤": 983,
988
+ "빨": 984,
989
+ "빰": 985,
990
+ "빱": 986,
991
+ "빳": 987,
992
+ "빴": 988,
993
+ "빵": 989,
994
+ "빻": 990,
995
+ "빼": 991,
996
+ "빽": 992,
997
+ "뺀": 993,
998
+ "뺄": 994,
999
+ "뺌": 995,
1000
+ "뺍": 996,
1001
+ "뺏": 997,
1002
+ "뺐": 998,
1003
+ "뺑": 999,
1004
+ "뺨": 1000,
1005
+ "뺭": 1001,
1006
+ "뺴": 1002,
1007
+ "뺵": 1003,
1008
+ "뺼": 1004,
1009
+ "뻇": 1005,
1010
+ "뻈": 1006,
1011
+ "뻐": 1007,
1012
+ "뻑": 1008,
1013
+ "뻔": 1009,
1014
+ "뻗": 1010,
1015
+ "뻘": 1011,
1016
+ "뻠": 1012,
1017
+ "뻣": 1013,
1018
+ "뻤": 1014,
1019
+ "뻥": 1015,
1020
+ "뻬": 1016,
1021
+ "뻴": 1017,
1022
+ "뼈": 1018,
1023
+ "뼉": 1019,
1024
+ "뼘": 1020,
1025
+ "뼛": 1021,
1026
+ "뼝": 1022,
1027
+ "뽀": 1023,
1028
+ "뽁": 1024,
1029
+ "뽂": 1025,
1030
+ "뽄": 1026,
1031
+ "뽈": 1027,
1032
+ "뽐": 1028,
1033
+ "뽑": 1029,
1034
+ "뽕": 1030,
1035
+ "뽜": 1031,
1036
+ "뽝": 1032,
1037
+ "뾰": 1033,
1038
+ "뾱": 1034,
1039
+ "뿅": 1035,
1040
+ "뿌": 1036,
1041
+ "뿍": 1037,
1042
+ "뿐": 1038,
1043
+ "뿔": 1039,
1044
+ "뿜": 1040,
1045
+ "뿟": 1041,
1046
+ "뿡": 1042,
1047
+ "쀼": 1043,
1048
+ "쁘": 1044,
1049
+ "쁜": 1045,
1050
+ "쁠": 1046,
1051
+ "쁨": 1047,
1052
+ "쁩": 1048,
1053
+ "삐": 1049,
1054
+ "삑": 1050,
1055
+ "삔": 1051,
1056
+ "삘": 1052,
1057
+ "삣": 1053,
1058
+ "삥": 1054,
1059
+ "사": 1055,
1060
+ "삭": 1056,
1061
+ "삯": 1057,
1062
+ "산": 1058,
1063
+ "살": 1059,
1064
+ "삶": 1060,
1065
+ "삷": 1061,
1066
+ "삼": 1062,
1067
+ "삽": 1063,
1068
+ "삿": 1064,
1069
+ "샀": 1065,
1070
+ "상": 1066,
1071
+ "샅": 1067,
1072
+ "새": 1068,
1073
+ "색": 1069,
1074
+ "샊": 1070,
1075
+ "샌": 1071,
1076
+ "샐": 1072,
1077
+ "샘": 1073,
1078
+ "샙": 1074,
1079
+ "샛": 1075,
1080
+ "샜": 1076,
1081
+ "생": 1077,
1082
+ "샤": 1078,
1083
+ "샥": 1079,
1084
+ "샨": 1080,
1085
+ "샬": 1081,
1086
+ "샴": 1082,
1087
+ "샵": 1083,
1088
+ "샷": 1084,
1089
+ "샹": 1085,
1090
+ "섀": 1086,
1091
+ "서": 1087,
1092
+ "석": 1088,
1093
+ "섞": 1089,
1094
+ "선": 1090,
1095
+ "섣": 1091,
1096
+ "설": 1092,
1097
+ "섬": 1093,
1098
+ "섭": 1094,
1099
+ "섯": 1095,
1100
+ "섰": 1096,
1101
+ "성": 1097,
1102
+ "세": 1098,
1103
+ "섹": 1099,
1104
+ "센": 1100,
1105
+ "셀": 1101,
1106
+ "셈": 1102,
1107
+ "셉": 1103,
1108
+ "셋": 1104,
1109
+ "셌": 1105,
1110
+ "셍": 1106,
1111
+ "셔": 1107,
1112
+ "션": 1108,
1113
+ "셜": 1109,
1114
+ "셤": 1110,
1115
+ "셧": 1111,
1116
+ "셨": 1112,
1117
+ "셩": 1113,
1118
+ "셰": 1114,
1119
+ "셴": 1115,
1120
+ "셸": 1116,
1121
+ "솅": 1117,
1122
+ "소": 1118,
1123
+ "속": 1119,
1124
+ "솎": 1120,
1125
+ "손": 1121,
1126
+ "솔": 1122,
1127
+ "솜": 1123,
1128
+ "솝": 1124,
1129
+ "솟": 1125,
1130
+ "송": 1126,
1131
+ "솥": 1127,
1132
+ "솨": 1128,
1133
+ "솩": 1129,
1134
+ "솼": 1130,
1135
+ "쇄": 1131,
1136
+ "쇠": 1132,
1137
+ "쇤": 1133,
1138
+ "쇳": 1134,
1139
+ "쇼": 1135,
1140
+ "쇽": 1136,
1141
+ "숀": 1137,
1142
+ "숄": 1138,
1143
+ "숌": 1139,
1144
+ "숍": 1140,
1145
+ "숏": 1141,
1146
+ "숑": 1142,
1147
+ "수": 1143,
1148
+ "숙": 1144,
1149
+ "순": 1145,
1150
+ "숟": 1146,
1151
+ "술": 1147,
1152
+ "숨": 1148,
1153
+ "숩": 1149,
1154
+ "숫": 1150,
1155
+ "숭": 1151,
1156
+ "숯": 1152,
1157
+ "숱": 1153,
1158
+ "숲": 1154,
1159
+ "숴": 1155,
1160
+ "쉈": 1156,
1161
+ "쉐": 1157,
1162
+ "쉑": 1158,
1163
+ "쉔": 1159,
1164
+ "쉘": 1160,
1165
+ "쉣": 1161,
1166
+ "쉬": 1162,
1167
+ "쉭": 1163,
1168
+ "쉰": 1164,
1169
+ "쉴": 1165,
1170
+ "쉼": 1166,
1171
+ "쉽": 1167,
1172
+ "쉿": 1168,
1173
+ "슁": 1169,
1174
+ "슈": 1170,
1175
+ "슉": 1171,
1176
+ "슐": 1172,
1177
+ "슘": 1173,
1178
+ "슙": 1174,
1179
+ "슛": 1175,
1180
+ "슝": 1176,
1181
+ "슟": 1177,
1182
+ "스": 1178,
1183
+ "슥": 1179,
1184
+ "슨": 1180,
1185
+ "슬": 1181,
1186
+ "슴": 1182,
1187
+ "습": 1183,
1188
+ "슷": 1184,
1189
+ "승": 1185,
1190
+ "슼": 1186,
1191
+ "슾": 1187,
1192
+ "싑": 1188,
1193
+ "시": 1189,
1194
+ "식": 1190,
1195
+ "신": 1191,
1196
+ "싣": 1192,
1197
+ "실": 1193,
1198
+ "싫": 1194,
1199
+ "심": 1195,
1200
+ "십": 1196,
1201
+ "싯": 1197,
1202
+ "싰": 1198,
1203
+ "싱": 1199,
1204
+ "싴": 1200,
1205
+ "싶": 1201,
1206
+ "싷": 1202,
1207
+ "싸": 1203,
1208
+ "싹": 1204,
1209
+ "싼": 1205,
1210
+ "쌀": 1206,
1211
+ "쌂": 1207,
1212
+ "쌈": 1208,
1213
+ "쌉": 1209,
1214
+ "쌋": 1210,
1215
+ "쌌": 1211,
1216
+ "쌍": 1212,
1217
+ "쌓": 1213,
1218
+ "쌔": 1214,
1219
+ "쌕": 1215,
1220
+ "쌘": 1216,
1221
+ "쌤": 1217,
1222
+ "쌥": 1218,
1223
+ "쌧": 1219,
1224
+ "쌨": 1220,
1225
+ "쌩": 1221,
1226
+ "쌰": 1222,
1227
+ "썀": 1223,
1228
+ "썃": 1224,
1229
+ "썅": 1225,
1230
+ "썜": 1226,
1231
+ "써": 1227,
1232
+ "썩": 1228,
1233
+ "썪": 1229,
1234
+ "썬": 1230,
1235
+ "썰": 1231,
1236
+ "썸": 1232,
1237
+ "썹": 1233,
1238
+ "썻": 1234,
1239
+ "썼": 1235,
1240
+ "썽": 1236,
1241
+ "쎄": 1237,
1242
+ "쎅": 1238,
1243
+ "쎈": 1239,
1244
+ "쎌": 1240,
1245
+ "쎔": 1241,
1246
+ "쎕": 1242,
1247
+ "쎗": 1243,
1248
+ "쎘": 1244,
1249
+ "쎠": 1245,
1250
+ "쎴": 1246,
1251
+ "쎼": 1247,
1252
+ "쏘": 1248,
1253
+ "쏙": 1249,
1254
+ "쏜": 1250,
1255
+ "쏟": 1251,
1256
+ "쏠": 1252,
1257
+ "쏨": 1253,
1258
+ "쏩": 1254,
1259
+ "쏫": 1255,
1260
+ "쏭": 1256,
1261
+ "쏴": 1257,
1262
+ "쏵": 1258,
1263
+ "쐇": 1259,
1264
+ "쐈": 1260,
1265
+ "쐐": 1261,
1266
+ "쐤": 1262,
1267
+ "쐥": 1263,
1268
+ "쐬": 1264,
1269
+ "쐰": 1265,
1270
+ "쐴": 1266,
1271
+ "쑀": 1267,
1272
+ "쑈": 1268,
1273
+ "쑉": 1269,
1274
+ "쑝": 1270,
1275
+ "쑤": 1271,
1276
+ "쑥": 1272,
1277
+ "쑬": 1273,
1278
+ "쒀": 1274,
1279
+ "쒯": 1275,
1280
+ "쒸": 1276,
1281
+ "쓕": 1277,
1282
+ "쓰": 1278,
1283
+ "쓱": 1279,
1284
+ "쓴": 1280,
1285
+ "쓸": 1281,
1286
+ "씀": 1282,
1287
+ "씁": 1283,
1288
+ "씃": 1284,
1289
+ "씄": 1285,
1290
+ "씅": 1286,
1291
+ "씌": 1287,
1292
+ "씐": 1288,
1293
+ "씨": 1289,
1294
+ "씩": 1290,
1295
+ "씬": 1291,
1296
+ "씰": 1292,
1297
+ "씸": 1293,
1298
+ "씹": 1294,
1299
+ "씻": 1295,
1300
+ "씽": 1296,
1301
+ "아": 1297,
1302
+ "악": 1298,
1303
+ "안": 1299,
1304
+ "앉": 1300,
1305
+ "않": 1301,
1306
+ "알": 1302,
1307
+ "앎": 1303,
1308
+ "앏": 1304,
1309
+ "앓": 1305,
1310
+ "암": 1306,
1311
+ "압": 1307,
1312
+ "앗": 1308,
1313
+ "았": 1309,
1314
+ "앙": 1310,
1315
+ "앚": 1311,
1316
+ "앞": 1312,
1317
+ "앟": 1313,
1318
+ "애": 1314,
1319
+ "액": 1315,
1320
+ "앤": 1316,
1321
+ "앨": 1317,
1322
+ "앰": 1318,
1323
+ "앱": 1319,
1324
+ "앳": 1320,
1325
+ "앴": 1321,
1326
+ "앵": 1322,
1327
+ "앺": 1323,
1328
+ "야": 1324,
1329
+ "약": 1325,
1330
+ "얀": 1326,
1331
+ "얄": 1327,
1332
+ "얇": 1328,
1333
+ "얌": 1329,
1334
+ "얍": 1330,
1335
+ "얏": 1331,
1336
+ "양": 1332,
1337
+ "얕": 1333,
1338
+ "얗": 1334,
1339
+ "얘": 1335,
1340
+ "얜": 1336,
1341
+ "얨": 1337,
1342
+ "얬": 1338,
1343
+ "어": 1339,
1344
+ "억": 1340,
1345
+ "언": 1341,
1346
+ "얹": 1342,
1347
+ "얻": 1343,
1348
+ "얼": 1344,
1349
+ "얽": 1345,
1350
+ "엄": 1346,
1351
+ "업": 1347,
1352
+ "없": 1348,
1353
+ "엇": 1349,
1354
+ "었": 1350,
1355
+ "엉": 1351,
1356
+ "엊": 1352,
1357
+ "엌": 1353,
1358
+ "엎": 1354,
1359
+ "에": 1355,
1360
+ "엑": 1356,
1361
+ "엔": 1357,
1362
+ "엘": 1358,
1363
+ "엠": 1359,
1364
+ "엣": 1360,
1365
+ "엥": 1361,
1366
+ "엪": 1362,
1367
+ "여": 1363,
1368
+ "역": 1364,
1369
+ "엮": 1365,
1370
+ "연": 1366,
1371
+ "열": 1367,
1372
+ "염": 1368,
1373
+ "엽": 1369,
1374
+ "엿": 1370,
1375
+ "였": 1371,
1376
+ "영": 1372,
1377
+ "옂": 1373,
1378
+ "옅": 1374,
1379
+ "옆": 1375,
1380
+ "옇": 1376,
1381
+ "예": 1377,
1382
+ "옌": 1378,
1383
+ "옐": 1379,
1384
+ "옙": 1380,
1385
+ "옛": 1381,
1386
+ "옜": 1382,
1387
+ "오": 1383,
1388
+ "옥": 1384,
1389
+ "온": 1385,
1390
+ "올": 1386,
1391
+ "옭": 1387,
1392
+ "옮": 1388,
1393
+ "옳": 1389,
1394
+ "옴": 1390,
1395
+ "옵": 1391,
1396
+ "옷": 1392,
1397
+ "옹": 1393,
1398
+ "옻": 1394,
1399
+ "옾": 1395,
1400
+ "와": 1396,
1401
+ "왁": 1397,
1402
+ "완": 1398,
1403
+ "왈": 1399,
1404
+ "왑": 1400,
1405
+ "왓": 1401,
1406
+ "왔": 1402,
1407
+ "왕": 1403,
1408
+ "왜": 1404,
1409
+ "왠": 1405,
1410
+ "왤": 1406,
1411
+ "외": 1407,
1412
+ "왹": 1408,
1413
+ "왼": 1409,
1414
+ "욀": 1410,
1415
+ "요": 1411,
1416
+ "욕": 1412,
1417
+ "욘": 1413,
1418
+ "욜": 1414,
1419
+ "욤": 1415,
1420
+ "욥": 1416,
1421
+ "욧": 1417,
1422
+ "용": 1418,
1423
+ "욬": 1419,
1424
+ "우": 1420,
1425
+ "욱": 1421,
1426
+ "운": 1422,
1427
+ "울": 1423,
1428
+ "움": 1424,
1429
+ "웁": 1425,
1430
+ "웃": 1426,
1431
+ "웅": 1427,
1432
+ "워": 1428,
1433
+ "웍": 1429,
1434
+ "원": 1430,
1435
+ "월": 1431,
1436
+ "웜": 1432,
1437
+ "웟": 1433,
1438
+ "웠": 1434,
1439
+ "웡": 1435,
1440
+ "웨": 1436,
1441
+ "웩": 1437,
1442
+ "웬": 1438,
1443
+ "웰": 1439,
1444
+ "웹": 1440,
1445
+ "웻": 1441,
1446
+ "웽": 1442,
1447
+ "위": 1443,
1448
+ "윅": 1444,
1449
+ "윈": 1445,
1450
+ "윌": 1446,
1451
+ "윔": 1447,
1452
+ "윕": 1448,
1453
+ "윗": 1449,
1454
+ "윙": 1450,
1455
+ "유": 1451,
1456
+ "육": 1452,
1457
+ "윤": 1453,
1458
+ "율": 1454,
1459
+ "윯": 1455,
1460
+ "윱": 1456,
1461
+ "윳": 1457,
1462
+ "융": 1458,
1463
+ "윶": 1459,
1464
+ "윷": 1460,
1465
+ "윹": 1461,
1466
+ "으": 1462,
1467
+ "윽": 1463,
1468
+ "윾": 1464,
1469
+ "은": 1465,
1470
+ "읃": 1466,
1471
+ "을": 1467,
1472
+ "읇": 1468,
1473
+ "읊": 1469,
1474
+ "음": 1470,
1475
+ "읍": 1471,
1476
+ "읏": 1472,
1477
+ "응": 1473,
1478
+ "읒": 1474,
1479
+ "읓": 1475,
1480
+ "읔": 1476,
1481
+ "읕": 1477,
1482
+ "읗": 1478,
1483
+ "의": 1479,
1484
+ "이": 1480,
1485
+ "익": 1481,
1486
+ "인": 1482,
1487
+ "읹": 1483,
1488
+ "일": 1484,
1489
+ "읽": 1485,
1490
+ "잃": 1486,
1491
+ "임": 1487,
1492
+ "입": 1488,
1493
+ "잆": 1489,
1494
+ "잇": 1490,
1495
+ "있": 1491,
1496
+ "잉": 1492,
1497
+ "잊": 1493,
1498
+ "잌": 1494,
1499
+ "잎": 1495,
1500
+ "잏": 1496,
1501
+ "자": 1497,
1502
+ "작": 1498,
1503
+ "잔": 1499,
1504
+ "잖": 1500,
1505
+ "잘": 1501,
1506
+ "잚": 1502,
1507
+ "잠": 1503,
1508
+ "잡": 1504,
1509
+ "잣": 1505,
1510
+ "잤": 1506,
1511
+ "장": 1507,
1512
+ "잦": 1508,
1513
+ "잫": 1509,
1514
+ "재": 1510,
1515
+ "잭": 1511,
1516
+ "잰": 1512,
1517
+ "잴": 1513,
1518
+ "잼": 1514,
1519
+ "잽": 1515,
1520
+ "잿": 1516,
1521
+ "쟀": 1517,
1522
+ "쟁": 1518,
1523
+ "쟈": 1519,
1524
+ "쟌": 1520,
1525
+ "쟎": 1521,
1526
+ "쟝": 1522,
1527
+ "쟤": 1523,
1528
+ "쟨": 1524,
1529
+ "저": 1525,
1530
+ "적": 1526,
1531
+ "전": 1527,
1532
+ "절": 1528,
1533
+ "젊": 1529,
1534
+ "젏": 1530,
1535
+ "점": 1531,
1536
+ "접": 1532,
1537
+ "젓": 1533,
1538
+ "정": 1534,
1539
+ "젖": 1535,
1540
+ "제": 1536,
1541
+ "젝": 1537,
1542
+ "젠": 1538,
1543
+ "젤": 1539,
1544
+ "젬": 1540,
1545
+ "젭": 1541,
1546
+ "젯": 1542,
1547
+ "져": 1543,
1548
+ "젹": 1544,
1549
+ "젼": 1545,
1550
+ "졌": 1546,
1551
+ "졍": 1547,
1552
+ "조": 1548,
1553
+ "족": 1549,
1554
+ "존": 1550,
1555
+ "졸": 1551,
1556
+ "좀": 1552,
1557
+ "좁": 1553,
1558
+ "좃": 1554,
1559
+ "종": 1555,
1560
+ "좆": 1556,
1561
+ "좇": 1557,
1562
+ "좋": 1558,
1563
+ "좌": 1559,
1564
+ "좍": 1560,
1565
+ "좐": 1561,
1566
+ "좔": 1562,
1567
+ "좝": 1563,
1568
+ "좡": 1564,
1569
+ "죄": 1565,
1570
+ "죌": 1566,
1571
+ "죘": 1567,
1572
+ "죙": 1568,
1573
+ "죠": 1569,
1574
+ "죤": 1570,
1575
+ "죵": 1571,
1576
+ "주": 1572,
1577
+ "죽": 1573,
1578
+ "준": 1574,
1579
+ "줄": 1575,
1580
+ "줌": 1576,
1581
+ "줍": 1577,
1582
+ "줏": 1578,
1583
+ "줐": 1579,
1584
+ "중": 1580,
1585
+ "줒": 1581,
1586
+ "줗": 1582,
1587
+ "줘": 1583,
1588
+ "줠": 1584,
1589
+ "줬": 1585,
1590
+ "쥐": 1586,
1591
+ "쥑": 1587,
1592
+ "쥔": 1588,
1593
+ "쥘": 1589,
1594
+ "쥠": 1590,
1595
+ "쥬": 1591,
1596
+ "쥭": 1592,
1597
+ "쥰": 1593,
1598
+ "쥴": 1594,
1599
+ "쥿": 1595,
1600
+ "즈": 1596,
1601
+ "즉": 1597,
1602
+ "즌": 1598,
1603
+ "즐": 1599,
1604
+ "즘": 1600,
1605
+ "즙": 1601,
1606
+ "즛": 1602,
1607
+ "증": 1603,
1608
+ "즞": 1604,
1609
+ "지": 1605,
1610
+ "직": 1606,
1611
+ "진": 1607,
1612
+ "짆": 1608,
1613
+ "질": 1609,
1614
+ "짊": 1610,
1615
+ "짐": 1611,
1616
+ "집": 1612,
1617
+ "짓": 1613,
1618
+ "짔": 1614,
1619
+ "징": 1615,
1620
+ "짖": 1616,
1621
+ "짙": 1617,
1622
+ "짚": 1618,
1623
+ "짜": 1619,
1624
+ "짝": 1620,
1625
+ "짠": 1621,
1626
+ "짢": 1622,
1627
+ "짤": 1623,
1628
+ "짥": 1624,
1629
+ "짦": 1625,
1630
+ "짧": 1626,
1631
+ "짬": 1627,
1632
+ "짭": 1628,
1633
+ "짯": 1629,
1634
+ "짰": 1630,
1635
+ "짱": 1631,
1636
+ "째": 1632,
1637
+ "짹": 1633,
1638
+ "짼": 1634,
1639
+ "쨈": 1635,
1640
+ "쨉": 1636,
1641
+ "쨋": 1637,
1642
+ "쨌": 1638,
1643
+ "쨍": 1639,
1644
+ "쨎": 1640,
1645
+ "쨔": 1641,
1646
+ "쨘": 1642,
1647
+ "쨜": 1643,
1648
+ "쨩": 1644,
1649
+ "쨰": 1645,
1650
+ "쩃": 1646,
1651
+ "쩄": 1647,
1652
+ "쩅": 1648,
1653
+ "쩌": 1649,
1654
+ "쩍": 1650,
1655
+ "쩐": 1651,
1656
+ "쩔": 1652,
1657
+ "쩜": 1653,
1658
+ "쩝": 1654,
1659
+ "쩠": 1655,
1660
+ "쩡": 1656,
1661
+ "쩧": 1657,
1662
+ "쩨": 1658,
1663
+ "쩰": 1659,
1664
+ "쩼": 1660,
1665
+ "쩽": 1661,
1666
+ "쪄": 1662,
1667
+ "쪘": 1663,
1668
+ "쪙": 1664,
1669
+ "쪼": 1665,
1670
+ "쪽": 1666,
1671
+ "쫀": 1667,
1672
+ "쫄": 1668,
1673
+ "쫌": 1669,
1674
+ "쫍": 1670,
1675
+ "쫑": 1671,
1676
+ "쫒": 1672,
1677
+ "쫓": 1673,
1678
+ "쫘": 1674,
1679
+ "쫙": 1675,
1680
+ "쬐": 1676,
1681
+ "쬘": 1677,
1682
+ "쬤": 1678,
1683
+ "쬬": 1679,
1684
+ "쬭": 1680,
1685
+ "쭈": 1681,
1686
+ "쭉": 1682,
1687
+ "쭊": 1683,
1688
+ "쭌": 1684,
1689
+ "쭐": 1685,
1690
+ "쭘": 1686,
1691
+ "쭙": 1687,
1692
+ "쭤": 1688,
1693
+ "쮜": 1689,
1694
+ "쮸": 1690,
1695
+ "쯔": 1691,
1696
+ "쯕": 1692,
1697
+ "쯤": 1693,
1698
+ "쯥": 1694,
1699
+ "쯧": 1695,
1700
+ "쯩": 1696,
1701
+ "쯪": 1697,
1702
+ "찌": 1698,
1703
+ "찍": 1699,
1704
+ "찐": 1700,
1705
+ "찔": 1701,
1706
+ "찜": 1702,
1707
+ "찝": 1703,
1708
+ "찡": 1704,
1709
+ "찢": 1705,
1710
+ "찧": 1706,
1711
+ "차": 1707,
1712
+ "착": 1708,
1713
+ "찬": 1709,
1714
+ "찮": 1710,
1715
+ "찰": 1711,
1716
+ "참": 1712,
1717
+ "찹": 1713,
1718
+ "찻": 1714,
1719
+ "찼": 1715,
1720
+ "창": 1716,
1721
+ "찾": 1717,
1722
+ "챃": 1718,
1723
+ "채": 1719,
1724
+ "책": 1720,
1725
+ "챈": 1721,
1726
+ "챌": 1722,
1727
+ "챔": 1723,
1728
+ "챕": 1724,
1729
+ "챗": 1725,
1730
+ "챘": 1726,
1731
+ "챙": 1727,
1732
+ "챠": 1728,
1733
+ "챤": 1729,
1734
+ "챱": 1730,
1735
+ "처": 1731,
1736
+ "척": 1732,
1737
+ "천": 1733,
1738
+ "철": 1734,
1739
+ "첨": 1735,
1740
+ "첩": 1736,
1741
+ "첫": 1737,
1742
+ "청": 1738,
1743
+ "체": 1739,
1744
+ "첵": 1740,
1745
+ "첸": 1741,
1746
+ "첼": 1742,
1747
+ "쳄": 1743,
1748
+ "쳅": 1744,
1749
+ "쳇": 1745,
1750
+ "쳐": 1746,
1751
+ "쳘": 1747,
1752
+ "쳤": 1748,
1753
+ "초": 1749,
1754
+ "촉": 1750,
1755
+ "촌": 1751,
1756
+ "촐": 1752,
1757
+ "촘": 1753,
1758
+ "촙": 1754,
1759
+ "촛": 1755,
1760
+ "총": 1756,
1761
+ "촤": 1757,
1762
+ "촥": 1758,
1763
+ "촬": 1759,
1764
+ "촵": 1760,
1765
+ "최": 1761,
1766
+ "쵝": 1762,
1767
+ "쵠": 1763,
1768
+ "쵸": 1764,
1769
+ "춋": 1765,
1770
+ "추": 1766,
1771
+ "축": 1767,
1772
+ "춘": 1768,
1773
+ "출": 1769,
1774
+ "춤": 1770,
1775
+ "춥": 1771,
1776
+ "춧": 1772,
1777
+ "충": 1773,
1778
+ "춰": 1774,
1779
+ "춱": 1775,
1780
+ "췄": 1776,
1781
+ "췌": 1777,
1782
+ "취": 1778,
1783
+ "췩": 1779,
1784
+ "췬": 1780,
1785
+ "췹": 1781,
1786
+ "츄": 1782,
1787
+ "츅": 1783,
1788
+ "츈": 1784,
1789
+ "츌": 1785,
1790
+ "츕": 1786,
1791
+ "츠": 1787,
1792
+ "측": 1788,
1793
+ "츤": 1789,
1794
+ "츨": 1790,
1795
+ "츰": 1791,
1796
+ "츱": 1792,
1797
+ "츳": 1793,
1798
+ "층": 1794,
1799
+ "치": 1795,
1800
+ "칙": 1796,
1801
+ "친": 1797,
1802
+ "칟": 1798,
1803
+ "칠": 1799,
1804
+ "칡": 1800,
1805
+ "침": 1801,
1806
+ "칩": 1802,
1807
+ "칫": 1803,
1808
+ "칬": 1804,
1809
+ "칭": 1805,
1810
+ "카": 1806,
1811
+ "칵": 1807,
1812
+ "칸": 1808,
1813
+ "칼": 1809,
1814
+ "캄": 1810,
1815
+ "캅": 1811,
1816
+ "캇": 1812,
1817
+ "캉": 1813,
1818
+ "캐": 1814,
1819
+ "캔": 1815,
1820
+ "캘": 1816,
1821
+ "캠": 1817,
1822
+ "캡": 1818,
1823
+ "캣": 1819,
1824
+ "캤": 1820,
1825
+ "캥": 1821,
1826
+ "캬": 1822,
1827
+ "캭": 1823,
1828
+ "컁": 1824,
1829
+ "커": 1825,
1830
+ "컥": 1826,
1831
+ "컨": 1827,
1832
+ "컫": 1828,
1833
+ "컬": 1829,
1834
+ "컴": 1830,
1835
+ "컵": 1831,
1836
+ "컷": 1832,
1837
+ "컸": 1833,
1838
+ "컹": 1834,
1839
+ "케": 1835,
1840
+ "켁": 1836,
1841
+ "켄": 1837,
1842
+ "켈": 1838,
1843
+ "켐": 1839,
1844
+ "켑": 1840,
1845
+ "켓": 1841,
1846
+ "켔": 1842,
1847
+ "켜": 1843,
1848
+ "켠": 1844,
1849
+ "켤": 1845,
1850
+ "켬": 1846,
1851
+ "켭": 1847,
1852
+ "켯": 1848,
1853
+ "켰": 1849,
1854
+ "켱": 1850,
1855
+ "코": 1851,
1856
+ "콕": 1852,
1857
+ "콘": 1853,
1858
+ "콜": 1854,
1859
+ "콤": 1855,
1860
+ "콥": 1856,
1861
+ "콧": 1857,
1862
+ "콩": 1858,
1863
+ "콰": 1859,
1864
+ "콱": 1860,
1865
+ "콴": 1861,
1866
+ "콸": 1862,
1867
+ "쾃": 1863,
1868
+ "쾅": 1864,
1869
+ "쾌": 1865,
1870
+ "쾡": 1866,
1871
+ "쾨": 1867,
1872
+ "쾰": 1868,
1873
+ "쿄": 1869,
1874
+ "쿙": 1870,
1875
+ "쿠": 1871,
1876
+ "쿡": 1872,
1877
+ "쿤": 1873,
1878
+ "쿨": 1874,
1879
+ "쿰": 1875,
1880
+ "쿱": 1876,
1881
+ "쿵": 1877,
1882
+ "쿼": 1878,
1883
+ "퀀": 1879,
1884
+ "퀄": 1880,
1885
+ "퀏": 1881,
1886
+ "퀘": 1882,
1887
+ "퀠": 1883,
1888
+ "퀭": 1884,
1889
+ "퀴": 1885,
1890
+ "퀵": 1886,
1891
+ "퀸": 1887,
1892
+ "퀼": 1888,
1893
+ "큄": 1889,
1894
+ "큐": 1890,
1895
+ "큘": 1891,
1896
+ "큠": 1892,
1897
+ "크": 1893,
1898
+ "큭": 1894,
1899
+ "큰": 1895,
1900
+ "클": 1896,
1901
+ "큼": 1897,
1902
+ "큽": 1898,
1903
+ "킁": 1899,
1904
+ "키": 1900,
1905
+ "킥": 1901,
1906
+ "킨": 1902,
1907
+ "킬": 1903,
1908
+ "킴": 1904,
1909
+ "킵": 1905,
1910
+ "킷": 1906,
1911
+ "킸": 1907,
1912
+ "킹": 1908,
1913
+ "타": 1909,
1914
+ "탁": 1910,
1915
+ "탄": 1911,
1916
+ "탈": 1912,
1917
+ "탉": 1913,
1918
+ "탐": 1914,
1919
+ "탑": 1915,
1920
+ "탓": 1916,
1921
+ "탔": 1917,
1922
+ "탕": 1918,
1923
+ "태": 1919,
1924
+ "택": 1920,
1925
+ "탠": 1921,
1926
+ "탤": 1922,
1927
+ "탬": 1923,
1928
+ "탭": 1924,
1929
+ "탯": 1925,
1930
+ "탰": 1926,
1931
+ "탱": 1927,
1932
+ "탸": 1928,
1933
+ "터": 1929,
1934
+ "턱": 1930,
1935
+ "턴": 1931,
1936
+ "털": 1932,
1937
+ "텀": 1933,
1938
+ "텁": 1934,
1939
+ "텃": 1935,
1940
+ "텄": 1936,
1941
+ "텅": 1937,
1942
+ "테": 1938,
1943
+ "텍": 1939,
1944
+ "텐": 1940,
1945
+ "텔": 1941,
1946
+ "템": 1942,
1947
+ "텝": 1943,
1948
+ "텟": 1944,
1949
+ "텡": 1945,
1950
+ "텨": 1946,
1951
+ "텼": 1947,
1952
+ "토": 1948,
1953
+ "톡": 1949,
1954
+ "톤": 1950,
1955
+ "톨": 1951,
1956
+ "톰": 1952,
1957
+ "톱": 1953,
1958
+ "톳": 1954,
1959
+ "통": 1955,
1960
+ "퇑": 1956,
1961
+ "퇘": 1957,
1962
+ "퇴": 1958,
1963
+ "투": 1959,
1964
+ "툭": 1960,
1965
+ "툰": 1961,
1966
+ "툴": 1962,
1967
+ "툼": 1963,
1968
+ "툽": 1964,
1969
+ "툿": 1965,
1970
+ "퉁": 1966,
1971
+ "퉈": 1967,
1972
+ "퉜": 1968,
1973
+ "퉤": 1969,
1974
+ "튀": 1970,
1975
+ "튄": 1971,
1976
+ "튈": 1972,
1977
+ "튐": 1973,
1978
+ "튑": 1974,
1979
+ "튕": 1975,
1980
+ "튜": 1976,
1981
+ "튠": 1977,
1982
+ "튤": 1978,
1983
+ "튬": 1979,
1984
+ "튭": 1980,
1985
+ "튱": 1981,
1986
+ "트": 1982,
1987
+ "특": 1983,
1988
+ "튼": 1984,
1989
+ "튿": 1985,
1990
+ "틀": 1986,
1991
+ "틈": 1987,
1992
+ "틉": 1988,
1993
+ "틋": 1989,
1994
+ "틍": 1990,
1995
+ "틔": 1991,
1996
+ "티": 1992,
1997
+ "틱": 1993,
1998
+ "틴": 1994,
1999
+ "틸": 1995,
2000
+ "팀": 1996,
2001
+ "팁": 1997,
2002
+ "팃": 1998,
2003
+ "팅": 1999,
2004
+ "파": 2000,
2005
+ "팍": 2001,
2006
+ "팎": 2002,
2007
+ "판": 2003,
2008
+ "팔": 2004,
2009
+ "팜": 2005,
2010
+ "팝": 2006,
2011
+ "팟": 2007,
2012
+ "팠": 2008,
2013
+ "팡": 2009,
2014
+ "팥": 2010,
2015
+ "패": 2011,
2016
+ "팩": 2012,
2017
+ "팬": 2013,
2018
+ "팰": 2014,
2019
+ "팸": 2015,
2020
+ "팹": 2016,
2021
+ "팻": 2017,
2022
+ "팼": 2018,
2023
+ "팽": 2019,
2024
+ "퍄": 2020,
2025
+ "퍈": 2021,
2026
+ "퍼": 2022,
2027
+ "퍽": 2023,
2028
+ "펀": 2024,
2029
+ "펄": 2025,
2030
+ "펌": 2026,
2031
+ "펍": 2027,
2032
+ "펐": 2028,
2033
+ "펑": 2029,
2034
+ "페": 2030,
2035
+ "펙": 2031,
2036
+ "펜": 2032,
2037
+ "펠": 2033,
2038
+ "펨": 2034,
2039
+ "펩": 2035,
2040
+ "펫": 2036,
2041
+ "펭": 2037,
2042
+ "펴": 2038,
2043
+ "편": 2039,
2044
+ "펼": 2040,
2045
+ "폄": 2041,
2046
+ "폈": 2042,
2047
+ "평": 2043,
2048
+ "폐": 2044,
2049
+ "포": 2045,
2050
+ "폭": 2046,
2051
+ "폰": 2047,
2052
+ "폴": 2048,
2053
+ "폼": 2049,
2054
+ "폿": 2050,
2055
+ "퐁": 2051,
2056
+ "퐈": 2052,
2057
+ "퐉": 2053,
2058
+ "퐌": 2054,
2059
+ "퐐": 2055,
2060
+ "푀": 2056,
2061
+ "표": 2057,
2062
+ "푠": 2058,
2063
+ "푬": 2059,
2064
+ "푭": 2060,
2065
+ "푯": 2061,
2066
+ "푸": 2062,
2067
+ "푹": 2063,
2068
+ "푼": 2064,
2069
+ "푿": 2065,
2070
+ "풀": 2066,
2071
+ "품": 2067,
2072
+ "풉": 2068,
2073
+ "풋": 2069,
2074
+ "풍": 2070,
2075
+ "퓌": 2071,
2076
+ "퓨": 2072,
2077
+ "퓰": 2073,
2078
+ "퓸": 2074,
2079
+ "프": 2075,
2080
+ "픈": 2076,
2081
+ "플": 2077,
2082
+ "픔": 2078,
2083
+ "픕": 2079,
2084
+ "픗": 2080,
2085
+ "피": 2081,
2086
+ "픽": 2082,
2087
+ "핀": 2083,
2088
+ "필": 2084,
2089
+ "핌": 2085,
2090
+ "핍": 2086,
2091
+ "핏": 2087,
2092
+ "핑": 2088,
2093
+ "하": 2089,
2094
+ "학": 2090,
2095
+ "한": 2091,
2096
+ "할": 2092,
2097
+ "핡": 2093,
2098
+ "핥": 2094,
2099
+ "핧": 2095,
2100
+ "함": 2096,
2101
+ "합": 2097,
2102
+ "핫": 2098,
2103
+ "핬": 2099,
2104
+ "항": 2100,
2105
+ "해": 2101,
2106
+ "핵": 2102,
2107
+ "핸": 2103,
2108
+ "핼": 2104,
2109
+ "햄": 2105,
2110
+ "햅": 2106,
2111
+ "햇": 2107,
2112
+ "했": 2108,
2113
+ "행": 2109,
2114
+ "햍": 2110,
2115
+ "햎": 2111,
2116
+ "햐": 2112,
2117
+ "햑": 2113,
2118
+ "햔": 2114,
2119
+ "햘": 2115,
2120
+ "햝": 2116,
2121
+ "향": 2117,
2122
+ "헀": 2118,
2123
+ "허": 2119,
2124
+ "헉": 2120,
2125
+ "헌": 2121,
2126
+ "헐": 2122,
2127
+ "험": 2123,
2128
+ "헙": 2124,
2129
+ "헛": 2125,
2130
+ "헝": 2126,
2131
+ "헤": 2127,
2132
+ "헥": 2128,
2133
+ "헨": 2129,
2134
+ "헬": 2130,
2135
+ "헴": 2131,
2136
+ "헵": 2132,
2137
+ "헷": 2133,
2138
+ "헸": 2134,
2139
+ "헹": 2135,
2140
+ "헿": 2136,
2141
+ "혀": 2137,
2142
+ "혁": 2138,
2143
+ "현": 2139,
2144
+ "혈": 2140,
2145
+ "혐": 2141,
2146
+ "협": 2142,
2147
+ "혓": 2143,
2148
+ "혔": 2144,
2149
+ "형": 2145,
2150
+ "혛": 2146,
2151
+ "혜": 2147,
2152
+ "호": 2148,
2153
+ "혹": 2149,
2154
+ "혼": 2150,
2155
+ "홀": 2151,
2156
+ "홈": 2152,
2157
+ "홉": 2153,
2158
+ "홋": 2154,
2159
+ "홍": 2155,
2160
+ "홑": 2156,
2161
+ "화": 2157,
2162
+ "확": 2158,
2163
+ "환": 2159,
2164
+ "활": 2160,
2165
+ "홥": 2161,
2166
+ "홧": 2162,
2167
+ "황": 2163,
2168
+ "홰": 2164,
2169
+ "홱": 2165,
2170
+ "횃": 2166,
2171
+ "회": 2167,
2172
+ "획": 2168,
2173
+ "횐": 2169,
2174
+ "횝": 2170,
2175
+ "횟": 2171,
2176
+ "횡": 2172,
2177
+ "효": 2173,
2178
+ "후": 2174,
2179
+ "훅": 2175,
2180
+ "훈": 2176,
2181
+ "훌": 2177,
2182
+ "훑": 2178,
2183
+ "훔": 2179,
2184
+ "훕": 2180,
2185
+ "훗": 2181,
2186
+ "훙": 2182,
2187
+ "훠": 2183,
2188
+ "훤": 2184,
2189
+ "훨": 2185,
2190
+ "훼": 2186,
2191
+ "휀": 2187,
2192
+ "휑": 2188,
2193
+ "휘": 2189,
2194
+ "휙": 2190,
2195
+ "휜": 2191,
2196
+ "휠": 2192,
2197
+ "휨": 2193,
2198
+ "휩": 2194,
2199
+ "휴": 2195,
2200
+ "휸": 2196,
2201
+ "흉": 2197,
2202
+ "흐": 2198,
2203
+ "흑": 2199,
2204
+ "흔": 2200,
2205
+ "흘": 2201,
2206
+ "흙": 2202,
2207
+ "흠": 2203,
2208
+ "흡": 2204,
2209
+ "흣": 2205,
2210
+ "흥": 2206,
2211
+ "흩": 2207,
2212
+ "흫": 2208,
2213
+ "희": 2209,
2214
+ "흰": 2210,
2215
+ "흿": 2211,
2216
+ "히": 2212,
2217
+ "힉": 2213,
2218
+ "힌": 2214,
2219
+ "힐": 2215,
2220
+ "힘": 2216,
2221
+ "힙": 2217,
2222
+ "힛": 2218,
2223
+ "힝": 2219,
2224
+ ".": 2220
2225
+ }
checkpoint-1200330/added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "</s>": 2224,
3
+ "<s>": 2223
4
+ }
checkpoint-1200330/config.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForCTC"
11
+ ],
12
+ "attention_dropout": 0.05,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 768,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "mean",
46
+ "ctc_zero_infinity": true,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.05,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "gradient_checkpointing": false,
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.05,
59
+ "hidden_size": 1024,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 4096,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.05,
64
+ "mask_channel_length": 10,
65
+ "mask_channel_min_space": 1,
66
+ "mask_channel_other": 0.0,
67
+ "mask_channel_prob": 0.0,
68
+ "mask_channel_selection": "static",
69
+ "mask_feature_length": 10,
70
+ "mask_feature_min_masks": 0,
71
+ "mask_feature_prob": 0.0,
72
+ "mask_time_length": 10,
73
+ "mask_time_min_masks": 2,
74
+ "mask_time_min_space": 1,
75
+ "mask_time_other": 0.0,
76
+ "mask_time_prob": 0.05,
77
+ "mask_time_selection": "static",
78
+ "model_type": "wav2vec2",
79
+ "num_adapter_layers": 3,
80
+ "num_attention_heads": 16,
81
+ "num_codevector_groups": 2,
82
+ "num_codevectors_per_group": 320,
83
+ "num_conv_pos_embedding_groups": 16,
84
+ "num_conv_pos_embeddings": 128,
85
+ "num_feat_extract_layers": 7,
86
+ "num_hidden_layers": 24,
87
+ "num_negatives": 100,
88
+ "output_hidden_size": 1024,
89
+ "pad_token_id": 2222,
90
+ "proj_codevector_dim": 768,
91
+ "tdnn_dilation": [
92
+ 1,
93
+ 2,
94
+ 3,
95
+ 1,
96
+ 1
97
+ ],
98
+ "tdnn_dim": [
99
+ 512,
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 1500
104
+ ],
105
+ "tdnn_kernel": [
106
+ 5,
107
+ 3,
108
+ 3,
109
+ 1,
110
+ 1
111
+ ],
112
+ "torch_dtype": "float32",
113
+ "transformers_version": "4.35.2",
114
+ "use_weighted_layer_sum": false,
115
+ "vocab_size": 2225,
116
+ "xvector_output_dim": 512
117
+ }
checkpoint-1200330/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79141e65bb103824f47cb013255477227de4b13227fde6b338a3afd1a2ccc4e9
3
+ size 1270930004
checkpoint-1200330/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26763008185a15f948e3f10b0a8e42f50b0759d8965cd966ecf7e91c1bb65600
3
+ size 2508404790
checkpoint-1200330/preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
checkpoint-1200330/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0f930fc67a1cd96ece66ce3d7ad2e2317eefddc337dd92db92ebdf382ab3d47
3
+ size 15024
checkpoint-1200330/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5b129c479b19420fab0b8702e6461b7c8ab7fa88b5a7fb3e017d4d09313364e
3
+ size 15024
checkpoint-1200330/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf44362990dd4c61b51eebf4dc01aa02430d22d3bd04f79b7574f6343e23518e
3
+ size 15024
checkpoint-1200330/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5192baf0aeb174de8f52ece09bf5a0ea706c0f7e2b24d8cd19fa5bd1ff0a5d60
3
+ size 14960
checkpoint-1200330/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66fb673bd2faf4b74cc36bc0089f17f043788b2794de22b65b2b9f65bcaced5f
3
+ size 1064
checkpoint-1200330/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "[UNK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": true,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1200330/tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "2221": {
4
+ "content": "[UNK]",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "2222": {
12
+ "content": "[PAD]",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "2223": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "2224": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": true,
38
+ "config": null,
39
+ "do_lower_case": false,
40
+ "eos_token": "</s>",
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "[PAD]",
43
+ "processor_class": "Wav2Vec2Processor",
44
+ "replace_word_delimiter_char": " ",
45
+ "target_lang": null,
46
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
47
+ "tokenizer_type": "wav2vec2",
48
+ "trust_remote_code": false,
49
+ "unk_token": "[UNK]",
50
+ "word_delimiter_token": "|"
51
+ }
checkpoint-1200330/trainer_state.json ADDED
@@ -0,0 +1,2419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 29.99962510778151,
5
+ "eval_steps": 500,
6
+ "global_step": 1200330,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.07,
13
+ "learning_rate": 7.497500833055648e-05,
14
+ "loss": 11.5654,
15
+ "step": 3000
16
+ },
17
+ {
18
+ "epoch": 0.15,
19
+ "learning_rate": 0.00014995001666111296,
20
+ "loss": 1.9313,
21
+ "step": 6000
22
+ },
23
+ {
24
+ "epoch": 0.22,
25
+ "learning_rate": 0.0002249250249916694,
26
+ "loss": 1.3886,
27
+ "step": 9000
28
+ },
29
+ {
30
+ "epoch": 0.3,
31
+ "learning_rate": 0.0002999000333222259,
32
+ "loss": 1.3023,
33
+ "step": 12000
34
+ },
35
+ {
36
+ "epoch": 0.37,
37
+ "learning_rate": 0.0002992436418962473,
38
+ "loss": 1.2746,
39
+ "step": 15000
40
+ },
41
+ {
42
+ "epoch": 0.45,
43
+ "learning_rate": 0.0002984862739685911,
44
+ "loss": 1.2224,
45
+ "step": 18000
46
+ },
47
+ {
48
+ "epoch": 0.52,
49
+ "learning_rate": 0.00029772890604093486,
50
+ "loss": 1.1809,
51
+ "step": 21000
52
+ },
53
+ {
54
+ "epoch": 0.6,
55
+ "learning_rate": 0.00029697153811327864,
56
+ "loss": 1.1405,
57
+ "step": 24000
58
+ },
59
+ {
60
+ "epoch": 0.67,
61
+ "learning_rate": 0.0002962141701856224,
62
+ "loss": 1.1178,
63
+ "step": 27000
64
+ },
65
+ {
66
+ "epoch": 0.75,
67
+ "learning_rate": 0.0002954568022579662,
68
+ "loss": 1.0984,
69
+ "step": 30000
70
+ },
71
+ {
72
+ "epoch": 0.82,
73
+ "learning_rate": 0.00029469943433031,
74
+ "loss": 1.0659,
75
+ "step": 33000
76
+ },
77
+ {
78
+ "epoch": 0.9,
79
+ "learning_rate": 0.0002939420664026538,
80
+ "loss": 1.0466,
81
+ "step": 36000
82
+ },
83
+ {
84
+ "epoch": 0.97,
85
+ "learning_rate": 0.0002931846984749976,
86
+ "loss": 1.0377,
87
+ "step": 39000
88
+ },
89
+ {
90
+ "epoch": 1.05,
91
+ "learning_rate": 0.00029242733054734134,
92
+ "loss": 1.005,
93
+ "step": 42000
94
+ },
95
+ {
96
+ "epoch": 1.12,
97
+ "learning_rate": 0.0002916699626196851,
98
+ "loss": 0.9926,
99
+ "step": 45000
100
+ },
101
+ {
102
+ "epoch": 1.2,
103
+ "learning_rate": 0.00029091259469202896,
104
+ "loss": 0.9863,
105
+ "step": 48000
106
+ },
107
+ {
108
+ "epoch": 1.27,
109
+ "learning_rate": 0.0002901552267643727,
110
+ "loss": 0.9723,
111
+ "step": 51000
112
+ },
113
+ {
114
+ "epoch": 1.35,
115
+ "learning_rate": 0.00028939785883671653,
116
+ "loss": 0.9571,
117
+ "step": 54000
118
+ },
119
+ {
120
+ "epoch": 1.42,
121
+ "learning_rate": 0.0002886404909090603,
122
+ "loss": 0.933,
123
+ "step": 57000
124
+ },
125
+ {
126
+ "epoch": 1.5,
127
+ "learning_rate": 0.00028788312298140404,
128
+ "loss": 0.9296,
129
+ "step": 60000
130
+ },
131
+ {
132
+ "epoch": 1.57,
133
+ "learning_rate": 0.0002871257550537479,
134
+ "loss": 0.9255,
135
+ "step": 63000
136
+ },
137
+ {
138
+ "epoch": 1.65,
139
+ "learning_rate": 0.00028636838712609166,
140
+ "loss": 0.9173,
141
+ "step": 66000
142
+ },
143
+ {
144
+ "epoch": 1.72,
145
+ "learning_rate": 0.0002856110191984354,
146
+ "loss": 0.9063,
147
+ "step": 69000
148
+ },
149
+ {
150
+ "epoch": 1.8,
151
+ "learning_rate": 0.00028485365127077923,
152
+ "loss": 0.9004,
153
+ "step": 72000
154
+ },
155
+ {
156
+ "epoch": 1.87,
157
+ "learning_rate": 0.000284096283343123,
158
+ "loss": 0.8997,
159
+ "step": 75000
160
+ },
161
+ {
162
+ "epoch": 1.95,
163
+ "learning_rate": 0.00028333891541546674,
164
+ "loss": 0.8943,
165
+ "step": 78000
166
+ },
167
+ {
168
+ "epoch": 2.02,
169
+ "learning_rate": 0.0002825815474878106,
170
+ "loss": 0.8797,
171
+ "step": 81000
172
+ },
173
+ {
174
+ "epoch": 2.1,
175
+ "learning_rate": 0.00028182417956015436,
176
+ "loss": 0.8501,
177
+ "step": 84000
178
+ },
179
+ {
180
+ "epoch": 2.17,
181
+ "learning_rate": 0.0002810668116324981,
182
+ "loss": 0.8479,
183
+ "step": 87000
184
+ },
185
+ {
186
+ "epoch": 2.25,
187
+ "learning_rate": 0.00028030944370484193,
188
+ "loss": 0.8451,
189
+ "step": 90000
190
+ },
191
+ {
192
+ "epoch": 2.32,
193
+ "learning_rate": 0.0002795520757771857,
194
+ "loss": 0.8315,
195
+ "step": 93000
196
+ },
197
+ {
198
+ "epoch": 2.4,
199
+ "learning_rate": 0.0002787947078495295,
200
+ "loss": 0.8353,
201
+ "step": 96000
202
+ },
203
+ {
204
+ "epoch": 2.47,
205
+ "learning_rate": 0.0002780373399218733,
206
+ "loss": 0.8271,
207
+ "step": 99000
208
+ },
209
+ {
210
+ "epoch": 2.55,
211
+ "learning_rate": 0.00027727997199421706,
212
+ "loss": 0.8129,
213
+ "step": 102000
214
+ },
215
+ {
216
+ "epoch": 2.62,
217
+ "learning_rate": 0.00027652260406656084,
218
+ "loss": 0.8125,
219
+ "step": 105000
220
+ },
221
+ {
222
+ "epoch": 2.7,
223
+ "learning_rate": 0.0002757652361389046,
224
+ "loss": 0.8119,
225
+ "step": 108000
226
+ },
227
+ {
228
+ "epoch": 2.77,
229
+ "learning_rate": 0.0002750078682112484,
230
+ "loss": 0.8,
231
+ "step": 111000
232
+ },
233
+ {
234
+ "epoch": 2.85,
235
+ "learning_rate": 0.0002742505002835922,
236
+ "loss": 0.7979,
237
+ "step": 114000
238
+ },
239
+ {
240
+ "epoch": 2.92,
241
+ "learning_rate": 0.000273493132355936,
242
+ "loss": 0.7914,
243
+ "step": 117000
244
+ },
245
+ {
246
+ "epoch": 3.0,
247
+ "learning_rate": 0.00027273576442827976,
248
+ "loss": 0.7916,
249
+ "step": 120000
250
+ },
251
+ {
252
+ "epoch": 3.07,
253
+ "learning_rate": 0.00027197839650062354,
254
+ "loss": 0.7542,
255
+ "step": 123000
256
+ },
257
+ {
258
+ "epoch": 3.15,
259
+ "learning_rate": 0.0002712210285729673,
260
+ "loss": 0.7643,
261
+ "step": 126000
262
+ },
263
+ {
264
+ "epoch": 3.22,
265
+ "learning_rate": 0.0002704636606453111,
266
+ "loss": 0.7576,
267
+ "step": 129000
268
+ },
269
+ {
270
+ "epoch": 3.3,
271
+ "learning_rate": 0.0002697062927176549,
272
+ "loss": 0.7551,
273
+ "step": 132000
274
+ },
275
+ {
276
+ "epoch": 3.37,
277
+ "learning_rate": 0.0002689489247899987,
278
+ "loss": 0.7537,
279
+ "step": 135000
280
+ },
281
+ {
282
+ "epoch": 3.45,
283
+ "learning_rate": 0.00026819155686234246,
284
+ "loss": 0.7536,
285
+ "step": 138000
286
+ },
287
+ {
288
+ "epoch": 3.52,
289
+ "learning_rate": 0.00026743418893468624,
290
+ "loss": 0.7466,
291
+ "step": 141000
292
+ },
293
+ {
294
+ "epoch": 3.6,
295
+ "learning_rate": 0.00026667682100703,
296
+ "loss": 0.7488,
297
+ "step": 144000
298
+ },
299
+ {
300
+ "epoch": 3.67,
301
+ "learning_rate": 0.0002659194530793738,
302
+ "loss": 0.7445,
303
+ "step": 147000
304
+ },
305
+ {
306
+ "epoch": 3.75,
307
+ "learning_rate": 0.0002651620851517176,
308
+ "loss": 0.7396,
309
+ "step": 150000
310
+ },
311
+ {
312
+ "epoch": 3.82,
313
+ "learning_rate": 0.0002644047172240614,
314
+ "loss": 0.7387,
315
+ "step": 153000
316
+ },
317
+ {
318
+ "epoch": 3.9,
319
+ "learning_rate": 0.00026364734929640516,
320
+ "loss": 0.7324,
321
+ "step": 156000
322
+ },
323
+ {
324
+ "epoch": 3.97,
325
+ "learning_rate": 0.00026288998136874894,
326
+ "loss": 0.7297,
327
+ "step": 159000
328
+ },
329
+ {
330
+ "epoch": 4.05,
331
+ "learning_rate": 0.0002621326134410928,
332
+ "loss": 0.7069,
333
+ "step": 162000
334
+ },
335
+ {
336
+ "epoch": 4.12,
337
+ "learning_rate": 0.0002613752455134365,
338
+ "loss": 0.7001,
339
+ "step": 165000
340
+ },
341
+ {
342
+ "epoch": 4.2,
343
+ "learning_rate": 0.0002606178775857803,
344
+ "loss": 0.6945,
345
+ "step": 168000
346
+ },
347
+ {
348
+ "epoch": 4.27,
349
+ "learning_rate": 0.00025986050965812413,
350
+ "loss": 0.7017,
351
+ "step": 171000
352
+ },
353
+ {
354
+ "epoch": 4.35,
355
+ "learning_rate": 0.00025910314173046786,
356
+ "loss": 0.7018,
357
+ "step": 174000
358
+ },
359
+ {
360
+ "epoch": 4.42,
361
+ "learning_rate": 0.00025834577380281164,
362
+ "loss": 0.6977,
363
+ "step": 177000
364
+ },
365
+ {
366
+ "epoch": 4.5,
367
+ "learning_rate": 0.0002575884058751555,
368
+ "loss": 0.6923,
369
+ "step": 180000
370
+ },
371
+ {
372
+ "epoch": 4.57,
373
+ "learning_rate": 0.0002568310379474992,
374
+ "loss": 0.6972,
375
+ "step": 183000
376
+ },
377
+ {
378
+ "epoch": 4.65,
379
+ "learning_rate": 0.000256073670019843,
380
+ "loss": 0.685,
381
+ "step": 186000
382
+ },
383
+ {
384
+ "epoch": 4.72,
385
+ "learning_rate": 0.00025531630209218683,
386
+ "loss": 0.6857,
387
+ "step": 189000
388
+ },
389
+ {
390
+ "epoch": 4.8,
391
+ "learning_rate": 0.00025455893416453056,
392
+ "loss": 0.6846,
393
+ "step": 192000
394
+ },
395
+ {
396
+ "epoch": 4.87,
397
+ "learning_rate": 0.00025380156623687434,
398
+ "loss": 0.6848,
399
+ "step": 195000
400
+ },
401
+ {
402
+ "epoch": 4.95,
403
+ "learning_rate": 0.0002530441983092182,
404
+ "loss": 0.6783,
405
+ "step": 198000
406
+ },
407
+ {
408
+ "epoch": 5.02,
409
+ "learning_rate": 0.00025228683038156196,
410
+ "loss": 0.6676,
411
+ "step": 201000
412
+ },
413
+ {
414
+ "epoch": 5.1,
415
+ "learning_rate": 0.0002515294624539057,
416
+ "loss": 0.6514,
417
+ "step": 204000
418
+ },
419
+ {
420
+ "epoch": 5.17,
421
+ "learning_rate": 0.00025077209452624953,
422
+ "loss": 0.6469,
423
+ "step": 207000
424
+ },
425
+ {
426
+ "epoch": 5.25,
427
+ "learning_rate": 0.0002500147265985933,
428
+ "loss": 0.6483,
429
+ "step": 210000
430
+ },
431
+ {
432
+ "epoch": 5.32,
433
+ "learning_rate": 0.00024925735867093704,
434
+ "loss": 0.6525,
435
+ "step": 213000
436
+ },
437
+ {
438
+ "epoch": 5.4,
439
+ "learning_rate": 0.0002484999907432809,
440
+ "loss": 0.6487,
441
+ "step": 216000
442
+ },
443
+ {
444
+ "epoch": 5.47,
445
+ "learning_rate": 0.00024774262281562466,
446
+ "loss": 0.6495,
447
+ "step": 219000
448
+ },
449
+ {
450
+ "epoch": 5.55,
451
+ "learning_rate": 0.00024698525488796845,
452
+ "loss": 0.645,
453
+ "step": 222000
454
+ },
455
+ {
456
+ "epoch": 5.62,
457
+ "learning_rate": 0.00024622788696031223,
458
+ "loss": 0.6517,
459
+ "step": 225000
460
+ },
461
+ {
462
+ "epoch": 5.7,
463
+ "learning_rate": 0.000245470519032656,
464
+ "loss": 0.6459,
465
+ "step": 228000
466
+ },
467
+ {
468
+ "epoch": 5.77,
469
+ "learning_rate": 0.0002447131511049998,
470
+ "loss": 0.6451,
471
+ "step": 231000
472
+ },
473
+ {
474
+ "epoch": 5.85,
475
+ "learning_rate": 0.00024395578317734358,
476
+ "loss": 0.6412,
477
+ "step": 234000
478
+ },
479
+ {
480
+ "epoch": 5.92,
481
+ "learning_rate": 0.00024319841524968736,
482
+ "loss": 0.6457,
483
+ "step": 237000
484
+ },
485
+ {
486
+ "epoch": 6.0,
487
+ "learning_rate": 0.00024244104732203112,
488
+ "loss": 0.64,
489
+ "step": 240000
490
+ },
491
+ {
492
+ "epoch": 6.07,
493
+ "learning_rate": 0.00024168367939437493,
494
+ "loss": 0.6137,
495
+ "step": 243000
496
+ },
497
+ {
498
+ "epoch": 6.15,
499
+ "learning_rate": 0.0002409263114667187,
500
+ "loss": 0.6131,
501
+ "step": 246000
502
+ },
503
+ {
504
+ "epoch": 6.22,
505
+ "learning_rate": 0.0002401689435390625,
506
+ "loss": 0.6153,
507
+ "step": 249000
508
+ },
509
+ {
510
+ "epoch": 6.3,
511
+ "learning_rate": 0.00023941157561140628,
512
+ "loss": 0.6193,
513
+ "step": 252000
514
+ },
515
+ {
516
+ "epoch": 6.37,
517
+ "learning_rate": 0.00023865420768375006,
518
+ "loss": 0.6161,
519
+ "step": 255000
520
+ },
521
+ {
522
+ "epoch": 6.45,
523
+ "learning_rate": 0.00023789683975609387,
524
+ "loss": 0.614,
525
+ "step": 258000
526
+ },
527
+ {
528
+ "epoch": 6.52,
529
+ "learning_rate": 0.00023713947182843763,
530
+ "loss": 0.6142,
531
+ "step": 261000
532
+ },
533
+ {
534
+ "epoch": 6.6,
535
+ "learning_rate": 0.0002363821039007814,
536
+ "loss": 0.6181,
537
+ "step": 264000
538
+ },
539
+ {
540
+ "epoch": 6.67,
541
+ "learning_rate": 0.00023562473597312522,
542
+ "loss": 0.6098,
543
+ "step": 267000
544
+ },
545
+ {
546
+ "epoch": 6.75,
547
+ "learning_rate": 0.00023486736804546898,
548
+ "loss": 0.6165,
549
+ "step": 270000
550
+ },
551
+ {
552
+ "epoch": 6.82,
553
+ "learning_rate": 0.00023411000011781276,
554
+ "loss": 0.612,
555
+ "step": 273000
556
+ },
557
+ {
558
+ "epoch": 6.9,
559
+ "learning_rate": 0.00023335263219015657,
560
+ "loss": 0.6109,
561
+ "step": 276000
562
+ },
563
+ {
564
+ "epoch": 6.97,
565
+ "learning_rate": 0.00023259526426250033,
566
+ "loss": 0.6141,
567
+ "step": 279000
568
+ },
569
+ {
570
+ "epoch": 7.05,
571
+ "learning_rate": 0.0002318378963348441,
572
+ "loss": 0.5912,
573
+ "step": 282000
574
+ },
575
+ {
576
+ "epoch": 7.12,
577
+ "learning_rate": 0.00023108052840718792,
578
+ "loss": 0.5838,
579
+ "step": 285000
580
+ },
581
+ {
582
+ "epoch": 7.2,
583
+ "learning_rate": 0.00023032316047953168,
584
+ "loss": 0.5823,
585
+ "step": 288000
586
+ },
587
+ {
588
+ "epoch": 7.27,
589
+ "learning_rate": 0.00022956579255187546,
590
+ "loss": 0.5836,
591
+ "step": 291000
592
+ },
593
+ {
594
+ "epoch": 7.35,
595
+ "learning_rate": 0.00022880842462421927,
596
+ "loss": 0.5857,
597
+ "step": 294000
598
+ },
599
+ {
600
+ "epoch": 7.42,
601
+ "learning_rate": 0.00022805105669656303,
602
+ "loss": 0.5872,
603
+ "step": 297000
604
+ },
605
+ {
606
+ "epoch": 7.5,
607
+ "learning_rate": 0.0002272936887689068,
608
+ "loss": 0.59,
609
+ "step": 300000
610
+ },
611
+ {
612
+ "epoch": 7.57,
613
+ "learning_rate": 0.00022653632084125062,
614
+ "loss": 0.5808,
615
+ "step": 303000
616
+ },
617
+ {
618
+ "epoch": 7.65,
619
+ "learning_rate": 0.0002257789529135944,
620
+ "loss": 0.5826,
621
+ "step": 306000
622
+ },
623
+ {
624
+ "epoch": 7.72,
625
+ "learning_rate": 0.00022502158498593816,
626
+ "loss": 0.5813,
627
+ "step": 309000
628
+ },
629
+ {
630
+ "epoch": 7.8,
631
+ "learning_rate": 0.00022426421705828197,
632
+ "loss": 0.5883,
633
+ "step": 312000
634
+ },
635
+ {
636
+ "epoch": 7.87,
637
+ "learning_rate": 0.00022350684913062576,
638
+ "loss": 0.5852,
639
+ "step": 315000
640
+ },
641
+ {
642
+ "epoch": 7.95,
643
+ "learning_rate": 0.00022274948120296954,
644
+ "loss": 0.5824,
645
+ "step": 318000
646
+ },
647
+ {
648
+ "epoch": 8.02,
649
+ "learning_rate": 0.00022199211327531332,
650
+ "loss": 0.575,
651
+ "step": 321000
652
+ },
653
+ {
654
+ "epoch": 8.1,
655
+ "learning_rate": 0.0002212347453476571,
656
+ "loss": 0.5561,
657
+ "step": 324000
658
+ },
659
+ {
660
+ "epoch": 8.17,
661
+ "learning_rate": 0.0002204773774200009,
662
+ "loss": 0.5596,
663
+ "step": 327000
664
+ },
665
+ {
666
+ "epoch": 8.25,
667
+ "learning_rate": 0.00021972000949234467,
668
+ "loss": 0.5603,
669
+ "step": 330000
670
+ },
671
+ {
672
+ "epoch": 8.32,
673
+ "learning_rate": 0.00021896264156468846,
674
+ "loss": 0.5575,
675
+ "step": 333000
676
+ },
677
+ {
678
+ "epoch": 8.4,
679
+ "learning_rate": 0.00021820527363703224,
680
+ "loss": 0.5545,
681
+ "step": 336000
682
+ },
683
+ {
684
+ "epoch": 8.47,
685
+ "learning_rate": 0.00021744790570937602,
686
+ "loss": 0.5629,
687
+ "step": 339000
688
+ },
689
+ {
690
+ "epoch": 8.55,
691
+ "learning_rate": 0.00021669053778171983,
692
+ "loss": 0.5572,
693
+ "step": 342000
694
+ },
695
+ {
696
+ "epoch": 8.62,
697
+ "learning_rate": 0.0002159331698540636,
698
+ "loss": 0.5602,
699
+ "step": 345000
700
+ },
701
+ {
702
+ "epoch": 8.7,
703
+ "learning_rate": 0.00021517580192640737,
704
+ "loss": 0.5521,
705
+ "step": 348000
706
+ },
707
+ {
708
+ "epoch": 8.77,
709
+ "learning_rate": 0.00021441843399875118,
710
+ "loss": 0.5582,
711
+ "step": 351000
712
+ },
713
+ {
714
+ "epoch": 8.85,
715
+ "learning_rate": 0.00021366106607109497,
716
+ "loss": 0.5539,
717
+ "step": 354000
718
+ },
719
+ {
720
+ "epoch": 8.92,
721
+ "learning_rate": 0.00021290369814343872,
722
+ "loss": 0.5589,
723
+ "step": 357000
724
+ },
725
+ {
726
+ "epoch": 9.0,
727
+ "learning_rate": 0.00021214633021578253,
728
+ "loss": 0.5549,
729
+ "step": 360000
730
+ },
731
+ {
732
+ "epoch": 9.07,
733
+ "learning_rate": 0.00021138896228812632,
734
+ "loss": 0.525,
735
+ "step": 363000
736
+ },
737
+ {
738
+ "epoch": 9.15,
739
+ "learning_rate": 0.00021063159436047007,
740
+ "loss": 0.5304,
741
+ "step": 366000
742
+ },
743
+ {
744
+ "epoch": 9.22,
745
+ "learning_rate": 0.00020987422643281388,
746
+ "loss": 0.5331,
747
+ "step": 369000
748
+ },
749
+ {
750
+ "epoch": 9.3,
751
+ "learning_rate": 0.00020911685850515766,
752
+ "loss": 0.5341,
753
+ "step": 372000
754
+ },
755
+ {
756
+ "epoch": 9.37,
757
+ "learning_rate": 0.00020835949057750142,
758
+ "loss": 0.5319,
759
+ "step": 375000
760
+ },
761
+ {
762
+ "epoch": 9.45,
763
+ "learning_rate": 0.00020760212264984523,
764
+ "loss": 0.5318,
765
+ "step": 378000
766
+ },
767
+ {
768
+ "epoch": 9.52,
769
+ "learning_rate": 0.00020684475472218901,
770
+ "loss": 0.5368,
771
+ "step": 381000
772
+ },
773
+ {
774
+ "epoch": 9.6,
775
+ "learning_rate": 0.00020608738679453277,
776
+ "loss": 0.532,
777
+ "step": 384000
778
+ },
779
+ {
780
+ "epoch": 9.67,
781
+ "learning_rate": 0.00020533001886687658,
782
+ "loss": 0.5353,
783
+ "step": 387000
784
+ },
785
+ {
786
+ "epoch": 9.75,
787
+ "learning_rate": 0.00020457265093922036,
788
+ "loss": 0.5329,
789
+ "step": 390000
790
+ },
791
+ {
792
+ "epoch": 9.82,
793
+ "learning_rate": 0.00020381528301156415,
794
+ "loss": 0.5354,
795
+ "step": 393000
796
+ },
797
+ {
798
+ "epoch": 9.9,
799
+ "learning_rate": 0.00020305791508390793,
800
+ "loss": 0.5375,
801
+ "step": 396000
802
+ },
803
+ {
804
+ "epoch": 9.97,
805
+ "learning_rate": 0.00020230054715625171,
806
+ "loss": 0.5377,
807
+ "step": 399000
808
+ },
809
+ {
810
+ "epoch": 10.05,
811
+ "learning_rate": 0.0002015431792285955,
812
+ "loss": 0.5191,
813
+ "step": 402000
814
+ },
815
+ {
816
+ "epoch": 10.12,
817
+ "learning_rate": 0.00020078581130093928,
818
+ "loss": 0.5057,
819
+ "step": 405000
820
+ },
821
+ {
822
+ "epoch": 10.2,
823
+ "learning_rate": 0.00020002844337328306,
824
+ "loss": 0.508,
825
+ "step": 408000
826
+ },
827
+ {
828
+ "epoch": 10.27,
829
+ "learning_rate": 0.00019927107544562687,
830
+ "loss": 0.5117,
831
+ "step": 411000
832
+ },
833
+ {
834
+ "epoch": 10.35,
835
+ "learning_rate": 0.00019851370751797063,
836
+ "loss": 0.5135,
837
+ "step": 414000
838
+ },
839
+ {
840
+ "epoch": 10.42,
841
+ "learning_rate": 0.00019775633959031441,
842
+ "loss": 0.5129,
843
+ "step": 417000
844
+ },
845
+ {
846
+ "epoch": 10.5,
847
+ "learning_rate": 0.00019699897166265822,
848
+ "loss": 0.511,
849
+ "step": 420000
850
+ },
851
+ {
852
+ "epoch": 10.57,
853
+ "learning_rate": 0.00019624160373500198,
854
+ "loss": 0.5095,
855
+ "step": 423000
856
+ },
857
+ {
858
+ "epoch": 10.65,
859
+ "learning_rate": 0.0001954842358073458,
860
+ "loss": 0.5129,
861
+ "step": 426000
862
+ },
863
+ {
864
+ "epoch": 10.72,
865
+ "learning_rate": 0.00019472686787968957,
866
+ "loss": 0.5124,
867
+ "step": 429000
868
+ },
869
+ {
870
+ "epoch": 10.8,
871
+ "learning_rate": 0.00019396949995203333,
872
+ "loss": 0.5138,
873
+ "step": 432000
874
+ },
875
+ {
876
+ "epoch": 10.87,
877
+ "learning_rate": 0.00019321213202437714,
878
+ "loss": 0.5125,
879
+ "step": 435000
880
+ },
881
+ {
882
+ "epoch": 10.95,
883
+ "learning_rate": 0.00019245476409672092,
884
+ "loss": 0.5153,
885
+ "step": 438000
886
+ },
887
+ {
888
+ "epoch": 11.02,
889
+ "learning_rate": 0.00019169739616906468,
890
+ "loss": 0.5022,
891
+ "step": 441000
892
+ },
893
+ {
894
+ "epoch": 11.1,
895
+ "learning_rate": 0.0001909400282414085,
896
+ "loss": 0.4908,
897
+ "step": 444000
898
+ },
899
+ {
900
+ "epoch": 11.17,
901
+ "learning_rate": 0.00019018266031375227,
902
+ "loss": 0.4908,
903
+ "step": 447000
904
+ },
905
+ {
906
+ "epoch": 11.25,
907
+ "learning_rate": 0.00018942529238609603,
908
+ "loss": 0.4907,
909
+ "step": 450000
910
+ },
911
+ {
912
+ "epoch": 11.32,
913
+ "learning_rate": 0.00018866792445843984,
914
+ "loss": 0.4895,
915
+ "step": 453000
916
+ },
917
+ {
918
+ "epoch": 11.4,
919
+ "learning_rate": 0.00018791055653078362,
920
+ "loss": 0.4948,
921
+ "step": 456000
922
+ },
923
+ {
924
+ "epoch": 11.47,
925
+ "learning_rate": 0.00018715318860312743,
926
+ "loss": 0.4908,
927
+ "step": 459000
928
+ },
929
+ {
930
+ "epoch": 11.55,
931
+ "learning_rate": 0.0001863958206754712,
932
+ "loss": 0.4931,
933
+ "step": 462000
934
+ },
935
+ {
936
+ "epoch": 11.62,
937
+ "learning_rate": 0.00018563845274781497,
938
+ "loss": 0.4945,
939
+ "step": 465000
940
+ },
941
+ {
942
+ "epoch": 11.7,
943
+ "learning_rate": 0.00018488108482015878,
944
+ "loss": 0.5005,
945
+ "step": 468000
946
+ },
947
+ {
948
+ "epoch": 11.77,
949
+ "learning_rate": 0.00018412371689250254,
950
+ "loss": 0.4974,
951
+ "step": 471000
952
+ },
953
+ {
954
+ "epoch": 11.85,
955
+ "learning_rate": 0.00018336634896484632,
956
+ "loss": 0.4997,
957
+ "step": 474000
958
+ },
959
+ {
960
+ "epoch": 11.92,
961
+ "learning_rate": 0.00018260898103719013,
962
+ "loss": 0.5027,
963
+ "step": 477000
964
+ },
965
+ {
966
+ "epoch": 12.0,
967
+ "learning_rate": 0.0001818516131095339,
968
+ "loss": 0.4962,
969
+ "step": 480000
970
+ },
971
+ {
972
+ "epoch": 12.07,
973
+ "learning_rate": 0.00018109424518187767,
974
+ "loss": 0.4766,
975
+ "step": 483000
976
+ },
977
+ {
978
+ "epoch": 12.15,
979
+ "learning_rate": 0.00018033687725422148,
980
+ "loss": 0.4782,
981
+ "step": 486000
982
+ },
983
+ {
984
+ "epoch": 12.22,
985
+ "learning_rate": 0.00017957950932656524,
986
+ "loss": 0.4793,
987
+ "step": 489000
988
+ },
989
+ {
990
+ "epoch": 12.3,
991
+ "learning_rate": 0.00017882214139890902,
992
+ "loss": 0.4769,
993
+ "step": 492000
994
+ },
995
+ {
996
+ "epoch": 12.37,
997
+ "learning_rate": 0.00017806477347125283,
998
+ "loss": 0.4801,
999
+ "step": 495000
1000
+ },
1001
+ {
1002
+ "epoch": 12.45,
1003
+ "learning_rate": 0.0001773074055435966,
1004
+ "loss": 0.4783,
1005
+ "step": 498000
1006
+ },
1007
+ {
1008
+ "epoch": 12.52,
1009
+ "learning_rate": 0.0001765500376159404,
1010
+ "loss": 0.4804,
1011
+ "step": 501000
1012
+ },
1013
+ {
1014
+ "epoch": 12.6,
1015
+ "learning_rate": 0.00017579266968828418,
1016
+ "loss": 0.4758,
1017
+ "step": 504000
1018
+ },
1019
+ {
1020
+ "epoch": 12.67,
1021
+ "learning_rate": 0.00017503530176062794,
1022
+ "loss": 0.4761,
1023
+ "step": 507000
1024
+ },
1025
+ {
1026
+ "epoch": 12.75,
1027
+ "learning_rate": 0.00017427793383297175,
1028
+ "loss": 0.473,
1029
+ "step": 510000
1030
+ },
1031
+ {
1032
+ "epoch": 12.82,
1033
+ "learning_rate": 0.00017352056590531553,
1034
+ "loss": 0.4793,
1035
+ "step": 513000
1036
+ },
1037
+ {
1038
+ "epoch": 12.9,
1039
+ "learning_rate": 0.00017276319797765932,
1040
+ "loss": 0.4772,
1041
+ "step": 516000
1042
+ },
1043
+ {
1044
+ "epoch": 12.97,
1045
+ "learning_rate": 0.0001720058300500031,
1046
+ "loss": 0.4752,
1047
+ "step": 519000
1048
+ },
1049
+ {
1050
+ "epoch": 13.05,
1051
+ "learning_rate": 0.00017124846212234688,
1052
+ "loss": 0.4611,
1053
+ "step": 522000
1054
+ },
1055
+ {
1056
+ "epoch": 13.12,
1057
+ "learning_rate": 0.0001704910941946907,
1058
+ "loss": 0.4549,
1059
+ "step": 525000
1060
+ },
1061
+ {
1062
+ "epoch": 13.2,
1063
+ "learning_rate": 0.00016973372626703445,
1064
+ "loss": 0.456,
1065
+ "step": 528000
1066
+ },
1067
+ {
1068
+ "epoch": 13.27,
1069
+ "learning_rate": 0.00016897635833937823,
1070
+ "loss": 0.4596,
1071
+ "step": 531000
1072
+ },
1073
+ {
1074
+ "epoch": 13.35,
1075
+ "learning_rate": 0.00016821899041172204,
1076
+ "loss": 0.4629,
1077
+ "step": 534000
1078
+ },
1079
+ {
1080
+ "epoch": 13.42,
1081
+ "learning_rate": 0.0001674616224840658,
1082
+ "loss": 0.463,
1083
+ "step": 537000
1084
+ },
1085
+ {
1086
+ "epoch": 13.5,
1087
+ "learning_rate": 0.00016670425455640958,
1088
+ "loss": 0.461,
1089
+ "step": 540000
1090
+ },
1091
+ {
1092
+ "epoch": 13.57,
1093
+ "learning_rate": 0.0001659468866287534,
1094
+ "loss": 0.4631,
1095
+ "step": 543000
1096
+ },
1097
+ {
1098
+ "epoch": 13.65,
1099
+ "learning_rate": 0.00016518951870109715,
1100
+ "loss": 0.4627,
1101
+ "step": 546000
1102
+ },
1103
+ {
1104
+ "epoch": 13.72,
1105
+ "learning_rate": 0.00016443215077344093,
1106
+ "loss": 0.4639,
1107
+ "step": 549000
1108
+ },
1109
+ {
1110
+ "epoch": 13.8,
1111
+ "learning_rate": 0.00016367478284578474,
1112
+ "loss": 0.4663,
1113
+ "step": 552000
1114
+ },
1115
+ {
1116
+ "epoch": 13.87,
1117
+ "learning_rate": 0.0001629174149181285,
1118
+ "loss": 0.46,
1119
+ "step": 555000
1120
+ },
1121
+ {
1122
+ "epoch": 13.95,
1123
+ "learning_rate": 0.00016216004699047228,
1124
+ "loss": 0.4661,
1125
+ "step": 558000
1126
+ },
1127
+ {
1128
+ "epoch": 14.02,
1129
+ "learning_rate": 0.0001614026790628161,
1130
+ "loss": 0.4564,
1131
+ "step": 561000
1132
+ },
1133
+ {
1134
+ "epoch": 14.1,
1135
+ "learning_rate": 0.00016064531113515988,
1136
+ "loss": 0.4391,
1137
+ "step": 564000
1138
+ },
1139
+ {
1140
+ "epoch": 14.17,
1141
+ "learning_rate": 0.00015988794320750363,
1142
+ "loss": 0.4479,
1143
+ "step": 567000
1144
+ },
1145
+ {
1146
+ "epoch": 14.25,
1147
+ "learning_rate": 0.00015913057527984744,
1148
+ "loss": 0.4427,
1149
+ "step": 570000
1150
+ },
1151
+ {
1152
+ "epoch": 14.32,
1153
+ "learning_rate": 0.00015837320735219123,
1154
+ "loss": 0.4425,
1155
+ "step": 573000
1156
+ },
1157
+ {
1158
+ "epoch": 14.4,
1159
+ "learning_rate": 0.00015761583942453498,
1160
+ "loss": 0.4412,
1161
+ "step": 576000
1162
+ },
1163
+ {
1164
+ "epoch": 14.47,
1165
+ "learning_rate": 0.0001568584714968788,
1166
+ "loss": 0.4488,
1167
+ "step": 579000
1168
+ },
1169
+ {
1170
+ "epoch": 14.55,
1171
+ "learning_rate": 0.00015610110356922258,
1172
+ "loss": 0.4464,
1173
+ "step": 582000
1174
+ },
1175
+ {
1176
+ "epoch": 14.62,
1177
+ "learning_rate": 0.00015534373564156636,
1178
+ "loss": 0.4507,
1179
+ "step": 585000
1180
+ },
1181
+ {
1182
+ "epoch": 14.7,
1183
+ "learning_rate": 0.00015458636771391014,
1184
+ "loss": 0.4476,
1185
+ "step": 588000
1186
+ },
1187
+ {
1188
+ "epoch": 14.77,
1189
+ "learning_rate": 0.00015382899978625393,
1190
+ "loss": 0.4462,
1191
+ "step": 591000
1192
+ },
1193
+ {
1194
+ "epoch": 14.85,
1195
+ "learning_rate": 0.0001530716318585977,
1196
+ "loss": 0.4493,
1197
+ "step": 594000
1198
+ },
1199
+ {
1200
+ "epoch": 14.92,
1201
+ "learning_rate": 0.0001523142639309415,
1202
+ "loss": 0.4478,
1203
+ "step": 597000
1204
+ },
1205
+ {
1206
+ "epoch": 15.0,
1207
+ "learning_rate": 0.00015155689600328528,
1208
+ "loss": 0.4483,
1209
+ "step": 600000
1210
+ },
1211
+ {
1212
+ "epoch": 15.07,
1213
+ "learning_rate": 0.00015079952807562906,
1214
+ "loss": 0.4276,
1215
+ "step": 603000
1216
+ },
1217
+ {
1218
+ "epoch": 15.15,
1219
+ "learning_rate": 0.00015004216014797284,
1220
+ "loss": 0.4259,
1221
+ "step": 606000
1222
+ },
1223
+ {
1224
+ "epoch": 15.22,
1225
+ "learning_rate": 0.00014928479222031665,
1226
+ "loss": 0.4263,
1227
+ "step": 609000
1228
+ },
1229
+ {
1230
+ "epoch": 15.3,
1231
+ "learning_rate": 0.0001485274242926604,
1232
+ "loss": 0.4302,
1233
+ "step": 612000
1234
+ },
1235
+ {
1236
+ "epoch": 15.37,
1237
+ "learning_rate": 0.0001477700563650042,
1238
+ "loss": 0.4302,
1239
+ "step": 615000
1240
+ },
1241
+ {
1242
+ "epoch": 15.45,
1243
+ "learning_rate": 0.000147012688437348,
1244
+ "loss": 0.4289,
1245
+ "step": 618000
1246
+ },
1247
+ {
1248
+ "epoch": 15.52,
1249
+ "learning_rate": 0.00014625532050969176,
1250
+ "loss": 0.4311,
1251
+ "step": 621000
1252
+ },
1253
+ {
1254
+ "epoch": 15.6,
1255
+ "learning_rate": 0.00014549795258203554,
1256
+ "loss": 0.4327,
1257
+ "step": 624000
1258
+ },
1259
+ {
1260
+ "epoch": 15.67,
1261
+ "learning_rate": 0.00014474058465437935,
1262
+ "loss": 0.4315,
1263
+ "step": 627000
1264
+ },
1265
+ {
1266
+ "epoch": 15.75,
1267
+ "learning_rate": 0.0001439832167267231,
1268
+ "loss": 0.4305,
1269
+ "step": 630000
1270
+ },
1271
+ {
1272
+ "epoch": 15.82,
1273
+ "learning_rate": 0.00014322584879906692,
1274
+ "loss": 0.429,
1275
+ "step": 633000
1276
+ },
1277
+ {
1278
+ "epoch": 15.9,
1279
+ "learning_rate": 0.0001424684808714107,
1280
+ "loss": 0.4288,
1281
+ "step": 636000
1282
+ },
1283
+ {
1284
+ "epoch": 15.97,
1285
+ "learning_rate": 0.00014171111294375449,
1286
+ "loss": 0.4309,
1287
+ "step": 639000
1288
+ },
1289
+ {
1290
+ "epoch": 16.05,
1291
+ "learning_rate": 0.00014095374501609827,
1292
+ "loss": 0.4179,
1293
+ "step": 642000
1294
+ },
1295
+ {
1296
+ "epoch": 16.12,
1297
+ "learning_rate": 0.00014019637708844205,
1298
+ "loss": 0.4098,
1299
+ "step": 645000
1300
+ },
1301
+ {
1302
+ "epoch": 16.2,
1303
+ "learning_rate": 0.00013943900916078584,
1304
+ "loss": 0.4136,
1305
+ "step": 648000
1306
+ },
1307
+ {
1308
+ "epoch": 16.27,
1309
+ "learning_rate": 0.00013868164123312962,
1310
+ "loss": 0.4115,
1311
+ "step": 651000
1312
+ },
1313
+ {
1314
+ "epoch": 16.35,
1315
+ "learning_rate": 0.0001379242733054734,
1316
+ "loss": 0.4192,
1317
+ "step": 654000
1318
+ },
1319
+ {
1320
+ "epoch": 16.42,
1321
+ "learning_rate": 0.00013716690537781719,
1322
+ "loss": 0.4159,
1323
+ "step": 657000
1324
+ },
1325
+ {
1326
+ "epoch": 16.5,
1327
+ "learning_rate": 0.00013640953745016097,
1328
+ "loss": 0.4176,
1329
+ "step": 660000
1330
+ },
1331
+ {
1332
+ "epoch": 16.57,
1333
+ "learning_rate": 0.00013565216952250475,
1334
+ "loss": 0.4166,
1335
+ "step": 663000
1336
+ },
1337
+ {
1338
+ "epoch": 16.65,
1339
+ "learning_rate": 0.00013489480159484854,
1340
+ "loss": 0.4214,
1341
+ "step": 666000
1342
+ },
1343
+ {
1344
+ "epoch": 16.72,
1345
+ "learning_rate": 0.00013413743366719232,
1346
+ "loss": 0.4121,
1347
+ "step": 669000
1348
+ },
1349
+ {
1350
+ "epoch": 16.8,
1351
+ "learning_rate": 0.0001333800657395361,
1352
+ "loss": 0.414,
1353
+ "step": 672000
1354
+ },
1355
+ {
1356
+ "epoch": 16.87,
1357
+ "learning_rate": 0.00013262269781187989,
1358
+ "loss": 0.4159,
1359
+ "step": 675000
1360
+ },
1361
+ {
1362
+ "epoch": 16.95,
1363
+ "learning_rate": 0.00013186532988422367,
1364
+ "loss": 0.4135,
1365
+ "step": 678000
1366
+ },
1367
+ {
1368
+ "epoch": 17.02,
1369
+ "learning_rate": 0.00013110796195656748,
1370
+ "loss": 0.4098,
1371
+ "step": 681000
1372
+ },
1373
+ {
1374
+ "epoch": 17.1,
1375
+ "learning_rate": 0.00013035059402891124,
1376
+ "loss": 0.3947,
1377
+ "step": 684000
1378
+ },
1379
+ {
1380
+ "epoch": 17.17,
1381
+ "learning_rate": 0.00012959322610125502,
1382
+ "loss": 0.4026,
1383
+ "step": 687000
1384
+ },
1385
+ {
1386
+ "epoch": 17.25,
1387
+ "learning_rate": 0.00012883585817359883,
1388
+ "loss": 0.397,
1389
+ "step": 690000
1390
+ },
1391
+ {
1392
+ "epoch": 17.32,
1393
+ "learning_rate": 0.0001280784902459426,
1394
+ "loss": 0.3998,
1395
+ "step": 693000
1396
+ },
1397
+ {
1398
+ "epoch": 17.39,
1399
+ "learning_rate": 0.00012732112231828637,
1400
+ "loss": 0.3988,
1401
+ "step": 696000
1402
+ },
1403
+ {
1404
+ "epoch": 17.47,
1405
+ "learning_rate": 0.00012656375439063018,
1406
+ "loss": 0.4015,
1407
+ "step": 699000
1408
+ },
1409
+ {
1410
+ "epoch": 17.54,
1411
+ "learning_rate": 0.00012580638646297396,
1412
+ "loss": 0.402,
1413
+ "step": 702000
1414
+ },
1415
+ {
1416
+ "epoch": 17.62,
1417
+ "learning_rate": 0.00012504901853531775,
1418
+ "loss": 0.4018,
1419
+ "step": 705000
1420
+ },
1421
+ {
1422
+ "epoch": 17.69,
1423
+ "learning_rate": 0.00012429165060766153,
1424
+ "loss": 0.3987,
1425
+ "step": 708000
1426
+ },
1427
+ {
1428
+ "epoch": 17.77,
1429
+ "learning_rate": 0.0001235342826800053,
1430
+ "loss": 0.3974,
1431
+ "step": 711000
1432
+ },
1433
+ {
1434
+ "epoch": 17.84,
1435
+ "learning_rate": 0.0001227769147523491,
1436
+ "loss": 0.4006,
1437
+ "step": 714000
1438
+ },
1439
+ {
1440
+ "epoch": 17.92,
1441
+ "learning_rate": 0.00012201954682469288,
1442
+ "loss": 0.4028,
1443
+ "step": 717000
1444
+ },
1445
+ {
1446
+ "epoch": 17.99,
1447
+ "learning_rate": 0.00012126217889703665,
1448
+ "loss": 0.4019,
1449
+ "step": 720000
1450
+ },
1451
+ {
1452
+ "epoch": 18.07,
1453
+ "learning_rate": 0.00012050481096938045,
1454
+ "loss": 0.3853,
1455
+ "step": 723000
1456
+ },
1457
+ {
1458
+ "epoch": 18.14,
1459
+ "learning_rate": 0.00011974744304172423,
1460
+ "loss": 0.387,
1461
+ "step": 726000
1462
+ },
1463
+ {
1464
+ "epoch": 18.22,
1465
+ "learning_rate": 0.00011899007511406801,
1466
+ "loss": 0.3822,
1467
+ "step": 729000
1468
+ },
1469
+ {
1470
+ "epoch": 18.29,
1471
+ "learning_rate": 0.0001182327071864118,
1472
+ "loss": 0.3861,
1473
+ "step": 732000
1474
+ },
1475
+ {
1476
+ "epoch": 18.37,
1477
+ "learning_rate": 0.00011747533925875558,
1478
+ "loss": 0.3877,
1479
+ "step": 735000
1480
+ },
1481
+ {
1482
+ "epoch": 18.44,
1483
+ "learning_rate": 0.00011671797133109938,
1484
+ "loss": 0.3867,
1485
+ "step": 738000
1486
+ },
1487
+ {
1488
+ "epoch": 18.52,
1489
+ "learning_rate": 0.00011596060340344316,
1490
+ "loss": 0.388,
1491
+ "step": 741000
1492
+ },
1493
+ {
1494
+ "epoch": 18.59,
1495
+ "learning_rate": 0.00011520323547578693,
1496
+ "loss": 0.3889,
1497
+ "step": 744000
1498
+ },
1499
+ {
1500
+ "epoch": 18.67,
1501
+ "learning_rate": 0.00011444586754813073,
1502
+ "loss": 0.3867,
1503
+ "step": 747000
1504
+ },
1505
+ {
1506
+ "epoch": 18.74,
1507
+ "learning_rate": 0.00011368849962047451,
1508
+ "loss": 0.3897,
1509
+ "step": 750000
1510
+ },
1511
+ {
1512
+ "epoch": 18.82,
1513
+ "learning_rate": 0.00011293113169281828,
1514
+ "loss": 0.3873,
1515
+ "step": 753000
1516
+ },
1517
+ {
1518
+ "epoch": 18.89,
1519
+ "learning_rate": 0.00011217376376516208,
1520
+ "loss": 0.3881,
1521
+ "step": 756000
1522
+ },
1523
+ {
1524
+ "epoch": 18.97,
1525
+ "learning_rate": 0.00011141639583750586,
1526
+ "loss": 0.3915,
1527
+ "step": 759000
1528
+ },
1529
+ {
1530
+ "epoch": 19.04,
1531
+ "learning_rate": 0.00011065902790984966,
1532
+ "loss": 0.3766,
1533
+ "step": 762000
1534
+ },
1535
+ {
1536
+ "epoch": 19.12,
1537
+ "learning_rate": 0.00010990165998219343,
1538
+ "loss": 0.3757,
1539
+ "step": 765000
1540
+ },
1541
+ {
1542
+ "epoch": 19.19,
1543
+ "learning_rate": 0.00010914429205453721,
1544
+ "loss": 0.3705,
1545
+ "step": 768000
1546
+ },
1547
+ {
1548
+ "epoch": 19.27,
1549
+ "learning_rate": 0.000108386924126881,
1550
+ "loss": 0.3728,
1551
+ "step": 771000
1552
+ },
1553
+ {
1554
+ "epoch": 19.34,
1555
+ "learning_rate": 0.00010762955619922477,
1556
+ "loss": 0.3756,
1557
+ "step": 774000
1558
+ },
1559
+ {
1560
+ "epoch": 19.42,
1561
+ "learning_rate": 0.00010687218827156856,
1562
+ "loss": 0.3772,
1563
+ "step": 777000
1564
+ },
1565
+ {
1566
+ "epoch": 19.49,
1567
+ "learning_rate": 0.00010611482034391236,
1568
+ "loss": 0.3761,
1569
+ "step": 780000
1570
+ },
1571
+ {
1572
+ "epoch": 19.57,
1573
+ "learning_rate": 0.00010535745241625614,
1574
+ "loss": 0.3739,
1575
+ "step": 783000
1576
+ },
1577
+ {
1578
+ "epoch": 19.64,
1579
+ "learning_rate": 0.00010460008448859992,
1580
+ "loss": 0.371,
1581
+ "step": 786000
1582
+ },
1583
+ {
1584
+ "epoch": 19.72,
1585
+ "learning_rate": 0.0001038427165609437,
1586
+ "loss": 0.3721,
1587
+ "step": 789000
1588
+ },
1589
+ {
1590
+ "epoch": 19.79,
1591
+ "learning_rate": 0.00010308534863328749,
1592
+ "loss": 0.3733,
1593
+ "step": 792000
1594
+ },
1595
+ {
1596
+ "epoch": 19.87,
1597
+ "learning_rate": 0.00010232798070563129,
1598
+ "loss": 0.3742,
1599
+ "step": 795000
1600
+ },
1601
+ {
1602
+ "epoch": 19.94,
1603
+ "learning_rate": 0.00010157061277797505,
1604
+ "loss": 0.3732,
1605
+ "step": 798000
1606
+ },
1607
+ {
1608
+ "epoch": 20.02,
1609
+ "learning_rate": 0.00010081324485031884,
1610
+ "loss": 0.3703,
1611
+ "step": 801000
1612
+ },
1613
+ {
1614
+ "epoch": 20.09,
1615
+ "learning_rate": 0.00010005587692266263,
1616
+ "loss": 0.3609,
1617
+ "step": 804000
1618
+ },
1619
+ {
1620
+ "epoch": 20.17,
1621
+ "learning_rate": 9.92985089950064e-05,
1622
+ "loss": 0.3604,
1623
+ "step": 807000
1624
+ },
1625
+ {
1626
+ "epoch": 20.24,
1627
+ "learning_rate": 9.85411410673502e-05,
1628
+ "loss": 0.3614,
1629
+ "step": 810000
1630
+ },
1631
+ {
1632
+ "epoch": 20.32,
1633
+ "learning_rate": 9.778377313969398e-05,
1634
+ "loss": 0.3617,
1635
+ "step": 813000
1636
+ },
1637
+ {
1638
+ "epoch": 20.39,
1639
+ "learning_rate": 9.702640521203775e-05,
1640
+ "loss": 0.3611,
1641
+ "step": 816000
1642
+ },
1643
+ {
1644
+ "epoch": 20.47,
1645
+ "learning_rate": 9.626903728438155e-05,
1646
+ "loss": 0.3607,
1647
+ "step": 819000
1648
+ },
1649
+ {
1650
+ "epoch": 20.54,
1651
+ "learning_rate": 9.551166935672533e-05,
1652
+ "loss": 0.3605,
1653
+ "step": 822000
1654
+ },
1655
+ {
1656
+ "epoch": 20.62,
1657
+ "learning_rate": 9.475430142906912e-05,
1658
+ "loss": 0.3589,
1659
+ "step": 825000
1660
+ },
1661
+ {
1662
+ "epoch": 20.69,
1663
+ "learning_rate": 9.39969335014129e-05,
1664
+ "loss": 0.3586,
1665
+ "step": 828000
1666
+ },
1667
+ {
1668
+ "epoch": 20.77,
1669
+ "learning_rate": 9.323956557375668e-05,
1670
+ "loss": 0.3626,
1671
+ "step": 831000
1672
+ },
1673
+ {
1674
+ "epoch": 20.84,
1675
+ "learning_rate": 9.248219764610048e-05,
1676
+ "loss": 0.3616,
1677
+ "step": 834000
1678
+ },
1679
+ {
1680
+ "epoch": 20.92,
1681
+ "learning_rate": 9.172482971844426e-05,
1682
+ "loss": 0.3595,
1683
+ "step": 837000
1684
+ },
1685
+ {
1686
+ "epoch": 20.99,
1687
+ "learning_rate": 9.096746179078803e-05,
1688
+ "loss": 0.3624,
1689
+ "step": 840000
1690
+ },
1691
+ {
1692
+ "epoch": 21.07,
1693
+ "learning_rate": 9.021009386313183e-05,
1694
+ "loss": 0.3468,
1695
+ "step": 843000
1696
+ },
1697
+ {
1698
+ "epoch": 21.14,
1699
+ "learning_rate": 8.945272593547561e-05,
1700
+ "loss": 0.3475,
1701
+ "step": 846000
1702
+ },
1703
+ {
1704
+ "epoch": 21.22,
1705
+ "learning_rate": 8.869535800781938e-05,
1706
+ "loss": 0.3486,
1707
+ "step": 849000
1708
+ },
1709
+ {
1710
+ "epoch": 21.29,
1711
+ "learning_rate": 8.793799008016318e-05,
1712
+ "loss": 0.3454,
1713
+ "step": 852000
1714
+ },
1715
+ {
1716
+ "epoch": 21.37,
1717
+ "learning_rate": 8.718062215250696e-05,
1718
+ "loss": 0.3496,
1719
+ "step": 855000
1720
+ },
1721
+ {
1722
+ "epoch": 21.44,
1723
+ "learning_rate": 8.642325422485073e-05,
1724
+ "loss": 0.3478,
1725
+ "step": 858000
1726
+ },
1727
+ {
1728
+ "epoch": 21.52,
1729
+ "learning_rate": 8.566588629719453e-05,
1730
+ "loss": 0.346,
1731
+ "step": 861000
1732
+ },
1733
+ {
1734
+ "epoch": 21.59,
1735
+ "learning_rate": 8.490851836953831e-05,
1736
+ "loss": 0.3513,
1737
+ "step": 864000
1738
+ },
1739
+ {
1740
+ "epoch": 21.67,
1741
+ "learning_rate": 8.415115044188211e-05,
1742
+ "loss": 0.3524,
1743
+ "step": 867000
1744
+ },
1745
+ {
1746
+ "epoch": 21.74,
1747
+ "learning_rate": 8.339378251422588e-05,
1748
+ "loss": 0.3494,
1749
+ "step": 870000
1750
+ },
1751
+ {
1752
+ "epoch": 21.82,
1753
+ "learning_rate": 8.263641458656966e-05,
1754
+ "loss": 0.3521,
1755
+ "step": 873000
1756
+ },
1757
+ {
1758
+ "epoch": 21.89,
1759
+ "learning_rate": 8.187904665891346e-05,
1760
+ "loss": 0.3509,
1761
+ "step": 876000
1762
+ },
1763
+ {
1764
+ "epoch": 21.97,
1765
+ "learning_rate": 8.112167873125724e-05,
1766
+ "loss": 0.3501,
1767
+ "step": 879000
1768
+ },
1769
+ {
1770
+ "epoch": 22.04,
1771
+ "learning_rate": 8.036431080360101e-05,
1772
+ "loss": 0.3394,
1773
+ "step": 882000
1774
+ },
1775
+ {
1776
+ "epoch": 22.12,
1777
+ "learning_rate": 7.960694287594481e-05,
1778
+ "loss": 0.3357,
1779
+ "step": 885000
1780
+ },
1781
+ {
1782
+ "epoch": 22.19,
1783
+ "learning_rate": 7.88495749482886e-05,
1784
+ "loss": 0.3378,
1785
+ "step": 888000
1786
+ },
1787
+ {
1788
+ "epoch": 22.27,
1789
+ "learning_rate": 7.809220702063239e-05,
1790
+ "loss": 0.3362,
1791
+ "step": 891000
1792
+ },
1793
+ {
1794
+ "epoch": 22.34,
1795
+ "learning_rate": 7.733483909297616e-05,
1796
+ "loss": 0.3382,
1797
+ "step": 894000
1798
+ },
1799
+ {
1800
+ "epoch": 22.42,
1801
+ "learning_rate": 7.657747116531994e-05,
1802
+ "loss": 0.3407,
1803
+ "step": 897000
1804
+ },
1805
+ {
1806
+ "epoch": 22.49,
1807
+ "learning_rate": 7.582010323766374e-05,
1808
+ "loss": 0.3381,
1809
+ "step": 900000
1810
+ },
1811
+ {
1812
+ "epoch": 22.57,
1813
+ "learning_rate": 7.506273531000751e-05,
1814
+ "loss": 0.3378,
1815
+ "step": 903000
1816
+ },
1817
+ {
1818
+ "epoch": 22.64,
1819
+ "learning_rate": 7.430536738235131e-05,
1820
+ "loss": 0.3368,
1821
+ "step": 906000
1822
+ },
1823
+ {
1824
+ "epoch": 22.72,
1825
+ "learning_rate": 7.354799945469509e-05,
1826
+ "loss": 0.3384,
1827
+ "step": 909000
1828
+ },
1829
+ {
1830
+ "epoch": 22.79,
1831
+ "learning_rate": 7.279063152703887e-05,
1832
+ "loss": 0.3351,
1833
+ "step": 912000
1834
+ },
1835
+ {
1836
+ "epoch": 22.87,
1837
+ "learning_rate": 7.203326359938266e-05,
1838
+ "loss": 0.3399,
1839
+ "step": 915000
1840
+ },
1841
+ {
1842
+ "epoch": 22.94,
1843
+ "learning_rate": 7.127589567172644e-05,
1844
+ "loss": 0.3366,
1845
+ "step": 918000
1846
+ },
1847
+ {
1848
+ "epoch": 23.02,
1849
+ "learning_rate": 7.051852774407022e-05,
1850
+ "loss": 0.3313,
1851
+ "step": 921000
1852
+ },
1853
+ {
1854
+ "epoch": 23.09,
1855
+ "learning_rate": 6.976115981641401e-05,
1856
+ "loss": 0.3291,
1857
+ "step": 924000
1858
+ },
1859
+ {
1860
+ "epoch": 23.17,
1861
+ "learning_rate": 6.900379188875779e-05,
1862
+ "loss": 0.3269,
1863
+ "step": 927000
1864
+ },
1865
+ {
1866
+ "epoch": 23.24,
1867
+ "learning_rate": 6.824642396110157e-05,
1868
+ "loss": 0.324,
1869
+ "step": 930000
1870
+ },
1871
+ {
1872
+ "epoch": 23.32,
1873
+ "learning_rate": 6.748905603344537e-05,
1874
+ "loss": 0.3249,
1875
+ "step": 933000
1876
+ },
1877
+ {
1878
+ "epoch": 23.39,
1879
+ "learning_rate": 6.673168810578914e-05,
1880
+ "loss": 0.3257,
1881
+ "step": 936000
1882
+ },
1883
+ {
1884
+ "epoch": 23.47,
1885
+ "learning_rate": 6.597432017813294e-05,
1886
+ "loss": 0.3266,
1887
+ "step": 939000
1888
+ },
1889
+ {
1890
+ "epoch": 23.54,
1891
+ "learning_rate": 6.521695225047672e-05,
1892
+ "loss": 0.3275,
1893
+ "step": 942000
1894
+ },
1895
+ {
1896
+ "epoch": 23.62,
1897
+ "learning_rate": 6.44595843228205e-05,
1898
+ "loss": 0.3279,
1899
+ "step": 945000
1900
+ },
1901
+ {
1902
+ "epoch": 23.69,
1903
+ "learning_rate": 6.370221639516429e-05,
1904
+ "loss": 0.3255,
1905
+ "step": 948000
1906
+ },
1907
+ {
1908
+ "epoch": 23.77,
1909
+ "learning_rate": 6.294484846750807e-05,
1910
+ "loss": 0.3255,
1911
+ "step": 951000
1912
+ },
1913
+ {
1914
+ "epoch": 23.84,
1915
+ "learning_rate": 6.218748053985185e-05,
1916
+ "loss": 0.3233,
1917
+ "step": 954000
1918
+ },
1919
+ {
1920
+ "epoch": 23.92,
1921
+ "learning_rate": 6.143011261219564e-05,
1922
+ "loss": 0.3267,
1923
+ "step": 957000
1924
+ },
1925
+ {
1926
+ "epoch": 23.99,
1927
+ "learning_rate": 6.067274468453942e-05,
1928
+ "loss": 0.3234,
1929
+ "step": 960000
1930
+ },
1931
+ {
1932
+ "epoch": 24.07,
1933
+ "learning_rate": 5.991537675688321e-05,
1934
+ "loss": 0.3174,
1935
+ "step": 963000
1936
+ },
1937
+ {
1938
+ "epoch": 24.14,
1939
+ "learning_rate": 5.9158008829226994e-05,
1940
+ "loss": 0.3149,
1941
+ "step": 966000
1942
+ },
1943
+ {
1944
+ "epoch": 24.22,
1945
+ "learning_rate": 5.840064090157077e-05,
1946
+ "loss": 0.314,
1947
+ "step": 969000
1948
+ },
1949
+ {
1950
+ "epoch": 24.29,
1951
+ "learning_rate": 5.764327297391456e-05,
1952
+ "loss": 0.318,
1953
+ "step": 972000
1954
+ },
1955
+ {
1956
+ "epoch": 24.37,
1957
+ "learning_rate": 5.6885905046258344e-05,
1958
+ "loss": 0.3147,
1959
+ "step": 975000
1960
+ },
1961
+ {
1962
+ "epoch": 24.44,
1963
+ "learning_rate": 5.6128537118602134e-05,
1964
+ "loss": 0.3158,
1965
+ "step": 978000
1966
+ },
1967
+ {
1968
+ "epoch": 24.52,
1969
+ "learning_rate": 5.537116919094591e-05,
1970
+ "loss": 0.3164,
1971
+ "step": 981000
1972
+ },
1973
+ {
1974
+ "epoch": 24.59,
1975
+ "learning_rate": 5.46138012632897e-05,
1976
+ "loss": 0.3162,
1977
+ "step": 984000
1978
+ },
1979
+ {
1980
+ "epoch": 24.67,
1981
+ "learning_rate": 5.3856433335633483e-05,
1982
+ "loss": 0.3153,
1983
+ "step": 987000
1984
+ },
1985
+ {
1986
+ "epoch": 24.74,
1987
+ "learning_rate": 5.3099065407977274e-05,
1988
+ "loss": 0.3165,
1989
+ "step": 990000
1990
+ },
1991
+ {
1992
+ "epoch": 24.82,
1993
+ "learning_rate": 5.234169748032105e-05,
1994
+ "loss": 0.315,
1995
+ "step": 993000
1996
+ },
1997
+ {
1998
+ "epoch": 24.89,
1999
+ "learning_rate": 5.158432955266483e-05,
2000
+ "loss": 0.3132,
2001
+ "step": 996000
2002
+ },
2003
+ {
2004
+ "epoch": 24.97,
2005
+ "learning_rate": 5.0826961625008623e-05,
2006
+ "loss": 0.3163,
2007
+ "step": 999000
2008
+ },
2009
+ {
2010
+ "epoch": 25.04,
2011
+ "learning_rate": 5.006959369735241e-05,
2012
+ "loss": 0.3107,
2013
+ "step": 1002000
2014
+ },
2015
+ {
2016
+ "epoch": 25.12,
2017
+ "learning_rate": 4.931222576969619e-05,
2018
+ "loss": 0.3062,
2019
+ "step": 1005000
2020
+ },
2021
+ {
2022
+ "epoch": 25.19,
2023
+ "learning_rate": 4.855485784203997e-05,
2024
+ "loss": 0.3083,
2025
+ "step": 1008000
2026
+ },
2027
+ {
2028
+ "epoch": 25.27,
2029
+ "learning_rate": 4.779748991438376e-05,
2030
+ "loss": 0.3096,
2031
+ "step": 1011000
2032
+ },
2033
+ {
2034
+ "epoch": 25.34,
2035
+ "learning_rate": 4.704012198672755e-05,
2036
+ "loss": 0.3056,
2037
+ "step": 1014000
2038
+ },
2039
+ {
2040
+ "epoch": 25.42,
2041
+ "learning_rate": 4.628275405907132e-05,
2042
+ "loss": 0.3042,
2043
+ "step": 1017000
2044
+ },
2045
+ {
2046
+ "epoch": 25.49,
2047
+ "learning_rate": 4.552538613141511e-05,
2048
+ "loss": 0.3063,
2049
+ "step": 1020000
2050
+ },
2051
+ {
2052
+ "epoch": 25.57,
2053
+ "learning_rate": 4.4768018203758897e-05,
2054
+ "loss": 0.3025,
2055
+ "step": 1023000
2056
+ },
2057
+ {
2058
+ "epoch": 25.64,
2059
+ "learning_rate": 4.4010650276102687e-05,
2060
+ "loss": 0.3056,
2061
+ "step": 1026000
2062
+ },
2063
+ {
2064
+ "epoch": 25.72,
2065
+ "learning_rate": 4.325328234844646e-05,
2066
+ "loss": 0.3081,
2067
+ "step": 1029000
2068
+ },
2069
+ {
2070
+ "epoch": 25.79,
2071
+ "learning_rate": 4.249591442079025e-05,
2072
+ "loss": 0.3082,
2073
+ "step": 1032000
2074
+ },
2075
+ {
2076
+ "epoch": 25.87,
2077
+ "learning_rate": 4.1738546493134036e-05,
2078
+ "loss": 0.3054,
2079
+ "step": 1035000
2080
+ },
2081
+ {
2082
+ "epoch": 25.94,
2083
+ "learning_rate": 4.0981178565477827e-05,
2084
+ "loss": 0.3052,
2085
+ "step": 1038000
2086
+ },
2087
+ {
2088
+ "epoch": 26.02,
2089
+ "learning_rate": 4.02238106378216e-05,
2090
+ "loss": 0.3013,
2091
+ "step": 1041000
2092
+ },
2093
+ {
2094
+ "epoch": 26.09,
2095
+ "learning_rate": 3.9466442710165386e-05,
2096
+ "loss": 0.2982,
2097
+ "step": 1044000
2098
+ },
2099
+ {
2100
+ "epoch": 26.17,
2101
+ "learning_rate": 3.8709074782509176e-05,
2102
+ "loss": 0.2962,
2103
+ "step": 1047000
2104
+ },
2105
+ {
2106
+ "epoch": 26.24,
2107
+ "learning_rate": 3.795170685485296e-05,
2108
+ "loss": 0.2961,
2109
+ "step": 1050000
2110
+ },
2111
+ {
2112
+ "epoch": 26.32,
2113
+ "learning_rate": 3.719433892719674e-05,
2114
+ "loss": 0.2993,
2115
+ "step": 1053000
2116
+ },
2117
+ {
2118
+ "epoch": 26.39,
2119
+ "learning_rate": 3.6436970999540526e-05,
2120
+ "loss": 0.2941,
2121
+ "step": 1056000
2122
+ },
2123
+ {
2124
+ "epoch": 26.47,
2125
+ "learning_rate": 3.5679603071884316e-05,
2126
+ "loss": 0.2948,
2127
+ "step": 1059000
2128
+ },
2129
+ {
2130
+ "epoch": 26.54,
2131
+ "learning_rate": 3.492223514422809e-05,
2132
+ "loss": 0.2966,
2133
+ "step": 1062000
2134
+ },
2135
+ {
2136
+ "epoch": 26.62,
2137
+ "learning_rate": 3.4164867216571876e-05,
2138
+ "loss": 0.2964,
2139
+ "step": 1065000
2140
+ },
2141
+ {
2142
+ "epoch": 26.69,
2143
+ "learning_rate": 3.3407499288915666e-05,
2144
+ "loss": 0.2971,
2145
+ "step": 1068000
2146
+ },
2147
+ {
2148
+ "epoch": 26.77,
2149
+ "learning_rate": 3.265013136125945e-05,
2150
+ "loss": 0.2974,
2151
+ "step": 1071000
2152
+ },
2153
+ {
2154
+ "epoch": 26.84,
2155
+ "learning_rate": 3.189276343360323e-05,
2156
+ "loss": 0.2963,
2157
+ "step": 1074000
2158
+ },
2159
+ {
2160
+ "epoch": 26.92,
2161
+ "learning_rate": 3.1135395505947016e-05,
2162
+ "loss": 0.2954,
2163
+ "step": 1077000
2164
+ },
2165
+ {
2166
+ "epoch": 26.99,
2167
+ "learning_rate": 3.0378027578290803e-05,
2168
+ "loss": 0.2941,
2169
+ "step": 1080000
2170
+ },
2171
+ {
2172
+ "epoch": 27.07,
2173
+ "learning_rate": 2.9620659650634586e-05,
2174
+ "loss": 0.2896,
2175
+ "step": 1083000
2176
+ },
2177
+ {
2178
+ "epoch": 27.14,
2179
+ "learning_rate": 2.8863291722978373e-05,
2180
+ "loss": 0.289,
2181
+ "step": 1086000
2182
+ },
2183
+ {
2184
+ "epoch": 27.22,
2185
+ "learning_rate": 2.8105923795322156e-05,
2186
+ "loss": 0.2899,
2187
+ "step": 1089000
2188
+ },
2189
+ {
2190
+ "epoch": 27.29,
2191
+ "learning_rate": 2.7348555867665943e-05,
2192
+ "loss": 0.2878,
2193
+ "step": 1092000
2194
+ },
2195
+ {
2196
+ "epoch": 27.37,
2197
+ "learning_rate": 2.6591187940009723e-05,
2198
+ "loss": 0.2858,
2199
+ "step": 1095000
2200
+ },
2201
+ {
2202
+ "epoch": 27.44,
2203
+ "learning_rate": 2.583382001235351e-05,
2204
+ "loss": 0.2901,
2205
+ "step": 1098000
2206
+ },
2207
+ {
2208
+ "epoch": 27.52,
2209
+ "learning_rate": 2.5076452084697293e-05,
2210
+ "loss": 0.2885,
2211
+ "step": 1101000
2212
+ },
2213
+ {
2214
+ "epoch": 27.59,
2215
+ "learning_rate": 2.431908415704108e-05,
2216
+ "loss": 0.2903,
2217
+ "step": 1104000
2218
+ },
2219
+ {
2220
+ "epoch": 27.67,
2221
+ "learning_rate": 2.3561716229384863e-05,
2222
+ "loss": 0.2904,
2223
+ "step": 1107000
2224
+ },
2225
+ {
2226
+ "epoch": 27.74,
2227
+ "learning_rate": 2.280434830172865e-05,
2228
+ "loss": 0.2869,
2229
+ "step": 1110000
2230
+ },
2231
+ {
2232
+ "epoch": 27.82,
2233
+ "learning_rate": 2.2046980374072432e-05,
2234
+ "loss": 0.2902,
2235
+ "step": 1113000
2236
+ },
2237
+ {
2238
+ "epoch": 27.89,
2239
+ "learning_rate": 2.128961244641622e-05,
2240
+ "loss": 0.2867,
2241
+ "step": 1116000
2242
+ },
2243
+ {
2244
+ "epoch": 27.97,
2245
+ "learning_rate": 2.053224451876e-05,
2246
+ "loss": 0.2869,
2247
+ "step": 1119000
2248
+ },
2249
+ {
2250
+ "epoch": 28.04,
2251
+ "learning_rate": 1.9774876591103786e-05,
2252
+ "loss": 0.2844,
2253
+ "step": 1122000
2254
+ },
2255
+ {
2256
+ "epoch": 28.12,
2257
+ "learning_rate": 1.901750866344757e-05,
2258
+ "loss": 0.283,
2259
+ "step": 1125000
2260
+ },
2261
+ {
2262
+ "epoch": 28.19,
2263
+ "learning_rate": 1.8260140735791356e-05,
2264
+ "loss": 0.2816,
2265
+ "step": 1128000
2266
+ },
2267
+ {
2268
+ "epoch": 28.27,
2269
+ "learning_rate": 1.750277280813514e-05,
2270
+ "loss": 0.2848,
2271
+ "step": 1131000
2272
+ },
2273
+ {
2274
+ "epoch": 28.34,
2275
+ "learning_rate": 1.6745404880478922e-05,
2276
+ "loss": 0.2811,
2277
+ "step": 1134000
2278
+ },
2279
+ {
2280
+ "epoch": 28.42,
2281
+ "learning_rate": 1.598803695282271e-05,
2282
+ "loss": 0.283,
2283
+ "step": 1137000
2284
+ },
2285
+ {
2286
+ "epoch": 28.49,
2287
+ "learning_rate": 1.5230669025166492e-05,
2288
+ "loss": 0.2814,
2289
+ "step": 1140000
2290
+ },
2291
+ {
2292
+ "epoch": 28.57,
2293
+ "learning_rate": 1.4473301097510277e-05,
2294
+ "loss": 0.2793,
2295
+ "step": 1143000
2296
+ },
2297
+ {
2298
+ "epoch": 28.64,
2299
+ "learning_rate": 1.3715933169854062e-05,
2300
+ "loss": 0.2834,
2301
+ "step": 1146000
2302
+ },
2303
+ {
2304
+ "epoch": 28.72,
2305
+ "learning_rate": 1.2958565242197847e-05,
2306
+ "loss": 0.2798,
2307
+ "step": 1149000
2308
+ },
2309
+ {
2310
+ "epoch": 28.79,
2311
+ "learning_rate": 1.220119731454163e-05,
2312
+ "loss": 0.2807,
2313
+ "step": 1152000
2314
+ },
2315
+ {
2316
+ "epoch": 28.87,
2317
+ "learning_rate": 1.1443829386885416e-05,
2318
+ "loss": 0.28,
2319
+ "step": 1155000
2320
+ },
2321
+ {
2322
+ "epoch": 28.94,
2323
+ "learning_rate": 1.06864614592292e-05,
2324
+ "loss": 0.2762,
2325
+ "step": 1158000
2326
+ },
2327
+ {
2328
+ "epoch": 29.02,
2329
+ "learning_rate": 9.929093531572985e-06,
2330
+ "loss": 0.2802,
2331
+ "step": 1161000
2332
+ },
2333
+ {
2334
+ "epoch": 29.09,
2335
+ "learning_rate": 9.171725603916769e-06,
2336
+ "loss": 0.2761,
2337
+ "step": 1164000
2338
+ },
2339
+ {
2340
+ "epoch": 29.17,
2341
+ "learning_rate": 8.414357676260554e-06,
2342
+ "loss": 0.2771,
2343
+ "step": 1167000
2344
+ },
2345
+ {
2346
+ "epoch": 29.24,
2347
+ "learning_rate": 7.656989748604339e-06,
2348
+ "loss": 0.2777,
2349
+ "step": 1170000
2350
+ },
2351
+ {
2352
+ "epoch": 29.32,
2353
+ "learning_rate": 6.899621820948123e-06,
2354
+ "loss": 0.2767,
2355
+ "step": 1173000
2356
+ },
2357
+ {
2358
+ "epoch": 29.39,
2359
+ "learning_rate": 6.142253893291908e-06,
2360
+ "loss": 0.2773,
2361
+ "step": 1176000
2362
+ },
2363
+ {
2364
+ "epoch": 29.47,
2365
+ "learning_rate": 5.384885965635692e-06,
2366
+ "loss": 0.2765,
2367
+ "step": 1179000
2368
+ },
2369
+ {
2370
+ "epoch": 29.54,
2371
+ "learning_rate": 4.627518037979477e-06,
2372
+ "loss": 0.2786,
2373
+ "step": 1182000
2374
+ },
2375
+ {
2376
+ "epoch": 29.62,
2377
+ "learning_rate": 3.870150110323261e-06,
2378
+ "loss": 0.2768,
2379
+ "step": 1185000
2380
+ },
2381
+ {
2382
+ "epoch": 29.69,
2383
+ "learning_rate": 3.1127821826670457e-06,
2384
+ "loss": 0.2771,
2385
+ "step": 1188000
2386
+ },
2387
+ {
2388
+ "epoch": 29.77,
2389
+ "learning_rate": 2.35541425501083e-06,
2390
+ "loss": 0.2737,
2391
+ "step": 1191000
2392
+ },
2393
+ {
2394
+ "epoch": 29.84,
2395
+ "learning_rate": 1.5980463273546148e-06,
2396
+ "loss": 0.2737,
2397
+ "step": 1194000
2398
+ },
2399
+ {
2400
+ "epoch": 29.92,
2401
+ "learning_rate": 8.406783996983991e-07,
2402
+ "loss": 0.2781,
2403
+ "step": 1197000
2404
+ },
2405
+ {
2406
+ "epoch": 29.99,
2407
+ "learning_rate": 8.33104720421837e-08,
2408
+ "loss": 0.2745,
2409
+ "step": 1200000
2410
+ }
2411
+ ],
2412
+ "logging_steps": 3000,
2413
+ "max_steps": 1200330,
2414
+ "num_train_epochs": 30,
2415
+ "save_steps": 500,
2416
+ "total_flos": 2.468458772043806e+21,
2417
+ "trial_name": null,
2418
+ "trial_params": null
2419
+ }
checkpoint-1200330/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff7ae9d54cc1360db5a7700f9173378cae476f65a389ce03cabb59678aca5527
3
+ size 4600
checkpoint-1200330/vocab.json ADDED
@@ -0,0 +1,2225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\b": 0,
3
+ "\"": 2,
4
+ ";": 3,
5
+ "=": 4,
6
+ ">": 5,
7
+ "[": 6,
8
+ "[PAD]": 2222,
9
+ "[UNK]": 2221,
10
+ "\\": 7,
11
+ "_": 8,
12
+ "|": 1,
13
+ "°": 9,
14
+ "×": 10,
15
+ "ö": 11,
16
+ "ł": 12,
17
+ "ᆷ": 13,
18
+ "ᆻ": 14,
19
+ "​": 15,
20
+ "℃": 16,
21
+ "ℓ": 17,
22
+ "お": 18,
23
+ "ㄱ": 19,
24
+ "ㄴ": 20,
25
+ "ㄷ": 21,
26
+ "ㄹ": 22,
27
+ "ㅁ": 23,
28
+ "ㅅ": 24,
29
+ "ㅇ": 25,
30
+ "ㅈ": 26,
31
+ "ㅊ": 27,
32
+ "ㅋ": 28,
33
+ "ㅌ": 29,
34
+ "ㅍ": 30,
35
+ "ㅎ": 31,
36
+ "ㅒ": 32,
37
+ "ㅗ": 33,
38
+ "ㅠ": 34,
39
+ "ㅡ": 35,
40
+ "㎛": 36,
41
+ "子": 37,
42
+ "菓": 38,
43
+ "가": 39,
44
+ "각": 40,
45
+ "간": 41,
46
+ "갇": 42,
47
+ "갈": 43,
48
+ "갉": 44,
49
+ "감": 45,
50
+ "갑": 46,
51
+ "값": 47,
52
+ "갓": 48,
53
+ "갔": 49,
54
+ "강": 50,
55
+ "갖": 51,
56
+ "갗": 52,
57
+ "갘": 53,
58
+ "같": 54,
59
+ "갚": 55,
60
+ "갛": 56,
61
+ "개": 57,
62
+ "객": 58,
63
+ "갠": 59,
64
+ "갤": 60,
65
+ "갬": 61,
66
+ "갭": 62,
67
+ "갯": 63,
68
+ "갰": 64,
69
+ "갱": 65,
70
+ "갸": 66,
71
+ "갹": 67,
72
+ "걀": 68,
73
+ "걈": 69,
74
+ "걍": 70,
75
+ "걔": 71,
76
+ "걘": 72,
77
+ "거": 73,
78
+ "걱": 74,
79
+ "건": 75,
80
+ "걷": 76,
81
+ "걸": 77,
82
+ "검": 78,
83
+ "겁": 79,
84
+ "것": 80,
85
+ "겄": 81,
86
+ "겅": 82,
87
+ "겉": 83,
88
+ "겊": 84,
89
+ "겋": 85,
90
+ "게": 86,
91
+ "겍": 87,
92
+ "겐": 88,
93
+ "겔": 89,
94
+ "겜": 90,
95
+ "겟": 91,
96
+ "겠": 92,
97
+ "겡": 93,
98
+ "겨": 94,
99
+ "격": 95,
100
+ "겪": 96,
101
+ "견": 97,
102
+ "결": 98,
103
+ "겸": 99,
104
+ "겹": 100,
105
+ "겻": 101,
106
+ "겼": 102,
107
+ "경": 103,
108
+ "곁": 104,
109
+ "계": 105,
110
+ "곈": 106,
111
+ "곗": 107,
112
+ "곘": 108,
113
+ "고": 109,
114
+ "곡": 110,
115
+ "곤": 111,
116
+ "곧": 112,
117
+ "골": 113,
118
+ "곪": 114,
119
+ "곯": 115,
120
+ "곰": 116,
121
+ "곱": 117,
122
+ "곳": 118,
123
+ "공": 119,
124
+ "곶": 120,
125
+ "곷": 121,
126
+ "과": 122,
127
+ "곽": 123,
128
+ "관": 124,
129
+ "괄": 125,
130
+ "괌": 126,
131
+ "광": 127,
132
+ "괘": 128,
133
+ "괜": 129,
134
+ "괭": 130,
135
+ "괴": 131,
136
+ "괸": 132,
137
+ "굉": 133,
138
+ "교": 134,
139
+ "굔": 135,
140
+ "굗": 136,
141
+ "굘": 137,
142
+ "굣": 138,
143
+ "굥": 139,
144
+ "구": 140,
145
+ "국": 141,
146
+ "군": 142,
147
+ "굳": 143,
148
+ "굴": 144,
149
+ "굵": 145,
150
+ "굶": 146,
151
+ "굷": 147,
152
+ "굼": 148,
153
+ "굽": 149,
154
+ "굿": 150,
155
+ "궁": 151,
156
+ "궂": 152,
157
+ "궈": 153,
158
+ "권": 154,
159
+ "궐": 155,
160
+ "궜": 156,
161
+ "궝": 157,
162
+ "궤": 158,
163
+ "귀": 159,
164
+ "귄": 160,
165
+ "귈": 161,
166
+ "귓": 162,
167
+ "귔": 163,
168
+ "규": 164,
169
+ "균": 165,
170
+ "귤": 166,
171
+ "그": 167,
172
+ "극": 168,
173
+ "근": 169,
174
+ "귿": 170,
175
+ "글": 171,
176
+ "긁": 172,
177
+ "금": 173,
178
+ "급": 174,
179
+ "긋": 175,
180
+ "긍": 176,
181
+ "긎": 177,
182
+ "긓": 178,
183
+ "긔": 179,
184
+ "기": 180,
185
+ "긱": 181,
186
+ "긴": 182,
187
+ "길": 183,
188
+ "김": 184,
189
+ "깁": 185,
190
+ "깃": 186,
191
+ "깄": 187,
192
+ "깅": 188,
193
+ "깆": 189,
194
+ "깊": 190,
195
+ "까": 191,
196
+ "깍": 192,
197
+ "깎": 193,
198
+ "깐": 194,
199
+ "깓": 195,
200
+ "깔": 196,
201
+ "깜": 197,
202
+ "깝": 198,
203
+ "깟": 199,
204
+ "깠": 200,
205
+ "깡": 201,
206
+ "깥": 202,
207
+ "깨": 203,
208
+ "깬": 204,
209
+ "깰": 205,
210
+ "깸": 206,
211
+ "깹": 207,
212
+ "깻": 208,
213
+ "깼": 209,
214
+ "깽": 210,
215
+ "꺄": 211,
216
+ "꺅": 212,
217
+ "꺙": 213,
218
+ "꺠": 214,
219
+ "꺨": 215,
220
+ "꺵": 216,
221
+ "꺼": 217,
222
+ "꺽": 218,
223
+ "꺾": 219,
224
+ "껀": 220,
225
+ "껄": 221,
226
+ "껌": 222,
227
+ "껍": 223,
228
+ "껏": 224,
229
+ "껐": 225,
230
+ "껑": 226,
231
+ "껗": 227,
232
+ "께": 228,
233
+ "껜": 229,
234
+ "껫": 230,
235
+ "껬": 231,
236
+ "껴": 232,
237
+ "껼": 233,
238
+ "꼇": 234,
239
+ "꼈": 235,
240
+ "꼉": 236,
241
+ "꼐": 237,
242
+ "꼬": 238,
243
+ "꼭": 239,
244
+ "꼰": 240,
245
+ "꼴": 241,
246
+ "꼼": 242,
247
+ "꼽": 243,
248
+ "꼿": 244,
249
+ "꽁": 245,
250
+ "꽂": 246,
251
+ "꽃": 247,
252
+ "꽈": 248,
253
+ "꽉": 249,
254
+ "꽌": 250,
255
+ "꽐": 251,
256
+ "꽜": 252,
257
+ "꽝": 253,
258
+ "꽤": 254,
259
+ "꽥": 255,
260
+ "꽨": 256,
261
+ "꾀": 257,
262
+ "꾤": 258,
263
+ "꾸": 259,
264
+ "꾹": 260,
265
+ "꾼": 261,
266
+ "꿀": 262,
267
+ "꿇": 263,
268
+ "꿈": 264,
269
+ "꿉": 265,
270
+ "꿋": 266,
271
+ "꿍": 267,
272
+ "꿎": 268,
273
+ "꿔": 269,
274
+ "꿨": 270,
275
+ "꿩": 271,
276
+ "꿰": 272,
277
+ "뀌": 273,
278
+ "뀐": 274,
279
+ "뀔": 275,
280
+ "뀜": 276,
281
+ "뀝": 277,
282
+ "뀠": 278,
283
+ "뀨": 279,
284
+ "뀽": 280,
285
+ "끄": 281,
286
+ "끅": 282,
287
+ "끈": 283,
288
+ "끊": 284,
289
+ "끌": 285,
290
+ "끍": 286,
291
+ "끓": 287,
292
+ "끔": 288,
293
+ "끕": 289,
294
+ "끗": 290,
295
+ "끙": 291,
296
+ "끝": 292,
297
+ "끼": 293,
298
+ "끽": 294,
299
+ "낀": 295,
300
+ "낄": 296,
301
+ "낌": 297,
302
+ "낍": 298,
303
+ "낏": 299,
304
+ "낑": 300,
305
+ "나": 301,
306
+ "낙": 302,
307
+ "낚": 303,
308
+ "난": 304,
309
+ "날": 305,
310
+ "낡": 306,
311
+ "낧": 307,
312
+ "남": 308,
313
+ "납": 309,
314
+ "낫": 310,
315
+ "났": 311,
316
+ "낭": 312,
317
+ "낮": 313,
318
+ "낯": 314,
319
+ "낱": 315,
320
+ "낳": 316,
321
+ "내": 317,
322
+ "낵": 318,
323
+ "낸": 319,
324
+ "낼": 320,
325
+ "냄": 321,
326
+ "냅": 322,
327
+ "냇": 323,
328
+ "냈": 324,
329
+ "냉": 325,
330
+ "냐": 326,
331
+ "냑": 327,
332
+ "냔": 328,
333
+ "냠": 329,
334
+ "냥": 330,
335
+ "냬": 331,
336
+ "넀": 332,
337
+ "너": 333,
338
+ "넉": 334,
339
+ "넋": 335,
340
+ "넌": 336,
341
+ "널": 337,
342
+ "넓": 338,
343
+ "넗": 339,
344
+ "넘": 340,
345
+ "넙": 341,
346
+ "넛": 342,
347
+ "넜": 343,
348
+ "넝": 344,
349
+ "넣": 345,
350
+ "네": 346,
351
+ "넥": 347,
352
+ "넨": 348,
353
+ "넫": 349,
354
+ "넬": 350,
355
+ "넴": 351,
356
+ "넵": 352,
357
+ "넷": 353,
358
+ "넹": 354,
359
+ "녀": 355,
360
+ "녁": 356,
361
+ "년": 357,
362
+ "념": 358,
363
+ "녔": 359,
364
+ "녕": 360,
365
+ "녘": 361,
366
+ "녜": 362,
367
+ "노": 363,
368
+ "녹": 364,
369
+ "논": 365,
370
+ "놀": 366,
371
+ "놈": 367,
372
+ "놉": 368,
373
+ "놋": 369,
374
+ "농": 370,
375
+ "높": 371,
376
+ "놓": 372,
377
+ "놔": 373,
378
+ "놘": 374,
379
+ "놥": 375,
380
+ "놨": 376,
381
+ "놯": 377,
382
+ "뇌": 378,
383
+ "뇨": 379,
384
+ "뇬": 380,
385
+ "뇸": 381,
386
+ "뇽": 382,
387
+ "누": 383,
388
+ "눅": 384,
389
+ "눈": 385,
390
+ "눌": 386,
391
+ "눔": 387,
392
+ "눕": 388,
393
+ "눗": 389,
394
+ "눙": 390,
395
+ "눟": 391,
396
+ "눠": 392,
397
+ "눴": 393,
398
+ "눼": 394,
399
+ "뉘": 395,
400
+ "뉜": 396,
401
+ "뉠": 397,
402
+ "뉩": 398,
403
+ "뉴": 399,
404
+ "뉵": 400,
405
+ "뉸": 401,
406
+ "뉼": 402,
407
+ "늄": 403,
408
+ "늉": 404,
409
+ "느": 405,
410
+ "늑": 406,
411
+ "는": 407,
412
+ "늘": 408,
413
+ "늙": 409,
414
+ "늠": 410,
415
+ "늡": 411,
416
+ "능": 412,
417
+ "늦": 413,
418
+ "늪": 414,
419
+ "늫": 415,
420
+ "늬": 416,
421
+ "늴": 417,
422
+ "늼": 418,
423
+ "니": 419,
424
+ "닉": 420,
425
+ "닌": 421,
426
+ "닏": 422,
427
+ "닐": 423,
428
+ "님": 424,
429
+ "닙": 425,
430
+ "닛": 426,
431
+ "닝": 427,
432
+ "닢": 428,
433
+ "다": 429,
434
+ "닥": 430,
435
+ "닦": 431,
436
+ "단": 432,
437
+ "닫": 433,
438
+ "달": 434,
439
+ "닭": 435,
440
+ "닮": 436,
441
+ "닯": 437,
442
+ "닳": 438,
443
+ "담": 439,
444
+ "답": 440,
445
+ "닷": 441,
446
+ "당": 442,
447
+ "닺": 443,
448
+ "닻": 444,
449
+ "닿": 445,
450
+ "대": 446,
451
+ "댁": 447,
452
+ "댄": 448,
453
+ "댈": 449,
454
+ "댐": 450,
455
+ "댑": 451,
456
+ "댓": 452,
457
+ "댔": 453,
458
+ "댕": 454,
459
+ "댜": 455,
460
+ "댯": 456,
461
+ "댱": 457,
462
+ "더": 458,
463
+ "덕": 459,
464
+ "덖": 460,
465
+ "던": 461,
466
+ "덜": 462,
467
+ "덞": 463,
468
+ "덟": 464,
469
+ "덤": 465,
470
+ "덥": 466,
471
+ "덧": 467,
472
+ "덨": 468,
473
+ "덩": 469,
474
+ "덫": 470,
475
+ "덮": 471,
476
+ "데": 472,
477
+ "덱": 473,
478
+ "덴": 474,
479
+ "델": 475,
480
+ "뎀": 476,
481
+ "뎁": 477,
482
+ "뎃": 478,
483
+ "뎅": 479,
484
+ "뎈": 480,
485
+ "뎌": 481,
486
+ "뎝": 482,
487
+ "뎠": 483,
488
+ "뎡": 484,
489
+ "도": 485,
490
+ "독": 486,
491
+ "돈": 487,
492
+ "돋": 488,
493
+ "돌": 489,
494
+ "돔": 490,
495
+ "돕": 491,
496
+ "돗": 492,
497
+ "동": 493,
498
+ "돚": 494,
499
+ "돠": 495,
500
+ "돼": 496,
501
+ "됄": 497,
502
+ "됌": 498,
503
+ "됐": 499,
504
+ "되": 500,
505
+ "된": 501,
506
+ "될": 502,
507
+ "됨": 503,
508
+ "됩": 504,
509
+ "됬": 505,
510
+ "됴": 506,
511
+ "두": 507,
512
+ "둑": 508,
513
+ "둔": 509,
514
+ "둘": 510,
515
+ "둠": 511,
516
+ "둡": 512,
517
+ "둣": 513,
518
+ "둥": 514,
519
+ "둬": 515,
520
+ "뒀": 516,
521
+ "뒈": 517,
522
+ "뒤": 518,
523
+ "뒨": 519,
524
+ "뒷": 520,
525
+ "뒹": 521,
526
+ "듀": 522,
527
+ "듄": 523,
528
+ "듈": 524,
529
+ "듐": 525,
530
+ "듕": 526,
531
+ "드": 527,
532
+ "득": 528,
533
+ "든": 529,
534
+ "듣": 530,
535
+ "들": 531,
536
+ "듦": 532,
537
+ "듬": 533,
538
+ "듭": 534,
539
+ "듯": 535,
540
+ "등": 536,
541
+ "듸": 537,
542
+ "디": 538,
543
+ "딕": 539,
544
+ "딘": 540,
545
+ "딛": 541,
546
+ "딜": 542,
547
+ "딤": 543,
548
+ "딥": 544,
549
+ "딧": 545,
550
+ "딨": 546,
551
+ "딩": 547,
552
+ "딪": 548,
553
+ "딯": 549,
554
+ "따": 550,
555
+ "딱": 551,
556
+ "딲": 552,
557
+ "딴": 553,
558
+ "딸": 554,
559
+ "땀": 555,
560
+ "땁": 556,
561
+ "땃": 557,
562
+ "땄": 558,
563
+ "땅": 559,
564
+ "땋": 560,
565
+ "때": 561,
566
+ "땐": 562,
567
+ "땜": 563,
568
+ "땝": 564,
569
+ "땟": 565,
570
+ "땠": 566,
571
+ "땡": 567,
572
+ "땨": 568,
573
+ "떄": 569,
574
+ "떈": 570,
575
+ "떔": 571,
576
+ "떙": 572,
577
+ "떠": 573,
578
+ "떡": 574,
579
+ "떤": 575,
580
+ "떨": 576,
581
+ "떫": 577,
582
+ "떱": 578,
583
+ "떳": 579,
584
+ "떴": 580,
585
+ "떵": 581,
586
+ "떻": 582,
587
+ "떼": 583,
588
+ "뗀": 584,
589
+ "뗄": 585,
590
+ "뗍": 586,
591
+ "뗏": 587,
592
+ "뗐": 588,
593
+ "뗘": 589,
594
+ "뗬": 590,
595
+ "뗴": 591,
596
+ "또": 592,
597
+ "똑": 593,
598
+ "똔": 594,
599
+ "똘": 595,
600
+ "똠": 596,
601
+ "똡": 597,
602
+ "똥": 598,
603
+ "똬": 599,
604
+ "뙜": 600,
605
+ "뙤": 601,
606
+ "뚀": 602,
607
+ "뚜": 603,
608
+ "뚝": 604,
609
+ "뚠": 605,
610
+ "뚤": 606,
611
+ "뚫": 607,
612
+ "뚬": 608,
613
+ "뚱": 609,
614
+ "뛰": 610,
615
+ "뛴": 611,
616
+ "뛸": 612,
617
+ "뜀": 613,
618
+ "뜁": 614,
619
+ "뜨": 615,
620
+ "뜩": 616,
621
+ "뜬": 617,
622
+ "뜯": 618,
623
+ "뜰": 619,
624
+ "뜷": 620,
625
+ "뜸": 621,
626
+ "뜹": 622,
627
+ "뜻": 623,
628
+ "뜽": 624,
629
+ "띄": 625,
630
+ "띈": 626,
631
+ "띌": 627,
632
+ "띕": 628,
633
+ "띠": 629,
634
+ "띡": 630,
635
+ "띤": 631,
636
+ "띨": 632,
637
+ "띰": 633,
638
+ "띱": 634,
639
+ "띵": 635,
640
+ "라": 636,
641
+ "락": 637,
642
+ "란": 638,
643
+ "랄": 639,
644
+ "람": 640,
645
+ "랍": 641,
646
+ "랏": 642,
647
+ "랐": 643,
648
+ "랑": 644,
649
+ "랖": 645,
650
+ "랗": 646,
651
+ "래": 647,
652
+ "랙": 648,
653
+ "랜": 649,
654
+ "랠": 650,
655
+ "램": 651,
656
+ "랩": 652,
657
+ "랫": 653,
658
+ "랬": 654,
659
+ "랭": 655,
660
+ "랴": 656,
661
+ "략": 657,
662
+ "럈": 658,
663
+ "량": 659,
664
+ "러": 660,
665
+ "럭": 661,
666
+ "런": 662,
667
+ "럴": 663,
668
+ "럼": 664,
669
+ "럽": 665,
670
+ "럿": 666,
671
+ "렀": 667,
672
+ "렁": 668,
673
+ "렇": 669,
674
+ "레": 670,
675
+ "렉": 671,
676
+ "렌": 672,
677
+ "렐": 673,
678
+ "렘": 674,
679
+ "렙": 675,
680
+ "렛": 676,
681
+ "렜": 677,
682
+ "렝": 678,
683
+ "렣": 679,
684
+ "려": 680,
685
+ "력": 681,
686
+ "련": 682,
687
+ "렬": 683,
688
+ "렴": 684,
689
+ "렵": 685,
690
+ "렷": 686,
691
+ "��": 687,
692
+ "령": 688,
693
+ "렼": 689,
694
+ "렿": 690,
695
+ "례": 691,
696
+ "로": 692,
697
+ "록": 693,
698
+ "론": 694,
699
+ "롤": 695,
700
+ "롬": 696,
701
+ "롭": 697,
702
+ "롯": 698,
703
+ "롱": 699,
704
+ "롷": 700,
705
+ "롸": 701,
706
+ "롹": 702,
707
+ "뢰": 703,
708
+ "료": 704,
709
+ "룐": 705,
710
+ "룔": 706,
711
+ "룝": 707,
712
+ "룟": 708,
713
+ "룡": 709,
714
+ "루": 710,
715
+ "룩": 711,
716
+ "룬": 712,
717
+ "룰": 713,
718
+ "룸": 714,
719
+ "룹": 715,
720
+ "룻": 716,
721
+ "룽": 717,
722
+ "뤄": 718,
723
+ "뤘": 719,
724
+ "뤠": 720,
725
+ "뤼": 721,
726
+ "뤽": 722,
727
+ "류": 723,
728
+ "륙": 724,
729
+ "륜": 725,
730
+ "률": 726,
731
+ "륨": 727,
732
+ "륭": 728,
733
+ "르": 729,
734
+ "륵": 730,
735
+ "른": 731,
736
+ "를": 732,
737
+ "름": 733,
738
+ "릅": 734,
739
+ "릇": 735,
740
+ "릉": 736,
741
+ "릎": 737,
742
+ "릏": 738,
743
+ "리": 739,
744
+ "릭": 740,
745
+ "린": 741,
746
+ "릴": 742,
747
+ "림": 743,
748
+ "립": 744,
749
+ "릿": 745,
750
+ "맀": 746,
751
+ "링": 747,
752
+ "마": 748,
753
+ "막": 749,
754
+ "만": 750,
755
+ "맍": 751,
756
+ "많": 752,
757
+ "맏": 753,
758
+ "말": 754,
759
+ "맑": 755,
760
+ "맘": 756,
761
+ "맙": 757,
762
+ "맛": 758,
763
+ "맜": 759,
764
+ "망": 760,
765
+ "맞": 761,
766
+ "맟": 762,
767
+ "맡": 763,
768
+ "맣": 764,
769
+ "매": 765,
770
+ "맥": 766,
771
+ "맨": 767,
772
+ "맬": 768,
773
+ "맴": 769,
774
+ "맵": 770,
775
+ "맷": 771,
776
+ "맸": 772,
777
+ "맹": 773,
778
+ "맺": 774,
779
+ "맻": 775,
780
+ "맽": 776,
781
+ "먀": 777,
782
+ "먄": 778,
783
+ "먆": 779,
784
+ "먕": 780,
785
+ "머": 781,
786
+ "먹": 782,
787
+ "먼": 783,
788
+ "멀": 784,
789
+ "멈": 785,
790
+ "멉": 786,
791
+ "멋": 787,
792
+ "멍": 788,
793
+ "멎": 789,
794
+ "멓": 790,
795
+ "메": 791,
796
+ "멕": 792,
797
+ "멘": 793,
798
+ "멜": 794,
799
+ "멤": 795,
800
+ "멥": 796,
801
+ "멧": 797,
802
+ "멨": 798,
803
+ "멩": 799,
804
+ "며": 800,
805
+ "멱": 801,
806
+ "면": 802,
807
+ "멸": 803,
808
+ "몀": 804,
809
+ "몄": 805,
810
+ "명": 806,
811
+ "몇": 807,
812
+ "몉": 808,
813
+ "모": 809,
814
+ "목": 810,
815
+ "몫": 811,
816
+ "몬": 812,
817
+ "몰": 813,
818
+ "몵": 814,
819
+ "몸": 815,
820
+ "몹": 816,
821
+ "못": 817,
822
+ "몽": 818,
823
+ "뫠": 819,
824
+ "묄": 820,
825
+ "묘": 821,
826
+ "묙": 822,
827
+ "묜": 823,
828
+ "묨": 824,
829
+ "묩": 825,
830
+ "무": 826,
831
+ "묵": 827,
832
+ "묶": 828,
833
+ "문": 829,
834
+ "묻": 830,
835
+ "물": 831,
836
+ "묽": 832,
837
+ "뭄": 833,
838
+ "뭅": 834,
839
+ "뭇": 835,
840
+ "뭉": 836,
841
+ "뭍": 837,
842
+ "뭐": 838,
843
+ "뭑": 839,
844
+ "뭔": 840,
845
+ "뭘": 841,
846
+ "뭡": 842,
847
+ "뭣": 843,
848
+ "뭥": 844,
849
+ "뭪": 845,
850
+ "뭬": 846,
851
+ "뮈": 847,
852
+ "뮌": 848,
853
+ "뮤": 849,
854
+ "뮨": 850,
855
+ "뮬": 851,
856
+ "뮵": 852,
857
+ "뮹": 853,
858
+ "므": 854,
859
+ "믁": 855,
860
+ "믄": 856,
861
+ "믈": 857,
862
+ "믐": 858,
863
+ "미": 859,
864
+ "믹": 860,
865
+ "민": 861,
866
+ "믾": 862,
867
+ "믿": 863,
868
+ "밀": 864,
869
+ "밈": 865,
870
+ "밉": 866,
871
+ "밋": 867,
872
+ "밌": 868,
873
+ "밍": 869,
874
+ "밎": 870,
875
+ "및": 871,
876
+ "밑": 872,
877
+ "바": 873,
878
+ "박": 874,
879
+ "밖": 875,
880
+ "반": 876,
881
+ "받": 877,
882
+ "발": 878,
883
+ "밝": 879,
884
+ "밟": 880,
885
+ "밤": 881,
886
+ "밥": 882,
887
+ "밧": 883,
888
+ "밨": 884,
889
+ "방": 885,
890
+ "밭": 886,
891
+ "배": 887,
892
+ "백": 888,
893
+ "밴": 889,
894
+ "밸": 890,
895
+ "뱀": 891,
896
+ "뱁": 892,
897
+ "뱃": 893,
898
+ "뱄": 894,
899
+ "뱅": 895,
900
+ "뱉": 896,
901
+ "뱌": 897,
902
+ "버": 898,
903
+ "벅": 899,
904
+ "번": 900,
905
+ "벌": 901,
906
+ "범": 902,
907
+ "법": 903,
908
+ "벗": 904,
909
+ "벘": 905,
910
+ "벙": 906,
911
+ "벚": 907,
912
+ "베": 908,
913
+ "벡": 909,
914
+ "벤": 910,
915
+ "벨": 911,
916
+ "벳": 912,
917
+ "벵": 913,
918
+ "벹": 914,
919
+ "벼": 915,
920
+ "벽": 916,
921
+ "변": 917,
922
+ "별": 918,
923
+ "볍": 919,
924
+ "볏": 920,
925
+ "볐": 921,
926
+ "병": 922,
927
+ "볕": 923,
928
+ "보": 924,
929
+ "복": 925,
930
+ "볶": 926,
931
+ "본": 927,
932
+ "볼": 928,
933
+ "봄": 929,
934
+ "봅": 930,
935
+ "봇": 931,
936
+ "봈": 932,
937
+ "봉": 933,
938
+ "봐": 934,
939
+ "봔": 935,
940
+ "봘": 936,
941
+ "봤": 937,
942
+ "봬": 938,
943
+ "봰": 939,
944
+ "봴": 940,
945
+ "봽": 941,
946
+ "뵀": 942,
947
+ "뵈": 943,
948
+ "뵌": 944,
949
+ "뵐": 945,
950
+ "뵙": 946,
951
+ "뵜": 947,
952
+ "뵤": 948,
953
+ "뵹": 949,
954
+ "부": 950,
955
+ "북": 951,
956
+ "분": 952,
957
+ "붇": 953,
958
+ "불": 954,
959
+ "붉": 955,
960
+ "붐": 956,
961
+ "붑": 957,
962
+ "붓": 958,
963
+ "붕": 959,
964
+ "붙": 960,
965
+ "붜": 961,
966
+ "뷔": 962,
967
+ "뷰": 963,
968
+ "뷸": 964,
969
+ "븅": 965,
970
+ "브": 966,
971
+ "븐": 967,
972
+ "블": 968,
973
+ "븡": 969,
974
+ "비": 970,
975
+ "빅": 971,
976
+ "빈": 972,
977
+ "빌": 973,
978
+ "빔": 974,
979
+ "빕": 975,
980
+ "빗": 976,
981
+ "빘": 977,
982
+ "빙": 978,
983
+ "빚": 979,
984
+ "빛": 980,
985
+ "빠": 981,
986
+ "빡": 982,
987
+ "빤": 983,
988
+ "빨": 984,
989
+ "빰": 985,
990
+ "빱": 986,
991
+ "빳": 987,
992
+ "빴": 988,
993
+ "빵": 989,
994
+ "빻": 990,
995
+ "빼": 991,
996
+ "빽": 992,
997
+ "뺀": 993,
998
+ "뺄": 994,
999
+ "뺌": 995,
1000
+ "뺍": 996,
1001
+ "뺏": 997,
1002
+ "뺐": 998,
1003
+ "뺑": 999,
1004
+ "뺨": 1000,
1005
+ "뺭": 1001,
1006
+ "뺴": 1002,
1007
+ "뺵": 1003,
1008
+ "뺼": 1004,
1009
+ "뻇": 1005,
1010
+ "뻈": 1006,
1011
+ "뻐": 1007,
1012
+ "뻑": 1008,
1013
+ "뻔": 1009,
1014
+ "뻗": 1010,
1015
+ "뻘": 1011,
1016
+ "뻠": 1012,
1017
+ "뻣": 1013,
1018
+ "뻤": 1014,
1019
+ "뻥": 1015,
1020
+ "뻬": 1016,
1021
+ "뻴": 1017,
1022
+ "뼈": 1018,
1023
+ "뼉": 1019,
1024
+ "뼘": 1020,
1025
+ "뼛": 1021,
1026
+ "뼝": 1022,
1027
+ "뽀": 1023,
1028
+ "뽁": 1024,
1029
+ "뽂": 1025,
1030
+ "뽄": 1026,
1031
+ "뽈": 1027,
1032
+ "뽐": 1028,
1033
+ "뽑": 1029,
1034
+ "뽕": 1030,
1035
+ "뽜": 1031,
1036
+ "뽝": 1032,
1037
+ "뾰": 1033,
1038
+ "뾱": 1034,
1039
+ "뿅": 1035,
1040
+ "뿌": 1036,
1041
+ "뿍": 1037,
1042
+ "뿐": 1038,
1043
+ "뿔": 1039,
1044
+ "뿜": 1040,
1045
+ "뿟": 1041,
1046
+ "뿡": 1042,
1047
+ "쀼": 1043,
1048
+ "쁘": 1044,
1049
+ "쁜": 1045,
1050
+ "쁠": 1046,
1051
+ "쁨": 1047,
1052
+ "쁩": 1048,
1053
+ "삐": 1049,
1054
+ "삑": 1050,
1055
+ "삔": 1051,
1056
+ "삘": 1052,
1057
+ "삣": 1053,
1058
+ "삥": 1054,
1059
+ "사": 1055,
1060
+ "삭": 1056,
1061
+ "삯": 1057,
1062
+ "산": 1058,
1063
+ "살": 1059,
1064
+ "삶": 1060,
1065
+ "삷": 1061,
1066
+ "삼": 1062,
1067
+ "삽": 1063,
1068
+ "삿": 1064,
1069
+ "샀": 1065,
1070
+ "상": 1066,
1071
+ "샅": 1067,
1072
+ "새": 1068,
1073
+ "색": 1069,
1074
+ "샊": 1070,
1075
+ "샌": 1071,
1076
+ "샐": 1072,
1077
+ "샘": 1073,
1078
+ "샙": 1074,
1079
+ "샛": 1075,
1080
+ "샜": 1076,
1081
+ "생": 1077,
1082
+ "샤": 1078,
1083
+ "샥": 1079,
1084
+ "샨": 1080,
1085
+ "샬": 1081,
1086
+ "샴": 1082,
1087
+ "샵": 1083,
1088
+ "샷": 1084,
1089
+ "샹": 1085,
1090
+ "섀": 1086,
1091
+ "서": 1087,
1092
+ "석": 1088,
1093
+ "섞": 1089,
1094
+ "선": 1090,
1095
+ "섣": 1091,
1096
+ "설": 1092,
1097
+ "섬": 1093,
1098
+ "섭": 1094,
1099
+ "섯": 1095,
1100
+ "섰": 1096,
1101
+ "성": 1097,
1102
+ "세": 1098,
1103
+ "섹": 1099,
1104
+ "센": 1100,
1105
+ "셀": 1101,
1106
+ "셈": 1102,
1107
+ "셉": 1103,
1108
+ "셋": 1104,
1109
+ "셌": 1105,
1110
+ "셍": 1106,
1111
+ "셔": 1107,
1112
+ "션": 1108,
1113
+ "셜": 1109,
1114
+ "셤": 1110,
1115
+ "셧": 1111,
1116
+ "셨": 1112,
1117
+ "셩": 1113,
1118
+ "셰": 1114,
1119
+ "셴": 1115,
1120
+ "셸": 1116,
1121
+ "솅": 1117,
1122
+ "소": 1118,
1123
+ "속": 1119,
1124
+ "솎": 1120,
1125
+ "손": 1121,
1126
+ "솔": 1122,
1127
+ "솜": 1123,
1128
+ "솝": 1124,
1129
+ "솟": 1125,
1130
+ "송": 1126,
1131
+ "솥": 1127,
1132
+ "솨": 1128,
1133
+ "솩": 1129,
1134
+ "솼": 1130,
1135
+ "쇄": 1131,
1136
+ "쇠": 1132,
1137
+ "쇤": 1133,
1138
+ "쇳": 1134,
1139
+ "쇼": 1135,
1140
+ "쇽": 1136,
1141
+ "숀": 1137,
1142
+ "숄": 1138,
1143
+ "숌": 1139,
1144
+ "숍": 1140,
1145
+ "숏": 1141,
1146
+ "숑": 1142,
1147
+ "수": 1143,
1148
+ "숙": 1144,
1149
+ "순": 1145,
1150
+ "숟": 1146,
1151
+ "술": 1147,
1152
+ "숨": 1148,
1153
+ "숩": 1149,
1154
+ "숫": 1150,
1155
+ "숭": 1151,
1156
+ "숯": 1152,
1157
+ "숱": 1153,
1158
+ "숲": 1154,
1159
+ "숴": 1155,
1160
+ "쉈": 1156,
1161
+ "쉐": 1157,
1162
+ "쉑": 1158,
1163
+ "쉔": 1159,
1164
+ "쉘": 1160,
1165
+ "쉣": 1161,
1166
+ "쉬": 1162,
1167
+ "쉭": 1163,
1168
+ "쉰": 1164,
1169
+ "쉴": 1165,
1170
+ "쉼": 1166,
1171
+ "쉽": 1167,
1172
+ "쉿": 1168,
1173
+ "슁": 1169,
1174
+ "슈": 1170,
1175
+ "슉": 1171,
1176
+ "슐": 1172,
1177
+ "슘": 1173,
1178
+ "슙": 1174,
1179
+ "슛": 1175,
1180
+ "슝": 1176,
1181
+ "슟": 1177,
1182
+ "스": 1178,
1183
+ "슥": 1179,
1184
+ "슨": 1180,
1185
+ "슬": 1181,
1186
+ "슴": 1182,
1187
+ "습": 1183,
1188
+ "슷": 1184,
1189
+ "승": 1185,
1190
+ "슼": 1186,
1191
+ "슾": 1187,
1192
+ "싑": 1188,
1193
+ "시": 1189,
1194
+ "식": 1190,
1195
+ "신": 1191,
1196
+ "싣": 1192,
1197
+ "실": 1193,
1198
+ "싫": 1194,
1199
+ "심": 1195,
1200
+ "십": 1196,
1201
+ "싯": 1197,
1202
+ "싰": 1198,
1203
+ "싱": 1199,
1204
+ "싴": 1200,
1205
+ "싶": 1201,
1206
+ "싷": 1202,
1207
+ "싸": 1203,
1208
+ "싹": 1204,
1209
+ "싼": 1205,
1210
+ "쌀": 1206,
1211
+ "쌂": 1207,
1212
+ "쌈": 1208,
1213
+ "쌉": 1209,
1214
+ "쌋": 1210,
1215
+ "쌌": 1211,
1216
+ "쌍": 1212,
1217
+ "쌓": 1213,
1218
+ "쌔": 1214,
1219
+ "쌕": 1215,
1220
+ "쌘": 1216,
1221
+ "쌤": 1217,
1222
+ "쌥": 1218,
1223
+ "쌧": 1219,
1224
+ "쌨": 1220,
1225
+ "쌩": 1221,
1226
+ "쌰": 1222,
1227
+ "썀": 1223,
1228
+ "썃": 1224,
1229
+ "썅": 1225,
1230
+ "썜": 1226,
1231
+ "써": 1227,
1232
+ "썩": 1228,
1233
+ "썪": 1229,
1234
+ "썬": 1230,
1235
+ "썰": 1231,
1236
+ "썸": 1232,
1237
+ "썹": 1233,
1238
+ "썻": 1234,
1239
+ "썼": 1235,
1240
+ "썽": 1236,
1241
+ "쎄": 1237,
1242
+ "쎅": 1238,
1243
+ "쎈": 1239,
1244
+ "쎌": 1240,
1245
+ "쎔": 1241,
1246
+ "쎕": 1242,
1247
+ "쎗": 1243,
1248
+ "쎘": 1244,
1249
+ "쎠": 1245,
1250
+ "쎴": 1246,
1251
+ "쎼": 1247,
1252
+ "쏘": 1248,
1253
+ "쏙": 1249,
1254
+ "쏜": 1250,
1255
+ "쏟": 1251,
1256
+ "쏠": 1252,
1257
+ "쏨": 1253,
1258
+ "쏩": 1254,
1259
+ "쏫": 1255,
1260
+ "쏭": 1256,
1261
+ "쏴": 1257,
1262
+ "쏵": 1258,
1263
+ "쐇": 1259,
1264
+ "쐈": 1260,
1265
+ "쐐": 1261,
1266
+ "쐤": 1262,
1267
+ "쐥": 1263,
1268
+ "쐬": 1264,
1269
+ "쐰": 1265,
1270
+ "쐴": 1266,
1271
+ "쑀": 1267,
1272
+ "쑈": 1268,
1273
+ "쑉": 1269,
1274
+ "쑝": 1270,
1275
+ "쑤": 1271,
1276
+ "쑥": 1272,
1277
+ "쑬": 1273,
1278
+ "쒀": 1274,
1279
+ "쒯": 1275,
1280
+ "쒸": 1276,
1281
+ "쓕": 1277,
1282
+ "쓰": 1278,
1283
+ "쓱": 1279,
1284
+ "쓴": 1280,
1285
+ "쓸": 1281,
1286
+ "씀": 1282,
1287
+ "씁": 1283,
1288
+ "씃": 1284,
1289
+ "씄": 1285,
1290
+ "씅": 1286,
1291
+ "씌": 1287,
1292
+ "씐": 1288,
1293
+ "씨": 1289,
1294
+ "씩": 1290,
1295
+ "씬": 1291,
1296
+ "씰": 1292,
1297
+ "씸": 1293,
1298
+ "씹": 1294,
1299
+ "씻": 1295,
1300
+ "씽": 1296,
1301
+ "아": 1297,
1302
+ "악": 1298,
1303
+ "안": 1299,
1304
+ "앉": 1300,
1305
+ "않": 1301,
1306
+ "알": 1302,
1307
+ "앎": 1303,
1308
+ "앏": 1304,
1309
+ "앓": 1305,
1310
+ "암": 1306,
1311
+ "압": 1307,
1312
+ "앗": 1308,
1313
+ "았": 1309,
1314
+ "앙": 1310,
1315
+ "앚": 1311,
1316
+ "앞": 1312,
1317
+ "앟": 1313,
1318
+ "애": 1314,
1319
+ "액": 1315,
1320
+ "앤": 1316,
1321
+ "앨": 1317,
1322
+ "앰": 1318,
1323
+ "앱": 1319,
1324
+ "앳": 1320,
1325
+ "앴": 1321,
1326
+ "앵": 1322,
1327
+ "앺": 1323,
1328
+ "야": 1324,
1329
+ "약": 1325,
1330
+ "얀": 1326,
1331
+ "얄": 1327,
1332
+ "얇": 1328,
1333
+ "얌": 1329,
1334
+ "얍": 1330,
1335
+ "얏": 1331,
1336
+ "양": 1332,
1337
+ "얕": 1333,
1338
+ "얗": 1334,
1339
+ "얘": 1335,
1340
+ "얜": 1336,
1341
+ "얨": 1337,
1342
+ "얬": 1338,
1343
+ "어": 1339,
1344
+ "억": 1340,
1345
+ "언": 1341,
1346
+ "얹": 1342,
1347
+ "얻": 1343,
1348
+ "얼": 1344,
1349
+ "얽": 1345,
1350
+ "엄": 1346,
1351
+ "업": 1347,
1352
+ "없": 1348,
1353
+ "엇": 1349,
1354
+ "었": 1350,
1355
+ "엉": 1351,
1356
+ "엊": 1352,
1357
+ "엌": 1353,
1358
+ "엎": 1354,
1359
+ "에": 1355,
1360
+ "엑": 1356,
1361
+ "엔": 1357,
1362
+ "엘": 1358,
1363
+ "엠": 1359,
1364
+ "엣": 1360,
1365
+ "엥": 1361,
1366
+ "엪": 1362,
1367
+ "여": 1363,
1368
+ "역": 1364,
1369
+ "엮": 1365,
1370
+ "연": 1366,
1371
+ "열": 1367,
1372
+ "염": 1368,
1373
+ "엽": 1369,
1374
+ "엿": 1370,
1375
+ "였": 1371,
1376
+ "영": 1372,
1377
+ "옂": 1373,
1378
+ "옅": 1374,
1379
+ "옆": 1375,
1380
+ "옇": 1376,
1381
+ "예": 1377,
1382
+ "옌": 1378,
1383
+ "옐": 1379,
1384
+ "옙": 1380,
1385
+ "옛": 1381,
1386
+ "옜": 1382,
1387
+ "오": 1383,
1388
+ "옥": 1384,
1389
+ "온": 1385,
1390
+ "올": 1386,
1391
+ "옭": 1387,
1392
+ "옮": 1388,
1393
+ "옳": 1389,
1394
+ "옴": 1390,
1395
+ "옵": 1391,
1396
+ "옷": 1392,
1397
+ "옹": 1393,
1398
+ "옻": 1394,
1399
+ "옾": 1395,
1400
+ "와": 1396,
1401
+ "왁": 1397,
1402
+ "완": 1398,
1403
+ "왈": 1399,
1404
+ "왑": 1400,
1405
+ "왓": 1401,
1406
+ "왔": 1402,
1407
+ "왕": 1403,
1408
+ "왜": 1404,
1409
+ "왠": 1405,
1410
+ "왤": 1406,
1411
+ "외": 1407,
1412
+ "왹": 1408,
1413
+ "왼": 1409,
1414
+ "욀": 1410,
1415
+ "요": 1411,
1416
+ "욕": 1412,
1417
+ "욘": 1413,
1418
+ "욜": 1414,
1419
+ "욤": 1415,
1420
+ "욥": 1416,
1421
+ "욧": 1417,
1422
+ "용": 1418,
1423
+ "욬": 1419,
1424
+ "우": 1420,
1425
+ "욱": 1421,
1426
+ "운": 1422,
1427
+ "울": 1423,
1428
+ "움": 1424,
1429
+ "웁": 1425,
1430
+ "웃": 1426,
1431
+ "웅": 1427,
1432
+ "워": 1428,
1433
+ "웍": 1429,
1434
+ "원": 1430,
1435
+ "월": 1431,
1436
+ "웜": 1432,
1437
+ "웟": 1433,
1438
+ "웠": 1434,
1439
+ "웡": 1435,
1440
+ "웨": 1436,
1441
+ "웩": 1437,
1442
+ "웬": 1438,
1443
+ "웰": 1439,
1444
+ "웹": 1440,
1445
+ "웻": 1441,
1446
+ "웽": 1442,
1447
+ "위": 1443,
1448
+ "윅": 1444,
1449
+ "윈": 1445,
1450
+ "윌": 1446,
1451
+ "윔": 1447,
1452
+ "윕": 1448,
1453
+ "윗": 1449,
1454
+ "윙": 1450,
1455
+ "유": 1451,
1456
+ "육": 1452,
1457
+ "윤": 1453,
1458
+ "율": 1454,
1459
+ "윯": 1455,
1460
+ "윱": 1456,
1461
+ "윳": 1457,
1462
+ "융": 1458,
1463
+ "윶": 1459,
1464
+ "윷": 1460,
1465
+ "윹": 1461,
1466
+ "으": 1462,
1467
+ "윽": 1463,
1468
+ "윾": 1464,
1469
+ "은": 1465,
1470
+ "읃": 1466,
1471
+ "을": 1467,
1472
+ "읇": 1468,
1473
+ "읊": 1469,
1474
+ "음": 1470,
1475
+ "읍": 1471,
1476
+ "읏": 1472,
1477
+ "응": 1473,
1478
+ "읒": 1474,
1479
+ "읓": 1475,
1480
+ "읔": 1476,
1481
+ "읕": 1477,
1482
+ "읗": 1478,
1483
+ "의": 1479,
1484
+ "이": 1480,
1485
+ "익": 1481,
1486
+ "인": 1482,
1487
+ "읹": 1483,
1488
+ "일": 1484,
1489
+ "읽": 1485,
1490
+ "잃": 1486,
1491
+ "임": 1487,
1492
+ "입": 1488,
1493
+ "잆": 1489,
1494
+ "잇": 1490,
1495
+ "있": 1491,
1496
+ "잉": 1492,
1497
+ "잊": 1493,
1498
+ "잌": 1494,
1499
+ "잎": 1495,
1500
+ "잏": 1496,
1501
+ "자": 1497,
1502
+ "작": 1498,
1503
+ "잔": 1499,
1504
+ "잖": 1500,
1505
+ "잘": 1501,
1506
+ "잚": 1502,
1507
+ "잠": 1503,
1508
+ "잡": 1504,
1509
+ "잣": 1505,
1510
+ "잤": 1506,
1511
+ "장": 1507,
1512
+ "잦": 1508,
1513
+ "잫": 1509,
1514
+ "재": 1510,
1515
+ "잭": 1511,
1516
+ "잰": 1512,
1517
+ "잴": 1513,
1518
+ "잼": 1514,
1519
+ "잽": 1515,
1520
+ "잿": 1516,
1521
+ "쟀": 1517,
1522
+ "쟁": 1518,
1523
+ "쟈": 1519,
1524
+ "쟌": 1520,
1525
+ "쟎": 1521,
1526
+ "쟝": 1522,
1527
+ "쟤": 1523,
1528
+ "쟨": 1524,
1529
+ "저": 1525,
1530
+ "적": 1526,
1531
+ "전": 1527,
1532
+ "절": 1528,
1533
+ "젊": 1529,
1534
+ "젏": 1530,
1535
+ "점": 1531,
1536
+ "접": 1532,
1537
+ "젓": 1533,
1538
+ "정": 1534,
1539
+ "젖": 1535,
1540
+ "제": 1536,
1541
+ "젝": 1537,
1542
+ "젠": 1538,
1543
+ "젤": 1539,
1544
+ "젬": 1540,
1545
+ "젭": 1541,
1546
+ "젯": 1542,
1547
+ "져": 1543,
1548
+ "젹": 1544,
1549
+ "젼": 1545,
1550
+ "졌": 1546,
1551
+ "졍": 1547,
1552
+ "조": 1548,
1553
+ "족": 1549,
1554
+ "존": 1550,
1555
+ "졸": 1551,
1556
+ "좀": 1552,
1557
+ "좁": 1553,
1558
+ "좃": 1554,
1559
+ "종": 1555,
1560
+ "좆": 1556,
1561
+ "좇": 1557,
1562
+ "좋": 1558,
1563
+ "좌": 1559,
1564
+ "좍": 1560,
1565
+ "좐": 1561,
1566
+ "좔": 1562,
1567
+ "좝": 1563,
1568
+ "좡": 1564,
1569
+ "죄": 1565,
1570
+ "죌": 1566,
1571
+ "죘": 1567,
1572
+ "죙": 1568,
1573
+ "죠": 1569,
1574
+ "죤": 1570,
1575
+ "죵": 1571,
1576
+ "주": 1572,
1577
+ "죽": 1573,
1578
+ "준": 1574,
1579
+ "줄": 1575,
1580
+ "줌": 1576,
1581
+ "줍": 1577,
1582
+ "줏": 1578,
1583
+ "줐": 1579,
1584
+ "중": 1580,
1585
+ "줒": 1581,
1586
+ "줗": 1582,
1587
+ "줘": 1583,
1588
+ "줠": 1584,
1589
+ "줬": 1585,
1590
+ "쥐": 1586,
1591
+ "쥑": 1587,
1592
+ "쥔": 1588,
1593
+ "쥘": 1589,
1594
+ "쥠": 1590,
1595
+ "쥬": 1591,
1596
+ "쥭": 1592,
1597
+ "쥰": 1593,
1598
+ "쥴": 1594,
1599
+ "쥿": 1595,
1600
+ "즈": 1596,
1601
+ "즉": 1597,
1602
+ "즌": 1598,
1603
+ "즐": 1599,
1604
+ "즘": 1600,
1605
+ "즙": 1601,
1606
+ "즛": 1602,
1607
+ "증": 1603,
1608
+ "즞": 1604,
1609
+ "지": 1605,
1610
+ "직": 1606,
1611
+ "진": 1607,
1612
+ "짆": 1608,
1613
+ "질": 1609,
1614
+ "짊": 1610,
1615
+ "짐": 1611,
1616
+ "집": 1612,
1617
+ "짓": 1613,
1618
+ "짔": 1614,
1619
+ "징": 1615,
1620
+ "짖": 1616,
1621
+ "짙": 1617,
1622
+ "짚": 1618,
1623
+ "짜": 1619,
1624
+ "짝": 1620,
1625
+ "짠": 1621,
1626
+ "짢": 1622,
1627
+ "짤": 1623,
1628
+ "짥": 1624,
1629
+ "짦": 1625,
1630
+ "짧": 1626,
1631
+ "짬": 1627,
1632
+ "짭": 1628,
1633
+ "짯": 1629,
1634
+ "짰": 1630,
1635
+ "짱": 1631,
1636
+ "째": 1632,
1637
+ "짹": 1633,
1638
+ "짼": 1634,
1639
+ "쨈": 1635,
1640
+ "쨉": 1636,
1641
+ "쨋": 1637,
1642
+ "쨌": 1638,
1643
+ "쨍": 1639,
1644
+ "쨎": 1640,
1645
+ "쨔": 1641,
1646
+ "쨘": 1642,
1647
+ "쨜": 1643,
1648
+ "쨩": 1644,
1649
+ "쨰": 1645,
1650
+ "쩃": 1646,
1651
+ "쩄": 1647,
1652
+ "쩅": 1648,
1653
+ "쩌": 1649,
1654
+ "쩍": 1650,
1655
+ "쩐": 1651,
1656
+ "쩔": 1652,
1657
+ "쩜": 1653,
1658
+ "쩝": 1654,
1659
+ "쩠": 1655,
1660
+ "쩡": 1656,
1661
+ "쩧": 1657,
1662
+ "쩨": 1658,
1663
+ "쩰": 1659,
1664
+ "쩼": 1660,
1665
+ "쩽": 1661,
1666
+ "쪄": 1662,
1667
+ "쪘": 1663,
1668
+ "쪙": 1664,
1669
+ "쪼": 1665,
1670
+ "쪽": 1666,
1671
+ "쫀": 1667,
1672
+ "쫄": 1668,
1673
+ "쫌": 1669,
1674
+ "쫍": 1670,
1675
+ "쫑": 1671,
1676
+ "쫒": 1672,
1677
+ "쫓": 1673,
1678
+ "쫘": 1674,
1679
+ "쫙": 1675,
1680
+ "쬐": 1676,
1681
+ "쬘": 1677,
1682
+ "쬤": 1678,
1683
+ "쬬": 1679,
1684
+ "쬭": 1680,
1685
+ "쭈": 1681,
1686
+ "쭉": 1682,
1687
+ "쭊": 1683,
1688
+ "쭌": 1684,
1689
+ "쭐": 1685,
1690
+ "쭘": 1686,
1691
+ "쭙": 1687,
1692
+ "쭤": 1688,
1693
+ "쮜": 1689,
1694
+ "쮸": 1690,
1695
+ "쯔": 1691,
1696
+ "쯕": 1692,
1697
+ "쯤": 1693,
1698
+ "쯥": 1694,
1699
+ "쯧": 1695,
1700
+ "쯩": 1696,
1701
+ "쯪": 1697,
1702
+ "찌": 1698,
1703
+ "찍": 1699,
1704
+ "찐": 1700,
1705
+ "찔": 1701,
1706
+ "찜": 1702,
1707
+ "찝": 1703,
1708
+ "찡": 1704,
1709
+ "찢": 1705,
1710
+ "찧": 1706,
1711
+ "차": 1707,
1712
+ "착": 1708,
1713
+ "찬": 1709,
1714
+ "찮": 1710,
1715
+ "찰": 1711,
1716
+ "참": 1712,
1717
+ "찹": 1713,
1718
+ "찻": 1714,
1719
+ "찼": 1715,
1720
+ "창": 1716,
1721
+ "찾": 1717,
1722
+ "챃": 1718,
1723
+ "채": 1719,
1724
+ "책": 1720,
1725
+ "챈": 1721,
1726
+ "챌": 1722,
1727
+ "챔": 1723,
1728
+ "챕": 1724,
1729
+ "챗": 1725,
1730
+ "챘": 1726,
1731
+ "챙": 1727,
1732
+ "챠": 1728,
1733
+ "챤": 1729,
1734
+ "챱": 1730,
1735
+ "처": 1731,
1736
+ "척": 1732,
1737
+ "천": 1733,
1738
+ "철": 1734,
1739
+ "첨": 1735,
1740
+ "첩": 1736,
1741
+ "첫": 1737,
1742
+ "청": 1738,
1743
+ "체": 1739,
1744
+ "첵": 1740,
1745
+ "첸": 1741,
1746
+ "첼": 1742,
1747
+ "쳄": 1743,
1748
+ "쳅": 1744,
1749
+ "쳇": 1745,
1750
+ "쳐": 1746,
1751
+ "쳘": 1747,
1752
+ "쳤": 1748,
1753
+ "초": 1749,
1754
+ "촉": 1750,
1755
+ "촌": 1751,
1756
+ "촐": 1752,
1757
+ "촘": 1753,
1758
+ "촙": 1754,
1759
+ "촛": 1755,
1760
+ "총": 1756,
1761
+ "촤": 1757,
1762
+ "촥": 1758,
1763
+ "촬": 1759,
1764
+ "촵": 1760,
1765
+ "최": 1761,
1766
+ "쵝": 1762,
1767
+ "쵠": 1763,
1768
+ "쵸": 1764,
1769
+ "춋": 1765,
1770
+ "추": 1766,
1771
+ "축": 1767,
1772
+ "춘": 1768,
1773
+ "출": 1769,
1774
+ "춤": 1770,
1775
+ "춥": 1771,
1776
+ "춧": 1772,
1777
+ "충": 1773,
1778
+ "춰": 1774,
1779
+ "춱": 1775,
1780
+ "췄": 1776,
1781
+ "췌": 1777,
1782
+ "취": 1778,
1783
+ "췩": 1779,
1784
+ "췬": 1780,
1785
+ "췹": 1781,
1786
+ "츄": 1782,
1787
+ "츅": 1783,
1788
+ "츈": 1784,
1789
+ "츌": 1785,
1790
+ "츕": 1786,
1791
+ "츠": 1787,
1792
+ "측": 1788,
1793
+ "츤": 1789,
1794
+ "츨": 1790,
1795
+ "츰": 1791,
1796
+ "츱": 1792,
1797
+ "츳": 1793,
1798
+ "층": 1794,
1799
+ "치": 1795,
1800
+ "칙": 1796,
1801
+ "친": 1797,
1802
+ "칟": 1798,
1803
+ "칠": 1799,
1804
+ "칡": 1800,
1805
+ "침": 1801,
1806
+ "칩": 1802,
1807
+ "칫": 1803,
1808
+ "칬": 1804,
1809
+ "칭": 1805,
1810
+ "카": 1806,
1811
+ "칵": 1807,
1812
+ "칸": 1808,
1813
+ "칼": 1809,
1814
+ "캄": 1810,
1815
+ "캅": 1811,
1816
+ "캇": 1812,
1817
+ "캉": 1813,
1818
+ "캐": 1814,
1819
+ "캔": 1815,
1820
+ "캘": 1816,
1821
+ "캠": 1817,
1822
+ "캡": 1818,
1823
+ "캣": 1819,
1824
+ "캤": 1820,
1825
+ "캥": 1821,
1826
+ "캬": 1822,
1827
+ "캭": 1823,
1828
+ "컁": 1824,
1829
+ "커": 1825,
1830
+ "컥": 1826,
1831
+ "컨": 1827,
1832
+ "컫": 1828,
1833
+ "컬": 1829,
1834
+ "컴": 1830,
1835
+ "컵": 1831,
1836
+ "컷": 1832,
1837
+ "컸": 1833,
1838
+ "컹": 1834,
1839
+ "케": 1835,
1840
+ "켁": 1836,
1841
+ "켄": 1837,
1842
+ "켈": 1838,
1843
+ "켐": 1839,
1844
+ "켑": 1840,
1845
+ "켓": 1841,
1846
+ "켔": 1842,
1847
+ "켜": 1843,
1848
+ "켠": 1844,
1849
+ "켤": 1845,
1850
+ "켬": 1846,
1851
+ "켭": 1847,
1852
+ "켯": 1848,
1853
+ "켰": 1849,
1854
+ "켱": 1850,
1855
+ "코": 1851,
1856
+ "콕": 1852,
1857
+ "콘": 1853,
1858
+ "콜": 1854,
1859
+ "콤": 1855,
1860
+ "콥": 1856,
1861
+ "콧": 1857,
1862
+ "콩": 1858,
1863
+ "콰": 1859,
1864
+ "콱": 1860,
1865
+ "콴": 1861,
1866
+ "콸": 1862,
1867
+ "쾃": 1863,
1868
+ "쾅": 1864,
1869
+ "쾌": 1865,
1870
+ "쾡": 1866,
1871
+ "쾨": 1867,
1872
+ "쾰": 1868,
1873
+ "쿄": 1869,
1874
+ "쿙": 1870,
1875
+ "쿠": 1871,
1876
+ "쿡": 1872,
1877
+ "쿤": 1873,
1878
+ "쿨": 1874,
1879
+ "쿰": 1875,
1880
+ "쿱": 1876,
1881
+ "쿵": 1877,
1882
+ "쿼": 1878,
1883
+ "퀀": 1879,
1884
+ "퀄": 1880,
1885
+ "퀏": 1881,
1886
+ "퀘": 1882,
1887
+ "퀠": 1883,
1888
+ "퀭": 1884,
1889
+ "퀴": 1885,
1890
+ "퀵": 1886,
1891
+ "퀸": 1887,
1892
+ "퀼": 1888,
1893
+ "큄": 1889,
1894
+ "큐": 1890,
1895
+ "큘": 1891,
1896
+ "큠": 1892,
1897
+ "크": 1893,
1898
+ "큭": 1894,
1899
+ "큰": 1895,
1900
+ "클": 1896,
1901
+ "큼": 1897,
1902
+ "큽": 1898,
1903
+ "킁": 1899,
1904
+ "키": 1900,
1905
+ "킥": 1901,
1906
+ "킨": 1902,
1907
+ "킬": 1903,
1908
+ "킴": 1904,
1909
+ "킵": 1905,
1910
+ "킷": 1906,
1911
+ "킸": 1907,
1912
+ "킹": 1908,
1913
+ "타": 1909,
1914
+ "탁": 1910,
1915
+ "탄": 1911,
1916
+ "탈": 1912,
1917
+ "탉": 1913,
1918
+ "탐": 1914,
1919
+ "탑": 1915,
1920
+ "탓": 1916,
1921
+ "탔": 1917,
1922
+ "탕": 1918,
1923
+ "태": 1919,
1924
+ "택": 1920,
1925
+ "탠": 1921,
1926
+ "탤": 1922,
1927
+ "탬": 1923,
1928
+ "탭": 1924,
1929
+ "탯": 1925,
1930
+ "탰": 1926,
1931
+ "탱": 1927,
1932
+ "탸": 1928,
1933
+ "터": 1929,
1934
+ "턱": 1930,
1935
+ "턴": 1931,
1936
+ "털": 1932,
1937
+ "텀": 1933,
1938
+ "텁": 1934,
1939
+ "텃": 1935,
1940
+ "텄": 1936,
1941
+ "텅": 1937,
1942
+ "테": 1938,
1943
+ "텍": 1939,
1944
+ "텐": 1940,
1945
+ "텔": 1941,
1946
+ "템": 1942,
1947
+ "텝": 1943,
1948
+ "텟": 1944,
1949
+ "텡": 1945,
1950
+ "텨": 1946,
1951
+ "텼": 1947,
1952
+ "토": 1948,
1953
+ "톡": 1949,
1954
+ "톤": 1950,
1955
+ "톨": 1951,
1956
+ "톰": 1952,
1957
+ "톱": 1953,
1958
+ "톳": 1954,
1959
+ "통": 1955,
1960
+ "퇑": 1956,
1961
+ "퇘": 1957,
1962
+ "퇴": 1958,
1963
+ "투": 1959,
1964
+ "툭": 1960,
1965
+ "툰": 1961,
1966
+ "툴": 1962,
1967
+ "툼": 1963,
1968
+ "툽": 1964,
1969
+ "툿": 1965,
1970
+ "퉁": 1966,
1971
+ "퉈": 1967,
1972
+ "퉜": 1968,
1973
+ "퉤": 1969,
1974
+ "튀": 1970,
1975
+ "튄": 1971,
1976
+ "튈": 1972,
1977
+ "튐": 1973,
1978
+ "튑": 1974,
1979
+ "튕": 1975,
1980
+ "튜": 1976,
1981
+ "튠": 1977,
1982
+ "튤": 1978,
1983
+ "튬": 1979,
1984
+ "튭": 1980,
1985
+ "튱": 1981,
1986
+ "트": 1982,
1987
+ "특": 1983,
1988
+ "튼": 1984,
1989
+ "튿": 1985,
1990
+ "틀": 1986,
1991
+ "틈": 1987,
1992
+ "틉": 1988,
1993
+ "틋": 1989,
1994
+ "틍": 1990,
1995
+ "틔": 1991,
1996
+ "티": 1992,
1997
+ "틱": 1993,
1998
+ "틴": 1994,
1999
+ "틸": 1995,
2000
+ "팀": 1996,
2001
+ "팁": 1997,
2002
+ "팃": 1998,
2003
+ "팅": 1999,
2004
+ "파": 2000,
2005
+ "팍": 2001,
2006
+ "팎": 2002,
2007
+ "판": 2003,
2008
+ "팔": 2004,
2009
+ "팜": 2005,
2010
+ "팝": 2006,
2011
+ "팟": 2007,
2012
+ "팠": 2008,
2013
+ "팡": 2009,
2014
+ "팥": 2010,
2015
+ "패": 2011,
2016
+ "팩": 2012,
2017
+ "팬": 2013,
2018
+ "팰": 2014,
2019
+ "팸": 2015,
2020
+ "팹": 2016,
2021
+ "팻": 2017,
2022
+ "팼": 2018,
2023
+ "팽": 2019,
2024
+ "퍄": 2020,
2025
+ "퍈": 2021,
2026
+ "퍼": 2022,
2027
+ "퍽": 2023,
2028
+ "펀": 2024,
2029
+ "펄": 2025,
2030
+ "펌": 2026,
2031
+ "펍": 2027,
2032
+ "펐": 2028,
2033
+ "펑": 2029,
2034
+ "페": 2030,
2035
+ "펙": 2031,
2036
+ "펜": 2032,
2037
+ "펠": 2033,
2038
+ "펨": 2034,
2039
+ "펩": 2035,
2040
+ "펫": 2036,
2041
+ "펭": 2037,
2042
+ "펴": 2038,
2043
+ "편": 2039,
2044
+ "펼": 2040,
2045
+ "폄": 2041,
2046
+ "폈": 2042,
2047
+ "평": 2043,
2048
+ "폐": 2044,
2049
+ "포": 2045,
2050
+ "폭": 2046,
2051
+ "폰": 2047,
2052
+ "폴": 2048,
2053
+ "폼": 2049,
2054
+ "폿": 2050,
2055
+ "퐁": 2051,
2056
+ "퐈": 2052,
2057
+ "퐉": 2053,
2058
+ "퐌": 2054,
2059
+ "퐐": 2055,
2060
+ "푀": 2056,
2061
+ "표": 2057,
2062
+ "푠": 2058,
2063
+ "푬": 2059,
2064
+ "푭": 2060,
2065
+ "푯": 2061,
2066
+ "푸": 2062,
2067
+ "푹": 2063,
2068
+ "푼": 2064,
2069
+ "푿": 2065,
2070
+ "풀": 2066,
2071
+ "품": 2067,
2072
+ "풉": 2068,
2073
+ "풋": 2069,
2074
+ "풍": 2070,
2075
+ "퓌": 2071,
2076
+ "퓨": 2072,
2077
+ "퓰": 2073,
2078
+ "퓸": 2074,
2079
+ "프": 2075,
2080
+ "픈": 2076,
2081
+ "플": 2077,
2082
+ "픔": 2078,
2083
+ "픕": 2079,
2084
+ "픗": 2080,
2085
+ "피": 2081,
2086
+ "픽": 2082,
2087
+ "핀": 2083,
2088
+ "필": 2084,
2089
+ "핌": 2085,
2090
+ "핍": 2086,
2091
+ "핏": 2087,
2092
+ "핑": 2088,
2093
+ "하": 2089,
2094
+ "학": 2090,
2095
+ "한": 2091,
2096
+ "할": 2092,
2097
+ "핡": 2093,
2098
+ "핥": 2094,
2099
+ "핧": 2095,
2100
+ "함": 2096,
2101
+ "합": 2097,
2102
+ "핫": 2098,
2103
+ "핬": 2099,
2104
+ "항": 2100,
2105
+ "해": 2101,
2106
+ "핵": 2102,
2107
+ "핸": 2103,
2108
+ "핼": 2104,
2109
+ "햄": 2105,
2110
+ "햅": 2106,
2111
+ "햇": 2107,
2112
+ "했": 2108,
2113
+ "행": 2109,
2114
+ "햍": 2110,
2115
+ "햎": 2111,
2116
+ "햐": 2112,
2117
+ "햑": 2113,
2118
+ "햔": 2114,
2119
+ "햘": 2115,
2120
+ "햝": 2116,
2121
+ "향": 2117,
2122
+ "헀": 2118,
2123
+ "허": 2119,
2124
+ "헉": 2120,
2125
+ "헌": 2121,
2126
+ "헐": 2122,
2127
+ "험": 2123,
2128
+ "헙": 2124,
2129
+ "헛": 2125,
2130
+ "헝": 2126,
2131
+ "헤": 2127,
2132
+ "헥": 2128,
2133
+ "헨": 2129,
2134
+ "헬": 2130,
2135
+ "헴": 2131,
2136
+ "헵": 2132,
2137
+ "헷": 2133,
2138
+ "헸": 2134,
2139
+ "헹": 2135,
2140
+ "헿": 2136,
2141
+ "혀": 2137,
2142
+ "혁": 2138,
2143
+ "현": 2139,
2144
+ "혈": 2140,
2145
+ "혐": 2141,
2146
+ "협": 2142,
2147
+ "혓": 2143,
2148
+ "혔": 2144,
2149
+ "형": 2145,
2150
+ "혛": 2146,
2151
+ "혜": 2147,
2152
+ "호": 2148,
2153
+ "혹": 2149,
2154
+ "혼": 2150,
2155
+ "홀": 2151,
2156
+ "홈": 2152,
2157
+ "홉": 2153,
2158
+ "홋": 2154,
2159
+ "홍": 2155,
2160
+ "홑": 2156,
2161
+ "화": 2157,
2162
+ "확": 2158,
2163
+ "환": 2159,
2164
+ "활": 2160,
2165
+ "홥": 2161,
2166
+ "홧": 2162,
2167
+ "황": 2163,
2168
+ "홰": 2164,
2169
+ "홱": 2165,
2170
+ "횃": 2166,
2171
+ "회": 2167,
2172
+ "획": 2168,
2173
+ "횐": 2169,
2174
+ "횝": 2170,
2175
+ "횟": 2171,
2176
+ "횡": 2172,
2177
+ "효": 2173,
2178
+ "후": 2174,
2179
+ "훅": 2175,
2180
+ "훈": 2176,
2181
+ "훌": 2177,
2182
+ "훑": 2178,
2183
+ "훔": 2179,
2184
+ "훕": 2180,
2185
+ "훗": 2181,
2186
+ "훙": 2182,
2187
+ "훠": 2183,
2188
+ "훤": 2184,
2189
+ "훨": 2185,
2190
+ "훼": 2186,
2191
+ "휀": 2187,
2192
+ "휑": 2188,
2193
+ "휘": 2189,
2194
+ "휙": 2190,
2195
+ "휜": 2191,
2196
+ "휠": 2192,
2197
+ "휨": 2193,
2198
+ "휩": 2194,
2199
+ "휴": 2195,
2200
+ "휸": 2196,
2201
+ "흉": 2197,
2202
+ "흐": 2198,
2203
+ "흑": 2199,
2204
+ "흔": 2200,
2205
+ "흘": 2201,
2206
+ "흙": 2202,
2207
+ "흠": 2203,
2208
+ "흡": 2204,
2209
+ "흣": 2205,
2210
+ "흥": 2206,
2211
+ "흩": 2207,
2212
+ "흫": 2208,
2213
+ "희": 2209,
2214
+ "흰": 2210,
2215
+ "흿": 2211,
2216
+ "히": 2212,
2217
+ "힉": 2213,
2218
+ "힌": 2214,
2219
+ "힐": 2215,
2220
+ "힘": 2216,
2221
+ "힙": 2217,
2222
+ "힛": 2218,
2223
+ "힝": 2219,
2224
+ ".": 2220
2225
+ }
config.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForCTC"
11
+ ],
12
+ "attention_dropout": 0.05,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 768,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "mean",
46
+ "ctc_zero_infinity": true,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.05,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "gradient_checkpointing": false,
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.05,
59
+ "hidden_size": 1024,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 4096,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.05,
64
+ "mask_channel_length": 10,
65
+ "mask_channel_min_space": 1,
66
+ "mask_channel_other": 0.0,
67
+ "mask_channel_prob": 0.0,
68
+ "mask_channel_selection": "static",
69
+ "mask_feature_length": 10,
70
+ "mask_feature_min_masks": 0,
71
+ "mask_feature_prob": 0.0,
72
+ "mask_time_length": 10,
73
+ "mask_time_min_masks": 2,
74
+ "mask_time_min_space": 1,
75
+ "mask_time_other": 0.0,
76
+ "mask_time_prob": 0.05,
77
+ "mask_time_selection": "static",
78
+ "model_type": "wav2vec2",
79
+ "num_adapter_layers": 3,
80
+ "num_attention_heads": 16,
81
+ "num_codevector_groups": 2,
82
+ "num_codevectors_per_group": 320,
83
+ "num_conv_pos_embedding_groups": 16,
84
+ "num_conv_pos_embeddings": 128,
85
+ "num_feat_extract_layers": 7,
86
+ "num_hidden_layers": 24,
87
+ "num_negatives": 100,
88
+ "output_hidden_size": 1024,
89
+ "pad_token_id": 2222,
90
+ "proj_codevector_dim": 768,
91
+ "tdnn_dilation": [
92
+ 1,
93
+ 2,
94
+ 3,
95
+ 1,
96
+ 1
97
+ ],
98
+ "tdnn_dim": [
99
+ 512,
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 1500
104
+ ],
105
+ "tdnn_kernel": [
106
+ 5,
107
+ 3,
108
+ 3,
109
+ 1,
110
+ 1
111
+ ],
112
+ "torch_dtype": "float32",
113
+ "transformers_version": "4.35.2",
114
+ "use_weighted_layer_sum": false,
115
+ "vocab_size": 2225,
116
+ "xvector_output_dim": 512
117
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79141e65bb103824f47cb013255477227de4b13227fde6b338a3afd1a2ccc4e9
3
+ size 1270930004
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "[UNK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": true,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "2221": {
4
+ "content": "[UNK]",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "2222": {
12
+ "content": "[PAD]",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "2223": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "2224": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": true,
38
+ "config": null,
39
+ "do_lower_case": false,
40
+ "eos_token": "</s>",
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "[PAD]",
43
+ "processor_class": "Wav2Vec2Processor",
44
+ "replace_word_delimiter_char": " ",
45
+ "target_lang": null,
46
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
47
+ "tokenizer_type": "wav2vec2",
48
+ "trust_remote_code": false,
49
+ "unk_token": "[UNK]",
50
+ "word_delimiter_token": "|"
51
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 30.0,
3
+ "train_loss": 0.5222103027782066,
4
+ "train_runtime": 708527.1323,
5
+ "train_samples": 640184,
6
+ "train_samples_per_second": 27.106,
7
+ "train_steps_per_second": 1.694
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,2428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 29.99962510778151,
5
+ "eval_steps": 500,
6
+ "global_step": 1200330,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.07,
13
+ "learning_rate": 7.497500833055648e-05,
14
+ "loss": 11.5654,
15
+ "step": 3000
16
+ },
17
+ {
18
+ "epoch": 0.15,
19
+ "learning_rate": 0.00014995001666111296,
20
+ "loss": 1.9313,
21
+ "step": 6000
22
+ },
23
+ {
24
+ "epoch": 0.22,
25
+ "learning_rate": 0.0002249250249916694,
26
+ "loss": 1.3886,
27
+ "step": 9000
28
+ },
29
+ {
30
+ "epoch": 0.3,
31
+ "learning_rate": 0.0002999000333222259,
32
+ "loss": 1.3023,
33
+ "step": 12000
34
+ },
35
+ {
36
+ "epoch": 0.37,
37
+ "learning_rate": 0.0002992436418962473,
38
+ "loss": 1.2746,
39
+ "step": 15000
40
+ },
41
+ {
42
+ "epoch": 0.45,
43
+ "learning_rate": 0.0002984862739685911,
44
+ "loss": 1.2224,
45
+ "step": 18000
46
+ },
47
+ {
48
+ "epoch": 0.52,
49
+ "learning_rate": 0.00029772890604093486,
50
+ "loss": 1.1809,
51
+ "step": 21000
52
+ },
53
+ {
54
+ "epoch": 0.6,
55
+ "learning_rate": 0.00029697153811327864,
56
+ "loss": 1.1405,
57
+ "step": 24000
58
+ },
59
+ {
60
+ "epoch": 0.67,
61
+ "learning_rate": 0.0002962141701856224,
62
+ "loss": 1.1178,
63
+ "step": 27000
64
+ },
65
+ {
66
+ "epoch": 0.75,
67
+ "learning_rate": 0.0002954568022579662,
68
+ "loss": 1.0984,
69
+ "step": 30000
70
+ },
71
+ {
72
+ "epoch": 0.82,
73
+ "learning_rate": 0.00029469943433031,
74
+ "loss": 1.0659,
75
+ "step": 33000
76
+ },
77
+ {
78
+ "epoch": 0.9,
79
+ "learning_rate": 0.0002939420664026538,
80
+ "loss": 1.0466,
81
+ "step": 36000
82
+ },
83
+ {
84
+ "epoch": 0.97,
85
+ "learning_rate": 0.0002931846984749976,
86
+ "loss": 1.0377,
87
+ "step": 39000
88
+ },
89
+ {
90
+ "epoch": 1.05,
91
+ "learning_rate": 0.00029242733054734134,
92
+ "loss": 1.005,
93
+ "step": 42000
94
+ },
95
+ {
96
+ "epoch": 1.12,
97
+ "learning_rate": 0.0002916699626196851,
98
+ "loss": 0.9926,
99
+ "step": 45000
100
+ },
101
+ {
102
+ "epoch": 1.2,
103
+ "learning_rate": 0.00029091259469202896,
104
+ "loss": 0.9863,
105
+ "step": 48000
106
+ },
107
+ {
108
+ "epoch": 1.27,
109
+ "learning_rate": 0.0002901552267643727,
110
+ "loss": 0.9723,
111
+ "step": 51000
112
+ },
113
+ {
114
+ "epoch": 1.35,
115
+ "learning_rate": 0.00028939785883671653,
116
+ "loss": 0.9571,
117
+ "step": 54000
118
+ },
119
+ {
120
+ "epoch": 1.42,
121
+ "learning_rate": 0.0002886404909090603,
122
+ "loss": 0.933,
123
+ "step": 57000
124
+ },
125
+ {
126
+ "epoch": 1.5,
127
+ "learning_rate": 0.00028788312298140404,
128
+ "loss": 0.9296,
129
+ "step": 60000
130
+ },
131
+ {
132
+ "epoch": 1.57,
133
+ "learning_rate": 0.0002871257550537479,
134
+ "loss": 0.9255,
135
+ "step": 63000
136
+ },
137
+ {
138
+ "epoch": 1.65,
139
+ "learning_rate": 0.00028636838712609166,
140
+ "loss": 0.9173,
141
+ "step": 66000
142
+ },
143
+ {
144
+ "epoch": 1.72,
145
+ "learning_rate": 0.0002856110191984354,
146
+ "loss": 0.9063,
147
+ "step": 69000
148
+ },
149
+ {
150
+ "epoch": 1.8,
151
+ "learning_rate": 0.00028485365127077923,
152
+ "loss": 0.9004,
153
+ "step": 72000
154
+ },
155
+ {
156
+ "epoch": 1.87,
157
+ "learning_rate": 0.000284096283343123,
158
+ "loss": 0.8997,
159
+ "step": 75000
160
+ },
161
+ {
162
+ "epoch": 1.95,
163
+ "learning_rate": 0.00028333891541546674,
164
+ "loss": 0.8943,
165
+ "step": 78000
166
+ },
167
+ {
168
+ "epoch": 2.02,
169
+ "learning_rate": 0.0002825815474878106,
170
+ "loss": 0.8797,
171
+ "step": 81000
172
+ },
173
+ {
174
+ "epoch": 2.1,
175
+ "learning_rate": 0.00028182417956015436,
176
+ "loss": 0.8501,
177
+ "step": 84000
178
+ },
179
+ {
180
+ "epoch": 2.17,
181
+ "learning_rate": 0.0002810668116324981,
182
+ "loss": 0.8479,
183
+ "step": 87000
184
+ },
185
+ {
186
+ "epoch": 2.25,
187
+ "learning_rate": 0.00028030944370484193,
188
+ "loss": 0.8451,
189
+ "step": 90000
190
+ },
191
+ {
192
+ "epoch": 2.32,
193
+ "learning_rate": 0.0002795520757771857,
194
+ "loss": 0.8315,
195
+ "step": 93000
196
+ },
197
+ {
198
+ "epoch": 2.4,
199
+ "learning_rate": 0.0002787947078495295,
200
+ "loss": 0.8353,
201
+ "step": 96000
202
+ },
203
+ {
204
+ "epoch": 2.47,
205
+ "learning_rate": 0.0002780373399218733,
206
+ "loss": 0.8271,
207
+ "step": 99000
208
+ },
209
+ {
210
+ "epoch": 2.55,
211
+ "learning_rate": 0.00027727997199421706,
212
+ "loss": 0.8129,
213
+ "step": 102000
214
+ },
215
+ {
216
+ "epoch": 2.62,
217
+ "learning_rate": 0.00027652260406656084,
218
+ "loss": 0.8125,
219
+ "step": 105000
220
+ },
221
+ {
222
+ "epoch": 2.7,
223
+ "learning_rate": 0.0002757652361389046,
224
+ "loss": 0.8119,
225
+ "step": 108000
226
+ },
227
+ {
228
+ "epoch": 2.77,
229
+ "learning_rate": 0.0002750078682112484,
230
+ "loss": 0.8,
231
+ "step": 111000
232
+ },
233
+ {
234
+ "epoch": 2.85,
235
+ "learning_rate": 0.0002742505002835922,
236
+ "loss": 0.7979,
237
+ "step": 114000
238
+ },
239
+ {
240
+ "epoch": 2.92,
241
+ "learning_rate": 0.000273493132355936,
242
+ "loss": 0.7914,
243
+ "step": 117000
244
+ },
245
+ {
246
+ "epoch": 3.0,
247
+ "learning_rate": 0.00027273576442827976,
248
+ "loss": 0.7916,
249
+ "step": 120000
250
+ },
251
+ {
252
+ "epoch": 3.07,
253
+ "learning_rate": 0.00027197839650062354,
254
+ "loss": 0.7542,
255
+ "step": 123000
256
+ },
257
+ {
258
+ "epoch": 3.15,
259
+ "learning_rate": 0.0002712210285729673,
260
+ "loss": 0.7643,
261
+ "step": 126000
262
+ },
263
+ {
264
+ "epoch": 3.22,
265
+ "learning_rate": 0.0002704636606453111,
266
+ "loss": 0.7576,
267
+ "step": 129000
268
+ },
269
+ {
270
+ "epoch": 3.3,
271
+ "learning_rate": 0.0002697062927176549,
272
+ "loss": 0.7551,
273
+ "step": 132000
274
+ },
275
+ {
276
+ "epoch": 3.37,
277
+ "learning_rate": 0.0002689489247899987,
278
+ "loss": 0.7537,
279
+ "step": 135000
280
+ },
281
+ {
282
+ "epoch": 3.45,
283
+ "learning_rate": 0.00026819155686234246,
284
+ "loss": 0.7536,
285
+ "step": 138000
286
+ },
287
+ {
288
+ "epoch": 3.52,
289
+ "learning_rate": 0.00026743418893468624,
290
+ "loss": 0.7466,
291
+ "step": 141000
292
+ },
293
+ {
294
+ "epoch": 3.6,
295
+ "learning_rate": 0.00026667682100703,
296
+ "loss": 0.7488,
297
+ "step": 144000
298
+ },
299
+ {
300
+ "epoch": 3.67,
301
+ "learning_rate": 0.0002659194530793738,
302
+ "loss": 0.7445,
303
+ "step": 147000
304
+ },
305
+ {
306
+ "epoch": 3.75,
307
+ "learning_rate": 0.0002651620851517176,
308
+ "loss": 0.7396,
309
+ "step": 150000
310
+ },
311
+ {
312
+ "epoch": 3.82,
313
+ "learning_rate": 0.0002644047172240614,
314
+ "loss": 0.7387,
315
+ "step": 153000
316
+ },
317
+ {
318
+ "epoch": 3.9,
319
+ "learning_rate": 0.00026364734929640516,
320
+ "loss": 0.7324,
321
+ "step": 156000
322
+ },
323
+ {
324
+ "epoch": 3.97,
325
+ "learning_rate": 0.00026288998136874894,
326
+ "loss": 0.7297,
327
+ "step": 159000
328
+ },
329
+ {
330
+ "epoch": 4.05,
331
+ "learning_rate": 0.0002621326134410928,
332
+ "loss": 0.7069,
333
+ "step": 162000
334
+ },
335
+ {
336
+ "epoch": 4.12,
337
+ "learning_rate": 0.0002613752455134365,
338
+ "loss": 0.7001,
339
+ "step": 165000
340
+ },
341
+ {
342
+ "epoch": 4.2,
343
+ "learning_rate": 0.0002606178775857803,
344
+ "loss": 0.6945,
345
+ "step": 168000
346
+ },
347
+ {
348
+ "epoch": 4.27,
349
+ "learning_rate": 0.00025986050965812413,
350
+ "loss": 0.7017,
351
+ "step": 171000
352
+ },
353
+ {
354
+ "epoch": 4.35,
355
+ "learning_rate": 0.00025910314173046786,
356
+ "loss": 0.7018,
357
+ "step": 174000
358
+ },
359
+ {
360
+ "epoch": 4.42,
361
+ "learning_rate": 0.00025834577380281164,
362
+ "loss": 0.6977,
363
+ "step": 177000
364
+ },
365
+ {
366
+ "epoch": 4.5,
367
+ "learning_rate": 0.0002575884058751555,
368
+ "loss": 0.6923,
369
+ "step": 180000
370
+ },
371
+ {
372
+ "epoch": 4.57,
373
+ "learning_rate": 0.0002568310379474992,
374
+ "loss": 0.6972,
375
+ "step": 183000
376
+ },
377
+ {
378
+ "epoch": 4.65,
379
+ "learning_rate": 0.000256073670019843,
380
+ "loss": 0.685,
381
+ "step": 186000
382
+ },
383
+ {
384
+ "epoch": 4.72,
385
+ "learning_rate": 0.00025531630209218683,
386
+ "loss": 0.6857,
387
+ "step": 189000
388
+ },
389
+ {
390
+ "epoch": 4.8,
391
+ "learning_rate": 0.00025455893416453056,
392
+ "loss": 0.6846,
393
+ "step": 192000
394
+ },
395
+ {
396
+ "epoch": 4.87,
397
+ "learning_rate": 0.00025380156623687434,
398
+ "loss": 0.6848,
399
+ "step": 195000
400
+ },
401
+ {
402
+ "epoch": 4.95,
403
+ "learning_rate": 0.0002530441983092182,
404
+ "loss": 0.6783,
405
+ "step": 198000
406
+ },
407
+ {
408
+ "epoch": 5.02,
409
+ "learning_rate": 0.00025228683038156196,
410
+ "loss": 0.6676,
411
+ "step": 201000
412
+ },
413
+ {
414
+ "epoch": 5.1,
415
+ "learning_rate": 0.0002515294624539057,
416
+ "loss": 0.6514,
417
+ "step": 204000
418
+ },
419
+ {
420
+ "epoch": 5.17,
421
+ "learning_rate": 0.00025077209452624953,
422
+ "loss": 0.6469,
423
+ "step": 207000
424
+ },
425
+ {
426
+ "epoch": 5.25,
427
+ "learning_rate": 0.0002500147265985933,
428
+ "loss": 0.6483,
429
+ "step": 210000
430
+ },
431
+ {
432
+ "epoch": 5.32,
433
+ "learning_rate": 0.00024925735867093704,
434
+ "loss": 0.6525,
435
+ "step": 213000
436
+ },
437
+ {
438
+ "epoch": 5.4,
439
+ "learning_rate": 0.0002484999907432809,
440
+ "loss": 0.6487,
441
+ "step": 216000
442
+ },
443
+ {
444
+ "epoch": 5.47,
445
+ "learning_rate": 0.00024774262281562466,
446
+ "loss": 0.6495,
447
+ "step": 219000
448
+ },
449
+ {
450
+ "epoch": 5.55,
451
+ "learning_rate": 0.00024698525488796845,
452
+ "loss": 0.645,
453
+ "step": 222000
454
+ },
455
+ {
456
+ "epoch": 5.62,
457
+ "learning_rate": 0.00024622788696031223,
458
+ "loss": 0.6517,
459
+ "step": 225000
460
+ },
461
+ {
462
+ "epoch": 5.7,
463
+ "learning_rate": 0.000245470519032656,
464
+ "loss": 0.6459,
465
+ "step": 228000
466
+ },
467
+ {
468
+ "epoch": 5.77,
469
+ "learning_rate": 0.0002447131511049998,
470
+ "loss": 0.6451,
471
+ "step": 231000
472
+ },
473
+ {
474
+ "epoch": 5.85,
475
+ "learning_rate": 0.00024395578317734358,
476
+ "loss": 0.6412,
477
+ "step": 234000
478
+ },
479
+ {
480
+ "epoch": 5.92,
481
+ "learning_rate": 0.00024319841524968736,
482
+ "loss": 0.6457,
483
+ "step": 237000
484
+ },
485
+ {
486
+ "epoch": 6.0,
487
+ "learning_rate": 0.00024244104732203112,
488
+ "loss": 0.64,
489
+ "step": 240000
490
+ },
491
+ {
492
+ "epoch": 6.07,
493
+ "learning_rate": 0.00024168367939437493,
494
+ "loss": 0.6137,
495
+ "step": 243000
496
+ },
497
+ {
498
+ "epoch": 6.15,
499
+ "learning_rate": 0.0002409263114667187,
500
+ "loss": 0.6131,
501
+ "step": 246000
502
+ },
503
+ {
504
+ "epoch": 6.22,
505
+ "learning_rate": 0.0002401689435390625,
506
+ "loss": 0.6153,
507
+ "step": 249000
508
+ },
509
+ {
510
+ "epoch": 6.3,
511
+ "learning_rate": 0.00023941157561140628,
512
+ "loss": 0.6193,
513
+ "step": 252000
514
+ },
515
+ {
516
+ "epoch": 6.37,
517
+ "learning_rate": 0.00023865420768375006,
518
+ "loss": 0.6161,
519
+ "step": 255000
520
+ },
521
+ {
522
+ "epoch": 6.45,
523
+ "learning_rate": 0.00023789683975609387,
524
+ "loss": 0.614,
525
+ "step": 258000
526
+ },
527
+ {
528
+ "epoch": 6.52,
529
+ "learning_rate": 0.00023713947182843763,
530
+ "loss": 0.6142,
531
+ "step": 261000
532
+ },
533
+ {
534
+ "epoch": 6.6,
535
+ "learning_rate": 0.0002363821039007814,
536
+ "loss": 0.6181,
537
+ "step": 264000
538
+ },
539
+ {
540
+ "epoch": 6.67,
541
+ "learning_rate": 0.00023562473597312522,
542
+ "loss": 0.6098,
543
+ "step": 267000
544
+ },
545
+ {
546
+ "epoch": 6.75,
547
+ "learning_rate": 0.00023486736804546898,
548
+ "loss": 0.6165,
549
+ "step": 270000
550
+ },
551
+ {
552
+ "epoch": 6.82,
553
+ "learning_rate": 0.00023411000011781276,
554
+ "loss": 0.612,
555
+ "step": 273000
556
+ },
557
+ {
558
+ "epoch": 6.9,
559
+ "learning_rate": 0.00023335263219015657,
560
+ "loss": 0.6109,
561
+ "step": 276000
562
+ },
563
+ {
564
+ "epoch": 6.97,
565
+ "learning_rate": 0.00023259526426250033,
566
+ "loss": 0.6141,
567
+ "step": 279000
568
+ },
569
+ {
570
+ "epoch": 7.05,
571
+ "learning_rate": 0.0002318378963348441,
572
+ "loss": 0.5912,
573
+ "step": 282000
574
+ },
575
+ {
576
+ "epoch": 7.12,
577
+ "learning_rate": 0.00023108052840718792,
578
+ "loss": 0.5838,
579
+ "step": 285000
580
+ },
581
+ {
582
+ "epoch": 7.2,
583
+ "learning_rate": 0.00023032316047953168,
584
+ "loss": 0.5823,
585
+ "step": 288000
586
+ },
587
+ {
588
+ "epoch": 7.27,
589
+ "learning_rate": 0.00022956579255187546,
590
+ "loss": 0.5836,
591
+ "step": 291000
592
+ },
593
+ {
594
+ "epoch": 7.35,
595
+ "learning_rate": 0.00022880842462421927,
596
+ "loss": 0.5857,
597
+ "step": 294000
598
+ },
599
+ {
600
+ "epoch": 7.42,
601
+ "learning_rate": 0.00022805105669656303,
602
+ "loss": 0.5872,
603
+ "step": 297000
604
+ },
605
+ {
606
+ "epoch": 7.5,
607
+ "learning_rate": 0.0002272936887689068,
608
+ "loss": 0.59,
609
+ "step": 300000
610
+ },
611
+ {
612
+ "epoch": 7.57,
613
+ "learning_rate": 0.00022653632084125062,
614
+ "loss": 0.5808,
615
+ "step": 303000
616
+ },
617
+ {
618
+ "epoch": 7.65,
619
+ "learning_rate": 0.0002257789529135944,
620
+ "loss": 0.5826,
621
+ "step": 306000
622
+ },
623
+ {
624
+ "epoch": 7.72,
625
+ "learning_rate": 0.00022502158498593816,
626
+ "loss": 0.5813,
627
+ "step": 309000
628
+ },
629
+ {
630
+ "epoch": 7.8,
631
+ "learning_rate": 0.00022426421705828197,
632
+ "loss": 0.5883,
633
+ "step": 312000
634
+ },
635
+ {
636
+ "epoch": 7.87,
637
+ "learning_rate": 0.00022350684913062576,
638
+ "loss": 0.5852,
639
+ "step": 315000
640
+ },
641
+ {
642
+ "epoch": 7.95,
643
+ "learning_rate": 0.00022274948120296954,
644
+ "loss": 0.5824,
645
+ "step": 318000
646
+ },
647
+ {
648
+ "epoch": 8.02,
649
+ "learning_rate": 0.00022199211327531332,
650
+ "loss": 0.575,
651
+ "step": 321000
652
+ },
653
+ {
654
+ "epoch": 8.1,
655
+ "learning_rate": 0.0002212347453476571,
656
+ "loss": 0.5561,
657
+ "step": 324000
658
+ },
659
+ {
660
+ "epoch": 8.17,
661
+ "learning_rate": 0.0002204773774200009,
662
+ "loss": 0.5596,
663
+ "step": 327000
664
+ },
665
+ {
666
+ "epoch": 8.25,
667
+ "learning_rate": 0.00021972000949234467,
668
+ "loss": 0.5603,
669
+ "step": 330000
670
+ },
671
+ {
672
+ "epoch": 8.32,
673
+ "learning_rate": 0.00021896264156468846,
674
+ "loss": 0.5575,
675
+ "step": 333000
676
+ },
677
+ {
678
+ "epoch": 8.4,
679
+ "learning_rate": 0.00021820527363703224,
680
+ "loss": 0.5545,
681
+ "step": 336000
682
+ },
683
+ {
684
+ "epoch": 8.47,
685
+ "learning_rate": 0.00021744790570937602,
686
+ "loss": 0.5629,
687
+ "step": 339000
688
+ },
689
+ {
690
+ "epoch": 8.55,
691
+ "learning_rate": 0.00021669053778171983,
692
+ "loss": 0.5572,
693
+ "step": 342000
694
+ },
695
+ {
696
+ "epoch": 8.62,
697
+ "learning_rate": 0.0002159331698540636,
698
+ "loss": 0.5602,
699
+ "step": 345000
700
+ },
701
+ {
702
+ "epoch": 8.7,
703
+ "learning_rate": 0.00021517580192640737,
704
+ "loss": 0.5521,
705
+ "step": 348000
706
+ },
707
+ {
708
+ "epoch": 8.77,
709
+ "learning_rate": 0.00021441843399875118,
710
+ "loss": 0.5582,
711
+ "step": 351000
712
+ },
713
+ {
714
+ "epoch": 8.85,
715
+ "learning_rate": 0.00021366106607109497,
716
+ "loss": 0.5539,
717
+ "step": 354000
718
+ },
719
+ {
720
+ "epoch": 8.92,
721
+ "learning_rate": 0.00021290369814343872,
722
+ "loss": 0.5589,
723
+ "step": 357000
724
+ },
725
+ {
726
+ "epoch": 9.0,
727
+ "learning_rate": 0.00021214633021578253,
728
+ "loss": 0.5549,
729
+ "step": 360000
730
+ },
731
+ {
732
+ "epoch": 9.07,
733
+ "learning_rate": 0.00021138896228812632,
734
+ "loss": 0.525,
735
+ "step": 363000
736
+ },
737
+ {
738
+ "epoch": 9.15,
739
+ "learning_rate": 0.00021063159436047007,
740
+ "loss": 0.5304,
741
+ "step": 366000
742
+ },
743
+ {
744
+ "epoch": 9.22,
745
+ "learning_rate": 0.00020987422643281388,
746
+ "loss": 0.5331,
747
+ "step": 369000
748
+ },
749
+ {
750
+ "epoch": 9.3,
751
+ "learning_rate": 0.00020911685850515766,
752
+ "loss": 0.5341,
753
+ "step": 372000
754
+ },
755
+ {
756
+ "epoch": 9.37,
757
+ "learning_rate": 0.00020835949057750142,
758
+ "loss": 0.5319,
759
+ "step": 375000
760
+ },
761
+ {
762
+ "epoch": 9.45,
763
+ "learning_rate": 0.00020760212264984523,
764
+ "loss": 0.5318,
765
+ "step": 378000
766
+ },
767
+ {
768
+ "epoch": 9.52,
769
+ "learning_rate": 0.00020684475472218901,
770
+ "loss": 0.5368,
771
+ "step": 381000
772
+ },
773
+ {
774
+ "epoch": 9.6,
775
+ "learning_rate": 0.00020608738679453277,
776
+ "loss": 0.532,
777
+ "step": 384000
778
+ },
779
+ {
780
+ "epoch": 9.67,
781
+ "learning_rate": 0.00020533001886687658,
782
+ "loss": 0.5353,
783
+ "step": 387000
784
+ },
785
+ {
786
+ "epoch": 9.75,
787
+ "learning_rate": 0.00020457265093922036,
788
+ "loss": 0.5329,
789
+ "step": 390000
790
+ },
791
+ {
792
+ "epoch": 9.82,
793
+ "learning_rate": 0.00020381528301156415,
794
+ "loss": 0.5354,
795
+ "step": 393000
796
+ },
797
+ {
798
+ "epoch": 9.9,
799
+ "learning_rate": 0.00020305791508390793,
800
+ "loss": 0.5375,
801
+ "step": 396000
802
+ },
803
+ {
804
+ "epoch": 9.97,
805
+ "learning_rate": 0.00020230054715625171,
806
+ "loss": 0.5377,
807
+ "step": 399000
808
+ },
809
+ {
810
+ "epoch": 10.05,
811
+ "learning_rate": 0.0002015431792285955,
812
+ "loss": 0.5191,
813
+ "step": 402000
814
+ },
815
+ {
816
+ "epoch": 10.12,
817
+ "learning_rate": 0.00020078581130093928,
818
+ "loss": 0.5057,
819
+ "step": 405000
820
+ },
821
+ {
822
+ "epoch": 10.2,
823
+ "learning_rate": 0.00020002844337328306,
824
+ "loss": 0.508,
825
+ "step": 408000
826
+ },
827
+ {
828
+ "epoch": 10.27,
829
+ "learning_rate": 0.00019927107544562687,
830
+ "loss": 0.5117,
831
+ "step": 411000
832
+ },
833
+ {
834
+ "epoch": 10.35,
835
+ "learning_rate": 0.00019851370751797063,
836
+ "loss": 0.5135,
837
+ "step": 414000
838
+ },
839
+ {
840
+ "epoch": 10.42,
841
+ "learning_rate": 0.00019775633959031441,
842
+ "loss": 0.5129,
843
+ "step": 417000
844
+ },
845
+ {
846
+ "epoch": 10.5,
847
+ "learning_rate": 0.00019699897166265822,
848
+ "loss": 0.511,
849
+ "step": 420000
850
+ },
851
+ {
852
+ "epoch": 10.57,
853
+ "learning_rate": 0.00019624160373500198,
854
+ "loss": 0.5095,
855
+ "step": 423000
856
+ },
857
+ {
858
+ "epoch": 10.65,
859
+ "learning_rate": 0.0001954842358073458,
860
+ "loss": 0.5129,
861
+ "step": 426000
862
+ },
863
+ {
864
+ "epoch": 10.72,
865
+ "learning_rate": 0.00019472686787968957,
866
+ "loss": 0.5124,
867
+ "step": 429000
868
+ },
869
+ {
870
+ "epoch": 10.8,
871
+ "learning_rate": 0.00019396949995203333,
872
+ "loss": 0.5138,
873
+ "step": 432000
874
+ },
875
+ {
876
+ "epoch": 10.87,
877
+ "learning_rate": 0.00019321213202437714,
878
+ "loss": 0.5125,
879
+ "step": 435000
880
+ },
881
+ {
882
+ "epoch": 10.95,
883
+ "learning_rate": 0.00019245476409672092,
884
+ "loss": 0.5153,
885
+ "step": 438000
886
+ },
887
+ {
888
+ "epoch": 11.02,
889
+ "learning_rate": 0.00019169739616906468,
890
+ "loss": 0.5022,
891
+ "step": 441000
892
+ },
893
+ {
894
+ "epoch": 11.1,
895
+ "learning_rate": 0.0001909400282414085,
896
+ "loss": 0.4908,
897
+ "step": 444000
898
+ },
899
+ {
900
+ "epoch": 11.17,
901
+ "learning_rate": 0.00019018266031375227,
902
+ "loss": 0.4908,
903
+ "step": 447000
904
+ },
905
+ {
906
+ "epoch": 11.25,
907
+ "learning_rate": 0.00018942529238609603,
908
+ "loss": 0.4907,
909
+ "step": 450000
910
+ },
911
+ {
912
+ "epoch": 11.32,
913
+ "learning_rate": 0.00018866792445843984,
914
+ "loss": 0.4895,
915
+ "step": 453000
916
+ },
917
+ {
918
+ "epoch": 11.4,
919
+ "learning_rate": 0.00018791055653078362,
920
+ "loss": 0.4948,
921
+ "step": 456000
922
+ },
923
+ {
924
+ "epoch": 11.47,
925
+ "learning_rate": 0.00018715318860312743,
926
+ "loss": 0.4908,
927
+ "step": 459000
928
+ },
929
+ {
930
+ "epoch": 11.55,
931
+ "learning_rate": 0.0001863958206754712,
932
+ "loss": 0.4931,
933
+ "step": 462000
934
+ },
935
+ {
936
+ "epoch": 11.62,
937
+ "learning_rate": 0.00018563845274781497,
938
+ "loss": 0.4945,
939
+ "step": 465000
940
+ },
941
+ {
942
+ "epoch": 11.7,
943
+ "learning_rate": 0.00018488108482015878,
944
+ "loss": 0.5005,
945
+ "step": 468000
946
+ },
947
+ {
948
+ "epoch": 11.77,
949
+ "learning_rate": 0.00018412371689250254,
950
+ "loss": 0.4974,
951
+ "step": 471000
952
+ },
953
+ {
954
+ "epoch": 11.85,
955
+ "learning_rate": 0.00018336634896484632,
956
+ "loss": 0.4997,
957
+ "step": 474000
958
+ },
959
+ {
960
+ "epoch": 11.92,
961
+ "learning_rate": 0.00018260898103719013,
962
+ "loss": 0.5027,
963
+ "step": 477000
964
+ },
965
+ {
966
+ "epoch": 12.0,
967
+ "learning_rate": 0.0001818516131095339,
968
+ "loss": 0.4962,
969
+ "step": 480000
970
+ },
971
+ {
972
+ "epoch": 12.07,
973
+ "learning_rate": 0.00018109424518187767,
974
+ "loss": 0.4766,
975
+ "step": 483000
976
+ },
977
+ {
978
+ "epoch": 12.15,
979
+ "learning_rate": 0.00018033687725422148,
980
+ "loss": 0.4782,
981
+ "step": 486000
982
+ },
983
+ {
984
+ "epoch": 12.22,
985
+ "learning_rate": 0.00017957950932656524,
986
+ "loss": 0.4793,
987
+ "step": 489000
988
+ },
989
+ {
990
+ "epoch": 12.3,
991
+ "learning_rate": 0.00017882214139890902,
992
+ "loss": 0.4769,
993
+ "step": 492000
994
+ },
995
+ {
996
+ "epoch": 12.37,
997
+ "learning_rate": 0.00017806477347125283,
998
+ "loss": 0.4801,
999
+ "step": 495000
1000
+ },
1001
+ {
1002
+ "epoch": 12.45,
1003
+ "learning_rate": 0.0001773074055435966,
1004
+ "loss": 0.4783,
1005
+ "step": 498000
1006
+ },
1007
+ {
1008
+ "epoch": 12.52,
1009
+ "learning_rate": 0.0001765500376159404,
1010
+ "loss": 0.4804,
1011
+ "step": 501000
1012
+ },
1013
+ {
1014
+ "epoch": 12.6,
1015
+ "learning_rate": 0.00017579266968828418,
1016
+ "loss": 0.4758,
1017
+ "step": 504000
1018
+ },
1019
+ {
1020
+ "epoch": 12.67,
1021
+ "learning_rate": 0.00017503530176062794,
1022
+ "loss": 0.4761,
1023
+ "step": 507000
1024
+ },
1025
+ {
1026
+ "epoch": 12.75,
1027
+ "learning_rate": 0.00017427793383297175,
1028
+ "loss": 0.473,
1029
+ "step": 510000
1030
+ },
1031
+ {
1032
+ "epoch": 12.82,
1033
+ "learning_rate": 0.00017352056590531553,
1034
+ "loss": 0.4793,
1035
+ "step": 513000
1036
+ },
1037
+ {
1038
+ "epoch": 12.9,
1039
+ "learning_rate": 0.00017276319797765932,
1040
+ "loss": 0.4772,
1041
+ "step": 516000
1042
+ },
1043
+ {
1044
+ "epoch": 12.97,
1045
+ "learning_rate": 0.0001720058300500031,
1046
+ "loss": 0.4752,
1047
+ "step": 519000
1048
+ },
1049
+ {
1050
+ "epoch": 13.05,
1051
+ "learning_rate": 0.00017124846212234688,
1052
+ "loss": 0.4611,
1053
+ "step": 522000
1054
+ },
1055
+ {
1056
+ "epoch": 13.12,
1057
+ "learning_rate": 0.0001704910941946907,
1058
+ "loss": 0.4549,
1059
+ "step": 525000
1060
+ },
1061
+ {
1062
+ "epoch": 13.2,
1063
+ "learning_rate": 0.00016973372626703445,
1064
+ "loss": 0.456,
1065
+ "step": 528000
1066
+ },
1067
+ {
1068
+ "epoch": 13.27,
1069
+ "learning_rate": 0.00016897635833937823,
1070
+ "loss": 0.4596,
1071
+ "step": 531000
1072
+ },
1073
+ {
1074
+ "epoch": 13.35,
1075
+ "learning_rate": 0.00016821899041172204,
1076
+ "loss": 0.4629,
1077
+ "step": 534000
1078
+ },
1079
+ {
1080
+ "epoch": 13.42,
1081
+ "learning_rate": 0.0001674616224840658,
1082
+ "loss": 0.463,
1083
+ "step": 537000
1084
+ },
1085
+ {
1086
+ "epoch": 13.5,
1087
+ "learning_rate": 0.00016670425455640958,
1088
+ "loss": 0.461,
1089
+ "step": 540000
1090
+ },
1091
+ {
1092
+ "epoch": 13.57,
1093
+ "learning_rate": 0.0001659468866287534,
1094
+ "loss": 0.4631,
1095
+ "step": 543000
1096
+ },
1097
+ {
1098
+ "epoch": 13.65,
1099
+ "learning_rate": 0.00016518951870109715,
1100
+ "loss": 0.4627,
1101
+ "step": 546000
1102
+ },
1103
+ {
1104
+ "epoch": 13.72,
1105
+ "learning_rate": 0.00016443215077344093,
1106
+ "loss": 0.4639,
1107
+ "step": 549000
1108
+ },
1109
+ {
1110
+ "epoch": 13.8,
1111
+ "learning_rate": 0.00016367478284578474,
1112
+ "loss": 0.4663,
1113
+ "step": 552000
1114
+ },
1115
+ {
1116
+ "epoch": 13.87,
1117
+ "learning_rate": 0.0001629174149181285,
1118
+ "loss": 0.46,
1119
+ "step": 555000
1120
+ },
1121
+ {
1122
+ "epoch": 13.95,
1123
+ "learning_rate": 0.00016216004699047228,
1124
+ "loss": 0.4661,
1125
+ "step": 558000
1126
+ },
1127
+ {
1128
+ "epoch": 14.02,
1129
+ "learning_rate": 0.0001614026790628161,
1130
+ "loss": 0.4564,
1131
+ "step": 561000
1132
+ },
1133
+ {
1134
+ "epoch": 14.1,
1135
+ "learning_rate": 0.00016064531113515988,
1136
+ "loss": 0.4391,
1137
+ "step": 564000
1138
+ },
1139
+ {
1140
+ "epoch": 14.17,
1141
+ "learning_rate": 0.00015988794320750363,
1142
+ "loss": 0.4479,
1143
+ "step": 567000
1144
+ },
1145
+ {
1146
+ "epoch": 14.25,
1147
+ "learning_rate": 0.00015913057527984744,
1148
+ "loss": 0.4427,
1149
+ "step": 570000
1150
+ },
1151
+ {
1152
+ "epoch": 14.32,
1153
+ "learning_rate": 0.00015837320735219123,
1154
+ "loss": 0.4425,
1155
+ "step": 573000
1156
+ },
1157
+ {
1158
+ "epoch": 14.4,
1159
+ "learning_rate": 0.00015761583942453498,
1160
+ "loss": 0.4412,
1161
+ "step": 576000
1162
+ },
1163
+ {
1164
+ "epoch": 14.47,
1165
+ "learning_rate": 0.0001568584714968788,
1166
+ "loss": 0.4488,
1167
+ "step": 579000
1168
+ },
1169
+ {
1170
+ "epoch": 14.55,
1171
+ "learning_rate": 0.00015610110356922258,
1172
+ "loss": 0.4464,
1173
+ "step": 582000
1174
+ },
1175
+ {
1176
+ "epoch": 14.62,
1177
+ "learning_rate": 0.00015534373564156636,
1178
+ "loss": 0.4507,
1179
+ "step": 585000
1180
+ },
1181
+ {
1182
+ "epoch": 14.7,
1183
+ "learning_rate": 0.00015458636771391014,
1184
+ "loss": 0.4476,
1185
+ "step": 588000
1186
+ },
1187
+ {
1188
+ "epoch": 14.77,
1189
+ "learning_rate": 0.00015382899978625393,
1190
+ "loss": 0.4462,
1191
+ "step": 591000
1192
+ },
1193
+ {
1194
+ "epoch": 14.85,
1195
+ "learning_rate": 0.0001530716318585977,
1196
+ "loss": 0.4493,
1197
+ "step": 594000
1198
+ },
1199
+ {
1200
+ "epoch": 14.92,
1201
+ "learning_rate": 0.0001523142639309415,
1202
+ "loss": 0.4478,
1203
+ "step": 597000
1204
+ },
1205
+ {
1206
+ "epoch": 15.0,
1207
+ "learning_rate": 0.00015155689600328528,
1208
+ "loss": 0.4483,
1209
+ "step": 600000
1210
+ },
1211
+ {
1212
+ "epoch": 15.07,
1213
+ "learning_rate": 0.00015079952807562906,
1214
+ "loss": 0.4276,
1215
+ "step": 603000
1216
+ },
1217
+ {
1218
+ "epoch": 15.15,
1219
+ "learning_rate": 0.00015004216014797284,
1220
+ "loss": 0.4259,
1221
+ "step": 606000
1222
+ },
1223
+ {
1224
+ "epoch": 15.22,
1225
+ "learning_rate": 0.00014928479222031665,
1226
+ "loss": 0.4263,
1227
+ "step": 609000
1228
+ },
1229
+ {
1230
+ "epoch": 15.3,
1231
+ "learning_rate": 0.0001485274242926604,
1232
+ "loss": 0.4302,
1233
+ "step": 612000
1234
+ },
1235
+ {
1236
+ "epoch": 15.37,
1237
+ "learning_rate": 0.0001477700563650042,
1238
+ "loss": 0.4302,
1239
+ "step": 615000
1240
+ },
1241
+ {
1242
+ "epoch": 15.45,
1243
+ "learning_rate": 0.000147012688437348,
1244
+ "loss": 0.4289,
1245
+ "step": 618000
1246
+ },
1247
+ {
1248
+ "epoch": 15.52,
1249
+ "learning_rate": 0.00014625532050969176,
1250
+ "loss": 0.4311,
1251
+ "step": 621000
1252
+ },
1253
+ {
1254
+ "epoch": 15.6,
1255
+ "learning_rate": 0.00014549795258203554,
1256
+ "loss": 0.4327,
1257
+ "step": 624000
1258
+ },
1259
+ {
1260
+ "epoch": 15.67,
1261
+ "learning_rate": 0.00014474058465437935,
1262
+ "loss": 0.4315,
1263
+ "step": 627000
1264
+ },
1265
+ {
1266
+ "epoch": 15.75,
1267
+ "learning_rate": 0.0001439832167267231,
1268
+ "loss": 0.4305,
1269
+ "step": 630000
1270
+ },
1271
+ {
1272
+ "epoch": 15.82,
1273
+ "learning_rate": 0.00014322584879906692,
1274
+ "loss": 0.429,
1275
+ "step": 633000
1276
+ },
1277
+ {
1278
+ "epoch": 15.9,
1279
+ "learning_rate": 0.0001424684808714107,
1280
+ "loss": 0.4288,
1281
+ "step": 636000
1282
+ },
1283
+ {
1284
+ "epoch": 15.97,
1285
+ "learning_rate": 0.00014171111294375449,
1286
+ "loss": 0.4309,
1287
+ "step": 639000
1288
+ },
1289
+ {
1290
+ "epoch": 16.05,
1291
+ "learning_rate": 0.00014095374501609827,
1292
+ "loss": 0.4179,
1293
+ "step": 642000
1294
+ },
1295
+ {
1296
+ "epoch": 16.12,
1297
+ "learning_rate": 0.00014019637708844205,
1298
+ "loss": 0.4098,
1299
+ "step": 645000
1300
+ },
1301
+ {
1302
+ "epoch": 16.2,
1303
+ "learning_rate": 0.00013943900916078584,
1304
+ "loss": 0.4136,
1305
+ "step": 648000
1306
+ },
1307
+ {
1308
+ "epoch": 16.27,
1309
+ "learning_rate": 0.00013868164123312962,
1310
+ "loss": 0.4115,
1311
+ "step": 651000
1312
+ },
1313
+ {
1314
+ "epoch": 16.35,
1315
+ "learning_rate": 0.0001379242733054734,
1316
+ "loss": 0.4192,
1317
+ "step": 654000
1318
+ },
1319
+ {
1320
+ "epoch": 16.42,
1321
+ "learning_rate": 0.00013716690537781719,
1322
+ "loss": 0.4159,
1323
+ "step": 657000
1324
+ },
1325
+ {
1326
+ "epoch": 16.5,
1327
+ "learning_rate": 0.00013640953745016097,
1328
+ "loss": 0.4176,
1329
+ "step": 660000
1330
+ },
1331
+ {
1332
+ "epoch": 16.57,
1333
+ "learning_rate": 0.00013565216952250475,
1334
+ "loss": 0.4166,
1335
+ "step": 663000
1336
+ },
1337
+ {
1338
+ "epoch": 16.65,
1339
+ "learning_rate": 0.00013489480159484854,
1340
+ "loss": 0.4214,
1341
+ "step": 666000
1342
+ },
1343
+ {
1344
+ "epoch": 16.72,
1345
+ "learning_rate": 0.00013413743366719232,
1346
+ "loss": 0.4121,
1347
+ "step": 669000
1348
+ },
1349
+ {
1350
+ "epoch": 16.8,
1351
+ "learning_rate": 0.0001333800657395361,
1352
+ "loss": 0.414,
1353
+ "step": 672000
1354
+ },
1355
+ {
1356
+ "epoch": 16.87,
1357
+ "learning_rate": 0.00013262269781187989,
1358
+ "loss": 0.4159,
1359
+ "step": 675000
1360
+ },
1361
+ {
1362
+ "epoch": 16.95,
1363
+ "learning_rate": 0.00013186532988422367,
1364
+ "loss": 0.4135,
1365
+ "step": 678000
1366
+ },
1367
+ {
1368
+ "epoch": 17.02,
1369
+ "learning_rate": 0.00013110796195656748,
1370
+ "loss": 0.4098,
1371
+ "step": 681000
1372
+ },
1373
+ {
1374
+ "epoch": 17.1,
1375
+ "learning_rate": 0.00013035059402891124,
1376
+ "loss": 0.3947,
1377
+ "step": 684000
1378
+ },
1379
+ {
1380
+ "epoch": 17.17,
1381
+ "learning_rate": 0.00012959322610125502,
1382
+ "loss": 0.4026,
1383
+ "step": 687000
1384
+ },
1385
+ {
1386
+ "epoch": 17.25,
1387
+ "learning_rate": 0.00012883585817359883,
1388
+ "loss": 0.397,
1389
+ "step": 690000
1390
+ },
1391
+ {
1392
+ "epoch": 17.32,
1393
+ "learning_rate": 0.0001280784902459426,
1394
+ "loss": 0.3998,
1395
+ "step": 693000
1396
+ },
1397
+ {
1398
+ "epoch": 17.39,
1399
+ "learning_rate": 0.00012732112231828637,
1400
+ "loss": 0.3988,
1401
+ "step": 696000
1402
+ },
1403
+ {
1404
+ "epoch": 17.47,
1405
+ "learning_rate": 0.00012656375439063018,
1406
+ "loss": 0.4015,
1407
+ "step": 699000
1408
+ },
1409
+ {
1410
+ "epoch": 17.54,
1411
+ "learning_rate": 0.00012580638646297396,
1412
+ "loss": 0.402,
1413
+ "step": 702000
1414
+ },
1415
+ {
1416
+ "epoch": 17.62,
1417
+ "learning_rate": 0.00012504901853531775,
1418
+ "loss": 0.4018,
1419
+ "step": 705000
1420
+ },
1421
+ {
1422
+ "epoch": 17.69,
1423
+ "learning_rate": 0.00012429165060766153,
1424
+ "loss": 0.3987,
1425
+ "step": 708000
1426
+ },
1427
+ {
1428
+ "epoch": 17.77,
1429
+ "learning_rate": 0.0001235342826800053,
1430
+ "loss": 0.3974,
1431
+ "step": 711000
1432
+ },
1433
+ {
1434
+ "epoch": 17.84,
1435
+ "learning_rate": 0.0001227769147523491,
1436
+ "loss": 0.4006,
1437
+ "step": 714000
1438
+ },
1439
+ {
1440
+ "epoch": 17.92,
1441
+ "learning_rate": 0.00012201954682469288,
1442
+ "loss": 0.4028,
1443
+ "step": 717000
1444
+ },
1445
+ {
1446
+ "epoch": 17.99,
1447
+ "learning_rate": 0.00012126217889703665,
1448
+ "loss": 0.4019,
1449
+ "step": 720000
1450
+ },
1451
+ {
1452
+ "epoch": 18.07,
1453
+ "learning_rate": 0.00012050481096938045,
1454
+ "loss": 0.3853,
1455
+ "step": 723000
1456
+ },
1457
+ {
1458
+ "epoch": 18.14,
1459
+ "learning_rate": 0.00011974744304172423,
1460
+ "loss": 0.387,
1461
+ "step": 726000
1462
+ },
1463
+ {
1464
+ "epoch": 18.22,
1465
+ "learning_rate": 0.00011899007511406801,
1466
+ "loss": 0.3822,
1467
+ "step": 729000
1468
+ },
1469
+ {
1470
+ "epoch": 18.29,
1471
+ "learning_rate": 0.0001182327071864118,
1472
+ "loss": 0.3861,
1473
+ "step": 732000
1474
+ },
1475
+ {
1476
+ "epoch": 18.37,
1477
+ "learning_rate": 0.00011747533925875558,
1478
+ "loss": 0.3877,
1479
+ "step": 735000
1480
+ },
1481
+ {
1482
+ "epoch": 18.44,
1483
+ "learning_rate": 0.00011671797133109938,
1484
+ "loss": 0.3867,
1485
+ "step": 738000
1486
+ },
1487
+ {
1488
+ "epoch": 18.52,
1489
+ "learning_rate": 0.00011596060340344316,
1490
+ "loss": 0.388,
1491
+ "step": 741000
1492
+ },
1493
+ {
1494
+ "epoch": 18.59,
1495
+ "learning_rate": 0.00011520323547578693,
1496
+ "loss": 0.3889,
1497
+ "step": 744000
1498
+ },
1499
+ {
1500
+ "epoch": 18.67,
1501
+ "learning_rate": 0.00011444586754813073,
1502
+ "loss": 0.3867,
1503
+ "step": 747000
1504
+ },
1505
+ {
1506
+ "epoch": 18.74,
1507
+ "learning_rate": 0.00011368849962047451,
1508
+ "loss": 0.3897,
1509
+ "step": 750000
1510
+ },
1511
+ {
1512
+ "epoch": 18.82,
1513
+ "learning_rate": 0.00011293113169281828,
1514
+ "loss": 0.3873,
1515
+ "step": 753000
1516
+ },
1517
+ {
1518
+ "epoch": 18.89,
1519
+ "learning_rate": 0.00011217376376516208,
1520
+ "loss": 0.3881,
1521
+ "step": 756000
1522
+ },
1523
+ {
1524
+ "epoch": 18.97,
1525
+ "learning_rate": 0.00011141639583750586,
1526
+ "loss": 0.3915,
1527
+ "step": 759000
1528
+ },
1529
+ {
1530
+ "epoch": 19.04,
1531
+ "learning_rate": 0.00011065902790984966,
1532
+ "loss": 0.3766,
1533
+ "step": 762000
1534
+ },
1535
+ {
1536
+ "epoch": 19.12,
1537
+ "learning_rate": 0.00010990165998219343,
1538
+ "loss": 0.3757,
1539
+ "step": 765000
1540
+ },
1541
+ {
1542
+ "epoch": 19.19,
1543
+ "learning_rate": 0.00010914429205453721,
1544
+ "loss": 0.3705,
1545
+ "step": 768000
1546
+ },
1547
+ {
1548
+ "epoch": 19.27,
1549
+ "learning_rate": 0.000108386924126881,
1550
+ "loss": 0.3728,
1551
+ "step": 771000
1552
+ },
1553
+ {
1554
+ "epoch": 19.34,
1555
+ "learning_rate": 0.00010762955619922477,
1556
+ "loss": 0.3756,
1557
+ "step": 774000
1558
+ },
1559
+ {
1560
+ "epoch": 19.42,
1561
+ "learning_rate": 0.00010687218827156856,
1562
+ "loss": 0.3772,
1563
+ "step": 777000
1564
+ },
1565
+ {
1566
+ "epoch": 19.49,
1567
+ "learning_rate": 0.00010611482034391236,
1568
+ "loss": 0.3761,
1569
+ "step": 780000
1570
+ },
1571
+ {
1572
+ "epoch": 19.57,
1573
+ "learning_rate": 0.00010535745241625614,
1574
+ "loss": 0.3739,
1575
+ "step": 783000
1576
+ },
1577
+ {
1578
+ "epoch": 19.64,
1579
+ "learning_rate": 0.00010460008448859992,
1580
+ "loss": 0.371,
1581
+ "step": 786000
1582
+ },
1583
+ {
1584
+ "epoch": 19.72,
1585
+ "learning_rate": 0.0001038427165609437,
1586
+ "loss": 0.3721,
1587
+ "step": 789000
1588
+ },
1589
+ {
1590
+ "epoch": 19.79,
1591
+ "learning_rate": 0.00010308534863328749,
1592
+ "loss": 0.3733,
1593
+ "step": 792000
1594
+ },
1595
+ {
1596
+ "epoch": 19.87,
1597
+ "learning_rate": 0.00010232798070563129,
1598
+ "loss": 0.3742,
1599
+ "step": 795000
1600
+ },
1601
+ {
1602
+ "epoch": 19.94,
1603
+ "learning_rate": 0.00010157061277797505,
1604
+ "loss": 0.3732,
1605
+ "step": 798000
1606
+ },
1607
+ {
1608
+ "epoch": 20.02,
1609
+ "learning_rate": 0.00010081324485031884,
1610
+ "loss": 0.3703,
1611
+ "step": 801000
1612
+ },
1613
+ {
1614
+ "epoch": 20.09,
1615
+ "learning_rate": 0.00010005587692266263,
1616
+ "loss": 0.3609,
1617
+ "step": 804000
1618
+ },
1619
+ {
1620
+ "epoch": 20.17,
1621
+ "learning_rate": 9.92985089950064e-05,
1622
+ "loss": 0.3604,
1623
+ "step": 807000
1624
+ },
1625
+ {
1626
+ "epoch": 20.24,
1627
+ "learning_rate": 9.85411410673502e-05,
1628
+ "loss": 0.3614,
1629
+ "step": 810000
1630
+ },
1631
+ {
1632
+ "epoch": 20.32,
1633
+ "learning_rate": 9.778377313969398e-05,
1634
+ "loss": 0.3617,
1635
+ "step": 813000
1636
+ },
1637
+ {
1638
+ "epoch": 20.39,
1639
+ "learning_rate": 9.702640521203775e-05,
1640
+ "loss": 0.3611,
1641
+ "step": 816000
1642
+ },
1643
+ {
1644
+ "epoch": 20.47,
1645
+ "learning_rate": 9.626903728438155e-05,
1646
+ "loss": 0.3607,
1647
+ "step": 819000
1648
+ },
1649
+ {
1650
+ "epoch": 20.54,
1651
+ "learning_rate": 9.551166935672533e-05,
1652
+ "loss": 0.3605,
1653
+ "step": 822000
1654
+ },
1655
+ {
1656
+ "epoch": 20.62,
1657
+ "learning_rate": 9.475430142906912e-05,
1658
+ "loss": 0.3589,
1659
+ "step": 825000
1660
+ },
1661
+ {
1662
+ "epoch": 20.69,
1663
+ "learning_rate": 9.39969335014129e-05,
1664
+ "loss": 0.3586,
1665
+ "step": 828000
1666
+ },
1667
+ {
1668
+ "epoch": 20.77,
1669
+ "learning_rate": 9.323956557375668e-05,
1670
+ "loss": 0.3626,
1671
+ "step": 831000
1672
+ },
1673
+ {
1674
+ "epoch": 20.84,
1675
+ "learning_rate": 9.248219764610048e-05,
1676
+ "loss": 0.3616,
1677
+ "step": 834000
1678
+ },
1679
+ {
1680
+ "epoch": 20.92,
1681
+ "learning_rate": 9.172482971844426e-05,
1682
+ "loss": 0.3595,
1683
+ "step": 837000
1684
+ },
1685
+ {
1686
+ "epoch": 20.99,
1687
+ "learning_rate": 9.096746179078803e-05,
1688
+ "loss": 0.3624,
1689
+ "step": 840000
1690
+ },
1691
+ {
1692
+ "epoch": 21.07,
1693
+ "learning_rate": 9.021009386313183e-05,
1694
+ "loss": 0.3468,
1695
+ "step": 843000
1696
+ },
1697
+ {
1698
+ "epoch": 21.14,
1699
+ "learning_rate": 8.945272593547561e-05,
1700
+ "loss": 0.3475,
1701
+ "step": 846000
1702
+ },
1703
+ {
1704
+ "epoch": 21.22,
1705
+ "learning_rate": 8.869535800781938e-05,
1706
+ "loss": 0.3486,
1707
+ "step": 849000
1708
+ },
1709
+ {
1710
+ "epoch": 21.29,
1711
+ "learning_rate": 8.793799008016318e-05,
1712
+ "loss": 0.3454,
1713
+ "step": 852000
1714
+ },
1715
+ {
1716
+ "epoch": 21.37,
1717
+ "learning_rate": 8.718062215250696e-05,
1718
+ "loss": 0.3496,
1719
+ "step": 855000
1720
+ },
1721
+ {
1722
+ "epoch": 21.44,
1723
+ "learning_rate": 8.642325422485073e-05,
1724
+ "loss": 0.3478,
1725
+ "step": 858000
1726
+ },
1727
+ {
1728
+ "epoch": 21.52,
1729
+ "learning_rate": 8.566588629719453e-05,
1730
+ "loss": 0.346,
1731
+ "step": 861000
1732
+ },
1733
+ {
1734
+ "epoch": 21.59,
1735
+ "learning_rate": 8.490851836953831e-05,
1736
+ "loss": 0.3513,
1737
+ "step": 864000
1738
+ },
1739
+ {
1740
+ "epoch": 21.67,
1741
+ "learning_rate": 8.415115044188211e-05,
1742
+ "loss": 0.3524,
1743
+ "step": 867000
1744
+ },
1745
+ {
1746
+ "epoch": 21.74,
1747
+ "learning_rate": 8.339378251422588e-05,
1748
+ "loss": 0.3494,
1749
+ "step": 870000
1750
+ },
1751
+ {
1752
+ "epoch": 21.82,
1753
+ "learning_rate": 8.263641458656966e-05,
1754
+ "loss": 0.3521,
1755
+ "step": 873000
1756
+ },
1757
+ {
1758
+ "epoch": 21.89,
1759
+ "learning_rate": 8.187904665891346e-05,
1760
+ "loss": 0.3509,
1761
+ "step": 876000
1762
+ },
1763
+ {
1764
+ "epoch": 21.97,
1765
+ "learning_rate": 8.112167873125724e-05,
1766
+ "loss": 0.3501,
1767
+ "step": 879000
1768
+ },
1769
+ {
1770
+ "epoch": 22.04,
1771
+ "learning_rate": 8.036431080360101e-05,
1772
+ "loss": 0.3394,
1773
+ "step": 882000
1774
+ },
1775
+ {
1776
+ "epoch": 22.12,
1777
+ "learning_rate": 7.960694287594481e-05,
1778
+ "loss": 0.3357,
1779
+ "step": 885000
1780
+ },
1781
+ {
1782
+ "epoch": 22.19,
1783
+ "learning_rate": 7.88495749482886e-05,
1784
+ "loss": 0.3378,
1785
+ "step": 888000
1786
+ },
1787
+ {
1788
+ "epoch": 22.27,
1789
+ "learning_rate": 7.809220702063239e-05,
1790
+ "loss": 0.3362,
1791
+ "step": 891000
1792
+ },
1793
+ {
1794
+ "epoch": 22.34,
1795
+ "learning_rate": 7.733483909297616e-05,
1796
+ "loss": 0.3382,
1797
+ "step": 894000
1798
+ },
1799
+ {
1800
+ "epoch": 22.42,
1801
+ "learning_rate": 7.657747116531994e-05,
1802
+ "loss": 0.3407,
1803
+ "step": 897000
1804
+ },
1805
+ {
1806
+ "epoch": 22.49,
1807
+ "learning_rate": 7.582010323766374e-05,
1808
+ "loss": 0.3381,
1809
+ "step": 900000
1810
+ },
1811
+ {
1812
+ "epoch": 22.57,
1813
+ "learning_rate": 7.506273531000751e-05,
1814
+ "loss": 0.3378,
1815
+ "step": 903000
1816
+ },
1817
+ {
1818
+ "epoch": 22.64,
1819
+ "learning_rate": 7.430536738235131e-05,
1820
+ "loss": 0.3368,
1821
+ "step": 906000
1822
+ },
1823
+ {
1824
+ "epoch": 22.72,
1825
+ "learning_rate": 7.354799945469509e-05,
1826
+ "loss": 0.3384,
1827
+ "step": 909000
1828
+ },
1829
+ {
1830
+ "epoch": 22.79,
1831
+ "learning_rate": 7.279063152703887e-05,
1832
+ "loss": 0.3351,
1833
+ "step": 912000
1834
+ },
1835
+ {
1836
+ "epoch": 22.87,
1837
+ "learning_rate": 7.203326359938266e-05,
1838
+ "loss": 0.3399,
1839
+ "step": 915000
1840
+ },
1841
+ {
1842
+ "epoch": 22.94,
1843
+ "learning_rate": 7.127589567172644e-05,
1844
+ "loss": 0.3366,
1845
+ "step": 918000
1846
+ },
1847
+ {
1848
+ "epoch": 23.02,
1849
+ "learning_rate": 7.051852774407022e-05,
1850
+ "loss": 0.3313,
1851
+ "step": 921000
1852
+ },
1853
+ {
1854
+ "epoch": 23.09,
1855
+ "learning_rate": 6.976115981641401e-05,
1856
+ "loss": 0.3291,
1857
+ "step": 924000
1858
+ },
1859
+ {
1860
+ "epoch": 23.17,
1861
+ "learning_rate": 6.900379188875779e-05,
1862
+ "loss": 0.3269,
1863
+ "step": 927000
1864
+ },
1865
+ {
1866
+ "epoch": 23.24,
1867
+ "learning_rate": 6.824642396110157e-05,
1868
+ "loss": 0.324,
1869
+ "step": 930000
1870
+ },
1871
+ {
1872
+ "epoch": 23.32,
1873
+ "learning_rate": 6.748905603344537e-05,
1874
+ "loss": 0.3249,
1875
+ "step": 933000
1876
+ },
1877
+ {
1878
+ "epoch": 23.39,
1879
+ "learning_rate": 6.673168810578914e-05,
1880
+ "loss": 0.3257,
1881
+ "step": 936000
1882
+ },
1883
+ {
1884
+ "epoch": 23.47,
1885
+ "learning_rate": 6.597432017813294e-05,
1886
+ "loss": 0.3266,
1887
+ "step": 939000
1888
+ },
1889
+ {
1890
+ "epoch": 23.54,
1891
+ "learning_rate": 6.521695225047672e-05,
1892
+ "loss": 0.3275,
1893
+ "step": 942000
1894
+ },
1895
+ {
1896
+ "epoch": 23.62,
1897
+ "learning_rate": 6.44595843228205e-05,
1898
+ "loss": 0.3279,
1899
+ "step": 945000
1900
+ },
1901
+ {
1902
+ "epoch": 23.69,
1903
+ "learning_rate": 6.370221639516429e-05,
1904
+ "loss": 0.3255,
1905
+ "step": 948000
1906
+ },
1907
+ {
1908
+ "epoch": 23.77,
1909
+ "learning_rate": 6.294484846750807e-05,
1910
+ "loss": 0.3255,
1911
+ "step": 951000
1912
+ },
1913
+ {
1914
+ "epoch": 23.84,
1915
+ "learning_rate": 6.218748053985185e-05,
1916
+ "loss": 0.3233,
1917
+ "step": 954000
1918
+ },
1919
+ {
1920
+ "epoch": 23.92,
1921
+ "learning_rate": 6.143011261219564e-05,
1922
+ "loss": 0.3267,
1923
+ "step": 957000
1924
+ },
1925
+ {
1926
+ "epoch": 23.99,
1927
+ "learning_rate": 6.067274468453942e-05,
1928
+ "loss": 0.3234,
1929
+ "step": 960000
1930
+ },
1931
+ {
1932
+ "epoch": 24.07,
1933
+ "learning_rate": 5.991537675688321e-05,
1934
+ "loss": 0.3174,
1935
+ "step": 963000
1936
+ },
1937
+ {
1938
+ "epoch": 24.14,
1939
+ "learning_rate": 5.9158008829226994e-05,
1940
+ "loss": 0.3149,
1941
+ "step": 966000
1942
+ },
1943
+ {
1944
+ "epoch": 24.22,
1945
+ "learning_rate": 5.840064090157077e-05,
1946
+ "loss": 0.314,
1947
+ "step": 969000
1948
+ },
1949
+ {
1950
+ "epoch": 24.29,
1951
+ "learning_rate": 5.764327297391456e-05,
1952
+ "loss": 0.318,
1953
+ "step": 972000
1954
+ },
1955
+ {
1956
+ "epoch": 24.37,
1957
+ "learning_rate": 5.6885905046258344e-05,
1958
+ "loss": 0.3147,
1959
+ "step": 975000
1960
+ },
1961
+ {
1962
+ "epoch": 24.44,
1963
+ "learning_rate": 5.6128537118602134e-05,
1964
+ "loss": 0.3158,
1965
+ "step": 978000
1966
+ },
1967
+ {
1968
+ "epoch": 24.52,
1969
+ "learning_rate": 5.537116919094591e-05,
1970
+ "loss": 0.3164,
1971
+ "step": 981000
1972
+ },
1973
+ {
1974
+ "epoch": 24.59,
1975
+ "learning_rate": 5.46138012632897e-05,
1976
+ "loss": 0.3162,
1977
+ "step": 984000
1978
+ },
1979
+ {
1980
+ "epoch": 24.67,
1981
+ "learning_rate": 5.3856433335633483e-05,
1982
+ "loss": 0.3153,
1983
+ "step": 987000
1984
+ },
1985
+ {
1986
+ "epoch": 24.74,
1987
+ "learning_rate": 5.3099065407977274e-05,
1988
+ "loss": 0.3165,
1989
+ "step": 990000
1990
+ },
1991
+ {
1992
+ "epoch": 24.82,
1993
+ "learning_rate": 5.234169748032105e-05,
1994
+ "loss": 0.315,
1995
+ "step": 993000
1996
+ },
1997
+ {
1998
+ "epoch": 24.89,
1999
+ "learning_rate": 5.158432955266483e-05,
2000
+ "loss": 0.3132,
2001
+ "step": 996000
2002
+ },
2003
+ {
2004
+ "epoch": 24.97,
2005
+ "learning_rate": 5.0826961625008623e-05,
2006
+ "loss": 0.3163,
2007
+ "step": 999000
2008
+ },
2009
+ {
2010
+ "epoch": 25.04,
2011
+ "learning_rate": 5.006959369735241e-05,
2012
+ "loss": 0.3107,
2013
+ "step": 1002000
2014
+ },
2015
+ {
2016
+ "epoch": 25.12,
2017
+ "learning_rate": 4.931222576969619e-05,
2018
+ "loss": 0.3062,
2019
+ "step": 1005000
2020
+ },
2021
+ {
2022
+ "epoch": 25.19,
2023
+ "learning_rate": 4.855485784203997e-05,
2024
+ "loss": 0.3083,
2025
+ "step": 1008000
2026
+ },
2027
+ {
2028
+ "epoch": 25.27,
2029
+ "learning_rate": 4.779748991438376e-05,
2030
+ "loss": 0.3096,
2031
+ "step": 1011000
2032
+ },
2033
+ {
2034
+ "epoch": 25.34,
2035
+ "learning_rate": 4.704012198672755e-05,
2036
+ "loss": 0.3056,
2037
+ "step": 1014000
2038
+ },
2039
+ {
2040
+ "epoch": 25.42,
2041
+ "learning_rate": 4.628275405907132e-05,
2042
+ "loss": 0.3042,
2043
+ "step": 1017000
2044
+ },
2045
+ {
2046
+ "epoch": 25.49,
2047
+ "learning_rate": 4.552538613141511e-05,
2048
+ "loss": 0.3063,
2049
+ "step": 1020000
2050
+ },
2051
+ {
2052
+ "epoch": 25.57,
2053
+ "learning_rate": 4.4768018203758897e-05,
2054
+ "loss": 0.3025,
2055
+ "step": 1023000
2056
+ },
2057
+ {
2058
+ "epoch": 25.64,
2059
+ "learning_rate": 4.4010650276102687e-05,
2060
+ "loss": 0.3056,
2061
+ "step": 1026000
2062
+ },
2063
+ {
2064
+ "epoch": 25.72,
2065
+ "learning_rate": 4.325328234844646e-05,
2066
+ "loss": 0.3081,
2067
+ "step": 1029000
2068
+ },
2069
+ {
2070
+ "epoch": 25.79,
2071
+ "learning_rate": 4.249591442079025e-05,
2072
+ "loss": 0.3082,
2073
+ "step": 1032000
2074
+ },
2075
+ {
2076
+ "epoch": 25.87,
2077
+ "learning_rate": 4.1738546493134036e-05,
2078
+ "loss": 0.3054,
2079
+ "step": 1035000
2080
+ },
2081
+ {
2082
+ "epoch": 25.94,
2083
+ "learning_rate": 4.0981178565477827e-05,
2084
+ "loss": 0.3052,
2085
+ "step": 1038000
2086
+ },
2087
+ {
2088
+ "epoch": 26.02,
2089
+ "learning_rate": 4.02238106378216e-05,
2090
+ "loss": 0.3013,
2091
+ "step": 1041000
2092
+ },
2093
+ {
2094
+ "epoch": 26.09,
2095
+ "learning_rate": 3.9466442710165386e-05,
2096
+ "loss": 0.2982,
2097
+ "step": 1044000
2098
+ },
2099
+ {
2100
+ "epoch": 26.17,
2101
+ "learning_rate": 3.8709074782509176e-05,
2102
+ "loss": 0.2962,
2103
+ "step": 1047000
2104
+ },
2105
+ {
2106
+ "epoch": 26.24,
2107
+ "learning_rate": 3.795170685485296e-05,
2108
+ "loss": 0.2961,
2109
+ "step": 1050000
2110
+ },
2111
+ {
2112
+ "epoch": 26.32,
2113
+ "learning_rate": 3.719433892719674e-05,
2114
+ "loss": 0.2993,
2115
+ "step": 1053000
2116
+ },
2117
+ {
2118
+ "epoch": 26.39,
2119
+ "learning_rate": 3.6436970999540526e-05,
2120
+ "loss": 0.2941,
2121
+ "step": 1056000
2122
+ },
2123
+ {
2124
+ "epoch": 26.47,
2125
+ "learning_rate": 3.5679603071884316e-05,
2126
+ "loss": 0.2948,
2127
+ "step": 1059000
2128
+ },
2129
+ {
2130
+ "epoch": 26.54,
2131
+ "learning_rate": 3.492223514422809e-05,
2132
+ "loss": 0.2966,
2133
+ "step": 1062000
2134
+ },
2135
+ {
2136
+ "epoch": 26.62,
2137
+ "learning_rate": 3.4164867216571876e-05,
2138
+ "loss": 0.2964,
2139
+ "step": 1065000
2140
+ },
2141
+ {
2142
+ "epoch": 26.69,
2143
+ "learning_rate": 3.3407499288915666e-05,
2144
+ "loss": 0.2971,
2145
+ "step": 1068000
2146
+ },
2147
+ {
2148
+ "epoch": 26.77,
2149
+ "learning_rate": 3.265013136125945e-05,
2150
+ "loss": 0.2974,
2151
+ "step": 1071000
2152
+ },
2153
+ {
2154
+ "epoch": 26.84,
2155
+ "learning_rate": 3.189276343360323e-05,
2156
+ "loss": 0.2963,
2157
+ "step": 1074000
2158
+ },
2159
+ {
2160
+ "epoch": 26.92,
2161
+ "learning_rate": 3.1135395505947016e-05,
2162
+ "loss": 0.2954,
2163
+ "step": 1077000
2164
+ },
2165
+ {
2166
+ "epoch": 26.99,
2167
+ "learning_rate": 3.0378027578290803e-05,
2168
+ "loss": 0.2941,
2169
+ "step": 1080000
2170
+ },
2171
+ {
2172
+ "epoch": 27.07,
2173
+ "learning_rate": 2.9620659650634586e-05,
2174
+ "loss": 0.2896,
2175
+ "step": 1083000
2176
+ },
2177
+ {
2178
+ "epoch": 27.14,
2179
+ "learning_rate": 2.8863291722978373e-05,
2180
+ "loss": 0.289,
2181
+ "step": 1086000
2182
+ },
2183
+ {
2184
+ "epoch": 27.22,
2185
+ "learning_rate": 2.8105923795322156e-05,
2186
+ "loss": 0.2899,
2187
+ "step": 1089000
2188
+ },
2189
+ {
2190
+ "epoch": 27.29,
2191
+ "learning_rate": 2.7348555867665943e-05,
2192
+ "loss": 0.2878,
2193
+ "step": 1092000
2194
+ },
2195
+ {
2196
+ "epoch": 27.37,
2197
+ "learning_rate": 2.6591187940009723e-05,
2198
+ "loss": 0.2858,
2199
+ "step": 1095000
2200
+ },
2201
+ {
2202
+ "epoch": 27.44,
2203
+ "learning_rate": 2.583382001235351e-05,
2204
+ "loss": 0.2901,
2205
+ "step": 1098000
2206
+ },
2207
+ {
2208
+ "epoch": 27.52,
2209
+ "learning_rate": 2.5076452084697293e-05,
2210
+ "loss": 0.2885,
2211
+ "step": 1101000
2212
+ },
2213
+ {
2214
+ "epoch": 27.59,
2215
+ "learning_rate": 2.431908415704108e-05,
2216
+ "loss": 0.2903,
2217
+ "step": 1104000
2218
+ },
2219
+ {
2220
+ "epoch": 27.67,
2221
+ "learning_rate": 2.3561716229384863e-05,
2222
+ "loss": 0.2904,
2223
+ "step": 1107000
2224
+ },
2225
+ {
2226
+ "epoch": 27.74,
2227
+ "learning_rate": 2.280434830172865e-05,
2228
+ "loss": 0.2869,
2229
+ "step": 1110000
2230
+ },
2231
+ {
2232
+ "epoch": 27.82,
2233
+ "learning_rate": 2.2046980374072432e-05,
2234
+ "loss": 0.2902,
2235
+ "step": 1113000
2236
+ },
2237
+ {
2238
+ "epoch": 27.89,
2239
+ "learning_rate": 2.128961244641622e-05,
2240
+ "loss": 0.2867,
2241
+ "step": 1116000
2242
+ },
2243
+ {
2244
+ "epoch": 27.97,
2245
+ "learning_rate": 2.053224451876e-05,
2246
+ "loss": 0.2869,
2247
+ "step": 1119000
2248
+ },
2249
+ {
2250
+ "epoch": 28.04,
2251
+ "learning_rate": 1.9774876591103786e-05,
2252
+ "loss": 0.2844,
2253
+ "step": 1122000
2254
+ },
2255
+ {
2256
+ "epoch": 28.12,
2257
+ "learning_rate": 1.901750866344757e-05,
2258
+ "loss": 0.283,
2259
+ "step": 1125000
2260
+ },
2261
+ {
2262
+ "epoch": 28.19,
2263
+ "learning_rate": 1.8260140735791356e-05,
2264
+ "loss": 0.2816,
2265
+ "step": 1128000
2266
+ },
2267
+ {
2268
+ "epoch": 28.27,
2269
+ "learning_rate": 1.750277280813514e-05,
2270
+ "loss": 0.2848,
2271
+ "step": 1131000
2272
+ },
2273
+ {
2274
+ "epoch": 28.34,
2275
+ "learning_rate": 1.6745404880478922e-05,
2276
+ "loss": 0.2811,
2277
+ "step": 1134000
2278
+ },
2279
+ {
2280
+ "epoch": 28.42,
2281
+ "learning_rate": 1.598803695282271e-05,
2282
+ "loss": 0.283,
2283
+ "step": 1137000
2284
+ },
2285
+ {
2286
+ "epoch": 28.49,
2287
+ "learning_rate": 1.5230669025166492e-05,
2288
+ "loss": 0.2814,
2289
+ "step": 1140000
2290
+ },
2291
+ {
2292
+ "epoch": 28.57,
2293
+ "learning_rate": 1.4473301097510277e-05,
2294
+ "loss": 0.2793,
2295
+ "step": 1143000
2296
+ },
2297
+ {
2298
+ "epoch": 28.64,
2299
+ "learning_rate": 1.3715933169854062e-05,
2300
+ "loss": 0.2834,
2301
+ "step": 1146000
2302
+ },
2303
+ {
2304
+ "epoch": 28.72,
2305
+ "learning_rate": 1.2958565242197847e-05,
2306
+ "loss": 0.2798,
2307
+ "step": 1149000
2308
+ },
2309
+ {
2310
+ "epoch": 28.79,
2311
+ "learning_rate": 1.220119731454163e-05,
2312
+ "loss": 0.2807,
2313
+ "step": 1152000
2314
+ },
2315
+ {
2316
+ "epoch": 28.87,
2317
+ "learning_rate": 1.1443829386885416e-05,
2318
+ "loss": 0.28,
2319
+ "step": 1155000
2320
+ },
2321
+ {
2322
+ "epoch": 28.94,
2323
+ "learning_rate": 1.06864614592292e-05,
2324
+ "loss": 0.2762,
2325
+ "step": 1158000
2326
+ },
2327
+ {
2328
+ "epoch": 29.02,
2329
+ "learning_rate": 9.929093531572985e-06,
2330
+ "loss": 0.2802,
2331
+ "step": 1161000
2332
+ },
2333
+ {
2334
+ "epoch": 29.09,
2335
+ "learning_rate": 9.171725603916769e-06,
2336
+ "loss": 0.2761,
2337
+ "step": 1164000
2338
+ },
2339
+ {
2340
+ "epoch": 29.17,
2341
+ "learning_rate": 8.414357676260554e-06,
2342
+ "loss": 0.2771,
2343
+ "step": 1167000
2344
+ },
2345
+ {
2346
+ "epoch": 29.24,
2347
+ "learning_rate": 7.656989748604339e-06,
2348
+ "loss": 0.2777,
2349
+ "step": 1170000
2350
+ },
2351
+ {
2352
+ "epoch": 29.32,
2353
+ "learning_rate": 6.899621820948123e-06,
2354
+ "loss": 0.2767,
2355
+ "step": 1173000
2356
+ },
2357
+ {
2358
+ "epoch": 29.39,
2359
+ "learning_rate": 6.142253893291908e-06,
2360
+ "loss": 0.2773,
2361
+ "step": 1176000
2362
+ },
2363
+ {
2364
+ "epoch": 29.47,
2365
+ "learning_rate": 5.384885965635692e-06,
2366
+ "loss": 0.2765,
2367
+ "step": 1179000
2368
+ },
2369
+ {
2370
+ "epoch": 29.54,
2371
+ "learning_rate": 4.627518037979477e-06,
2372
+ "loss": 0.2786,
2373
+ "step": 1182000
2374
+ },
2375
+ {
2376
+ "epoch": 29.62,
2377
+ "learning_rate": 3.870150110323261e-06,
2378
+ "loss": 0.2768,
2379
+ "step": 1185000
2380
+ },
2381
+ {
2382
+ "epoch": 29.69,
2383
+ "learning_rate": 3.1127821826670457e-06,
2384
+ "loss": 0.2771,
2385
+ "step": 1188000
2386
+ },
2387
+ {
2388
+ "epoch": 29.77,
2389
+ "learning_rate": 2.35541425501083e-06,
2390
+ "loss": 0.2737,
2391
+ "step": 1191000
2392
+ },
2393
+ {
2394
+ "epoch": 29.84,
2395
+ "learning_rate": 1.5980463273546148e-06,
2396
+ "loss": 0.2737,
2397
+ "step": 1194000
2398
+ },
2399
+ {
2400
+ "epoch": 29.92,
2401
+ "learning_rate": 8.406783996983991e-07,
2402
+ "loss": 0.2781,
2403
+ "step": 1197000
2404
+ },
2405
+ {
2406
+ "epoch": 29.99,
2407
+ "learning_rate": 8.33104720421837e-08,
2408
+ "loss": 0.2745,
2409
+ "step": 1200000
2410
+ },
2411
+ {
2412
+ "epoch": 30.0,
2413
+ "step": 1200330,
2414
+ "total_flos": 2.468458772043806e+21,
2415
+ "train_loss": 0.5222103027782066,
2416
+ "train_runtime": 708527.1323,
2417
+ "train_samples_per_second": 27.106,
2418
+ "train_steps_per_second": 1.694
2419
+ }
2420
+ ],
2421
+ "logging_steps": 3000,
2422
+ "max_steps": 1200330,
2423
+ "num_train_epochs": 30,
2424
+ "save_steps": 500,
2425
+ "total_flos": 2.468458772043806e+21,
2426
+ "trial_name": null,
2427
+ "trial_params": null
2428
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff7ae9d54cc1360db5a7700f9173378cae476f65a389ce03cabb59678aca5527
3
+ size 4600
vocab.json ADDED
@@ -0,0 +1,2225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\b": 0,
3
+ "\"": 2,
4
+ ";": 3,
5
+ "=": 4,
6
+ ">": 5,
7
+ "[": 6,
8
+ "[PAD]": 2222,
9
+ "[UNK]": 2221,
10
+ "\\": 7,
11
+ "_": 8,
12
+ "|": 1,
13
+ "°": 9,
14
+ "×": 10,
15
+ "ö": 11,
16
+ "ł": 12,
17
+ "ᆷ": 13,
18
+ "ᆻ": 14,
19
+ "​": 15,
20
+ "℃": 16,
21
+ "ℓ": 17,
22
+ "お": 18,
23
+ "ㄱ": 19,
24
+ "ㄴ": 20,
25
+ "ㄷ": 21,
26
+ "ㄹ": 22,
27
+ "ㅁ": 23,
28
+ "ㅅ": 24,
29
+ "ㅇ": 25,
30
+ "ㅈ": 26,
31
+ "ㅊ": 27,
32
+ "ㅋ": 28,
33
+ "ㅌ": 29,
34
+ "ㅍ": 30,
35
+ "ㅎ": 31,
36
+ "ㅒ": 32,
37
+ "ㅗ": 33,
38
+ "ㅠ": 34,
39
+ "ㅡ": 35,
40
+ "㎛": 36,
41
+ "子": 37,
42
+ "菓": 38,
43
+ "가": 39,
44
+ "각": 40,
45
+ "간": 41,
46
+ "갇": 42,
47
+ "갈": 43,
48
+ "갉": 44,
49
+ "감": 45,
50
+ "갑": 46,
51
+ "값": 47,
52
+ "갓": 48,
53
+ "갔": 49,
54
+ "강": 50,
55
+ "갖": 51,
56
+ "갗": 52,
57
+ "갘": 53,
58
+ "같": 54,
59
+ "갚": 55,
60
+ "갛": 56,
61
+ "개": 57,
62
+ "객": 58,
63
+ "갠": 59,
64
+ "갤": 60,
65
+ "갬": 61,
66
+ "갭": 62,
67
+ "갯": 63,
68
+ "갰": 64,
69
+ "갱": 65,
70
+ "갸": 66,
71
+ "갹": 67,
72
+ "걀": 68,
73
+ "걈": 69,
74
+ "걍": 70,
75
+ "걔": 71,
76
+ "걘": 72,
77
+ "거": 73,
78
+ "걱": 74,
79
+ "건": 75,
80
+ "걷": 76,
81
+ "걸": 77,
82
+ "검": 78,
83
+ "겁": 79,
84
+ "것": 80,
85
+ "겄": 81,
86
+ "겅": 82,
87
+ "겉": 83,
88
+ "겊": 84,
89
+ "겋": 85,
90
+ "게": 86,
91
+ "겍": 87,
92
+ "겐": 88,
93
+ "겔": 89,
94
+ "겜": 90,
95
+ "겟": 91,
96
+ "겠": 92,
97
+ "겡": 93,
98
+ "겨": 94,
99
+ "격": 95,
100
+ "겪": 96,
101
+ "견": 97,
102
+ "결": 98,
103
+ "겸": 99,
104
+ "겹": 100,
105
+ "겻": 101,
106
+ "겼": 102,
107
+ "경": 103,
108
+ "곁": 104,
109
+ "계": 105,
110
+ "곈": 106,
111
+ "곗": 107,
112
+ "곘": 108,
113
+ "고": 109,
114
+ "곡": 110,
115
+ "곤": 111,
116
+ "곧": 112,
117
+ "골": 113,
118
+ "곪": 114,
119
+ "곯": 115,
120
+ "곰": 116,
121
+ "곱": 117,
122
+ "곳": 118,
123
+ "공": 119,
124
+ "곶": 120,
125
+ "곷": 121,
126
+ "과": 122,
127
+ "곽": 123,
128
+ "관": 124,
129
+ "괄": 125,
130
+ "괌": 126,
131
+ "광": 127,
132
+ "괘": 128,
133
+ "괜": 129,
134
+ "괭": 130,
135
+ "괴": 131,
136
+ "괸": 132,
137
+ "굉": 133,
138
+ "교": 134,
139
+ "굔": 135,
140
+ "굗": 136,
141
+ "굘": 137,
142
+ "굣": 138,
143
+ "굥": 139,
144
+ "구": 140,
145
+ "국": 141,
146
+ "군": 142,
147
+ "굳": 143,
148
+ "굴": 144,
149
+ "굵": 145,
150
+ "굶": 146,
151
+ "굷": 147,
152
+ "굼": 148,
153
+ "굽": 149,
154
+ "굿": 150,
155
+ "궁": 151,
156
+ "궂": 152,
157
+ "궈": 153,
158
+ "권": 154,
159
+ "궐": 155,
160
+ "궜": 156,
161
+ "궝": 157,
162
+ "궤": 158,
163
+ "귀": 159,
164
+ "귄": 160,
165
+ "귈": 161,
166
+ "귓": 162,
167
+ "귔": 163,
168
+ "규": 164,
169
+ "균": 165,
170
+ "귤": 166,
171
+ "그": 167,
172
+ "극": 168,
173
+ "근": 169,
174
+ "귿": 170,
175
+ "글": 171,
176
+ "긁": 172,
177
+ "금": 173,
178
+ "급": 174,
179
+ "긋": 175,
180
+ "긍": 176,
181
+ "긎": 177,
182
+ "긓": 178,
183
+ "긔": 179,
184
+ "기": 180,
185
+ "긱": 181,
186
+ "긴": 182,
187
+ "길": 183,
188
+ "김": 184,
189
+ "깁": 185,
190
+ "깃": 186,
191
+ "깄": 187,
192
+ "깅": 188,
193
+ "깆": 189,
194
+ "깊": 190,
195
+ "까": 191,
196
+ "깍": 192,
197
+ "깎": 193,
198
+ "깐": 194,
199
+ "깓": 195,
200
+ "깔": 196,
201
+ "깜": 197,
202
+ "깝": 198,
203
+ "깟": 199,
204
+ "깠": 200,
205
+ "깡": 201,
206
+ "깥": 202,
207
+ "깨": 203,
208
+ "깬": 204,
209
+ "깰": 205,
210
+ "깸": 206,
211
+ "깹": 207,
212
+ "깻": 208,
213
+ "깼": 209,
214
+ "깽": 210,
215
+ "꺄": 211,
216
+ "꺅": 212,
217
+ "꺙": 213,
218
+ "꺠": 214,
219
+ "꺨": 215,
220
+ "꺵": 216,
221
+ "꺼": 217,
222
+ "꺽": 218,
223
+ "꺾": 219,
224
+ "껀": 220,
225
+ "껄": 221,
226
+ "껌": 222,
227
+ "껍": 223,
228
+ "껏": 224,
229
+ "껐": 225,
230
+ "껑": 226,
231
+ "껗": 227,
232
+ "께": 228,
233
+ "껜": 229,
234
+ "껫": 230,
235
+ "껬": 231,
236
+ "껴": 232,
237
+ "껼": 233,
238
+ "꼇": 234,
239
+ "꼈": 235,
240
+ "꼉": 236,
241
+ "꼐": 237,
242
+ "꼬": 238,
243
+ "꼭": 239,
244
+ "꼰": 240,
245
+ "꼴": 241,
246
+ "꼼": 242,
247
+ "꼽": 243,
248
+ "꼿": 244,
249
+ "꽁": 245,
250
+ "꽂": 246,
251
+ "꽃": 247,
252
+ "꽈": 248,
253
+ "꽉": 249,
254
+ "꽌": 250,
255
+ "꽐": 251,
256
+ "꽜": 252,
257
+ "꽝": 253,
258
+ "꽤": 254,
259
+ "꽥": 255,
260
+ "꽨": 256,
261
+ "꾀": 257,
262
+ "꾤": 258,
263
+ "꾸": 259,
264
+ "꾹": 260,
265
+ "꾼": 261,
266
+ "꿀": 262,
267
+ "꿇": 263,
268
+ "꿈": 264,
269
+ "꿉": 265,
270
+ "꿋": 266,
271
+ "꿍": 267,
272
+ "꿎": 268,
273
+ "꿔": 269,
274
+ "꿨": 270,
275
+ "꿩": 271,
276
+ "꿰": 272,
277
+ "뀌": 273,
278
+ "뀐": 274,
279
+ "뀔": 275,
280
+ "뀜": 276,
281
+ "뀝": 277,
282
+ "뀠": 278,
283
+ "뀨": 279,
284
+ "뀽": 280,
285
+ "끄": 281,
286
+ "끅": 282,
287
+ "끈": 283,
288
+ "끊": 284,
289
+ "끌": 285,
290
+ "끍": 286,
291
+ "끓": 287,
292
+ "끔": 288,
293
+ "끕": 289,
294
+ "끗": 290,
295
+ "끙": 291,
296
+ "끝": 292,
297
+ "끼": 293,
298
+ "끽": 294,
299
+ "낀": 295,
300
+ "낄": 296,
301
+ "낌": 297,
302
+ "낍": 298,
303
+ "낏": 299,
304
+ "낑": 300,
305
+ "나": 301,
306
+ "낙": 302,
307
+ "낚": 303,
308
+ "난": 304,
309
+ "날": 305,
310
+ "낡": 306,
311
+ "낧": 307,
312
+ "남": 308,
313
+ "납": 309,
314
+ "낫": 310,
315
+ "났": 311,
316
+ "낭": 312,
317
+ "낮": 313,
318
+ "낯": 314,
319
+ "낱": 315,
320
+ "낳": 316,
321
+ "내": 317,
322
+ "낵": 318,
323
+ "낸": 319,
324
+ "낼": 320,
325
+ "냄": 321,
326
+ "냅": 322,
327
+ "냇": 323,
328
+ "냈": 324,
329
+ "냉": 325,
330
+ "냐": 326,
331
+ "냑": 327,
332
+ "냔": 328,
333
+ "냠": 329,
334
+ "냥": 330,
335
+ "냬": 331,
336
+ "넀": 332,
337
+ "너": 333,
338
+ "넉": 334,
339
+ "넋": 335,
340
+ "넌": 336,
341
+ "널": 337,
342
+ "넓": 338,
343
+ "넗": 339,
344
+ "넘": 340,
345
+ "넙": 341,
346
+ "넛": 342,
347
+ "넜": 343,
348
+ "넝": 344,
349
+ "넣": 345,
350
+ "네": 346,
351
+ "넥": 347,
352
+ "넨": 348,
353
+ "넫": 349,
354
+ "넬": 350,
355
+ "넴": 351,
356
+ "넵": 352,
357
+ "넷": 353,
358
+ "넹": 354,
359
+ "녀": 355,
360
+ "녁": 356,
361
+ "년": 357,
362
+ "념": 358,
363
+ "녔": 359,
364
+ "녕": 360,
365
+ "녘": 361,
366
+ "녜": 362,
367
+ "노": 363,
368
+ "녹": 364,
369
+ "논": 365,
370
+ "놀": 366,
371
+ "놈": 367,
372
+ "놉": 368,
373
+ "놋": 369,
374
+ "농": 370,
375
+ "높": 371,
376
+ "놓": 372,
377
+ "놔": 373,
378
+ "놘": 374,
379
+ "놥": 375,
380
+ "놨": 376,
381
+ "놯": 377,
382
+ "뇌": 378,
383
+ "뇨": 379,
384
+ "뇬": 380,
385
+ "뇸": 381,
386
+ "뇽": 382,
387
+ "누": 383,
388
+ "눅": 384,
389
+ "눈": 385,
390
+ "눌": 386,
391
+ "눔": 387,
392
+ "눕": 388,
393
+ "눗": 389,
394
+ "눙": 390,
395
+ "눟": 391,
396
+ "눠": 392,
397
+ "눴": 393,
398
+ "눼": 394,
399
+ "뉘": 395,
400
+ "뉜": 396,
401
+ "뉠": 397,
402
+ "뉩": 398,
403
+ "뉴": 399,
404
+ "뉵": 400,
405
+ "뉸": 401,
406
+ "뉼": 402,
407
+ "늄": 403,
408
+ "늉": 404,
409
+ "느": 405,
410
+ "늑": 406,
411
+ "는": 407,
412
+ "늘": 408,
413
+ "늙": 409,
414
+ "늠": 410,
415
+ "늡": 411,
416
+ "능": 412,
417
+ "늦": 413,
418
+ "늪": 414,
419
+ "늫": 415,
420
+ "늬": 416,
421
+ "늴": 417,
422
+ "늼": 418,
423
+ "니": 419,
424
+ "닉": 420,
425
+ "닌": 421,
426
+ "닏": 422,
427
+ "닐": 423,
428
+ "님": 424,
429
+ "닙": 425,
430
+ "닛": 426,
431
+ "닝": 427,
432
+ "닢": 428,
433
+ "다": 429,
434
+ "닥": 430,
435
+ "닦": 431,
436
+ "단": 432,
437
+ "닫": 433,
438
+ "달": 434,
439
+ "닭": 435,
440
+ "닮": 436,
441
+ "닯": 437,
442
+ "닳": 438,
443
+ "담": 439,
444
+ "답": 440,
445
+ "닷": 441,
446
+ "당": 442,
447
+ "닺": 443,
448
+ "닻": 444,
449
+ "닿": 445,
450
+ "대": 446,
451
+ "댁": 447,
452
+ "댄": 448,
453
+ "댈": 449,
454
+ "댐": 450,
455
+ "댑": 451,
456
+ "댓": 452,
457
+ "댔": 453,
458
+ "댕": 454,
459
+ "댜": 455,
460
+ "댯": 456,
461
+ "댱": 457,
462
+ "더": 458,
463
+ "덕": 459,
464
+ "덖": 460,
465
+ "던": 461,
466
+ "덜": 462,
467
+ "덞": 463,
468
+ "덟": 464,
469
+ "덤": 465,
470
+ "덥": 466,
471
+ "덧": 467,
472
+ "덨": 468,
473
+ "덩": 469,
474
+ "덫": 470,
475
+ "덮": 471,
476
+ "데": 472,
477
+ "덱": 473,
478
+ "덴": 474,
479
+ "델": 475,
480
+ "뎀": 476,
481
+ "뎁": 477,
482
+ "뎃": 478,
483
+ "뎅": 479,
484
+ "뎈": 480,
485
+ "뎌": 481,
486
+ "뎝": 482,
487
+ "뎠": 483,
488
+ "뎡": 484,
489
+ "도": 485,
490
+ "독": 486,
491
+ "돈": 487,
492
+ "돋": 488,
493
+ "돌": 489,
494
+ "돔": 490,
495
+ "돕": 491,
496
+ "돗": 492,
497
+ "동": 493,
498
+ "돚": 494,
499
+ "돠": 495,
500
+ "돼": 496,
501
+ "됄": 497,
502
+ "됌": 498,
503
+ "됐": 499,
504
+ "되": 500,
505
+ "된": 501,
506
+ "될": 502,
507
+ "됨": 503,
508
+ "됩": 504,
509
+ "됬": 505,
510
+ "됴": 506,
511
+ "두": 507,
512
+ "둑": 508,
513
+ "둔": 509,
514
+ "둘": 510,
515
+ "둠": 511,
516
+ "둡": 512,
517
+ "둣": 513,
518
+ "둥": 514,
519
+ "둬": 515,
520
+ "뒀": 516,
521
+ "뒈": 517,
522
+ "뒤": 518,
523
+ "뒨": 519,
524
+ "뒷": 520,
525
+ "뒹": 521,
526
+ "듀": 522,
527
+ "듄": 523,
528
+ "듈": 524,
529
+ "듐": 525,
530
+ "듕": 526,
531
+ "드": 527,
532
+ "득": 528,
533
+ "든": 529,
534
+ "듣": 530,
535
+ "들": 531,
536
+ "듦": 532,
537
+ "듬": 533,
538
+ "듭": 534,
539
+ "듯": 535,
540
+ "등": 536,
541
+ "듸": 537,
542
+ "디": 538,
543
+ "딕": 539,
544
+ "딘": 540,
545
+ "딛": 541,
546
+ "딜": 542,
547
+ "딤": 543,
548
+ "딥": 544,
549
+ "딧": 545,
550
+ "딨": 546,
551
+ "딩": 547,
552
+ "딪": 548,
553
+ "딯": 549,
554
+ "따": 550,
555
+ "딱": 551,
556
+ "딲": 552,
557
+ "딴": 553,
558
+ "딸": 554,
559
+ "땀": 555,
560
+ "땁": 556,
561
+ "땃": 557,
562
+ "땄": 558,
563
+ "땅": 559,
564
+ "땋": 560,
565
+ "때": 561,
566
+ "땐": 562,
567
+ "땜": 563,
568
+ "땝": 564,
569
+ "땟": 565,
570
+ "땠": 566,
571
+ "땡": 567,
572
+ "땨": 568,
573
+ "떄": 569,
574
+ "떈": 570,
575
+ "떔": 571,
576
+ "떙": 572,
577
+ "떠": 573,
578
+ "떡": 574,
579
+ "떤": 575,
580
+ "떨": 576,
581
+ "떫": 577,
582
+ "떱": 578,
583
+ "떳": 579,
584
+ "떴": 580,
585
+ "떵": 581,
586
+ "떻": 582,
587
+ "떼": 583,
588
+ "뗀": 584,
589
+ "뗄": 585,
590
+ "뗍": 586,
591
+ "뗏": 587,
592
+ "뗐": 588,
593
+ "뗘": 589,
594
+ "뗬": 590,
595
+ "뗴": 591,
596
+ "또": 592,
597
+ "똑": 593,
598
+ "똔": 594,
599
+ "똘": 595,
600
+ "똠": 596,
601
+ "똡": 597,
602
+ "똥": 598,
603
+ "똬": 599,
604
+ "뙜": 600,
605
+ "뙤": 601,
606
+ "뚀": 602,
607
+ "뚜": 603,
608
+ "뚝": 604,
609
+ "뚠": 605,
610
+ "뚤": 606,
611
+ "뚫": 607,
612
+ "뚬": 608,
613
+ "뚱": 609,
614
+ "뛰": 610,
615
+ "뛴": 611,
616
+ "뛸": 612,
617
+ "뜀": 613,
618
+ "뜁": 614,
619
+ "뜨": 615,
620
+ "뜩": 616,
621
+ "뜬": 617,
622
+ "뜯": 618,
623
+ "뜰": 619,
624
+ "뜷": 620,
625
+ "뜸": 621,
626
+ "뜹": 622,
627
+ "뜻": 623,
628
+ "뜽": 624,
629
+ "띄": 625,
630
+ "띈": 626,
631
+ "띌": 627,
632
+ "띕": 628,
633
+ "띠": 629,
634
+ "띡": 630,
635
+ "띤": 631,
636
+ "띨": 632,
637
+ "띰": 633,
638
+ "띱": 634,
639
+ "띵": 635,
640
+ "라": 636,
641
+ "락": 637,
642
+ "란": 638,
643
+ "랄": 639,
644
+ "람": 640,
645
+ "랍": 641,
646
+ "랏": 642,
647
+ "랐": 643,
648
+ "랑": 644,
649
+ "랖": 645,
650
+ "랗": 646,
651
+ "래": 647,
652
+ "랙": 648,
653
+ "랜": 649,
654
+ "랠": 650,
655
+ "램": 651,
656
+ "랩": 652,
657
+ "랫": 653,
658
+ "랬": 654,
659
+ "랭": 655,
660
+ "랴": 656,
661
+ "략": 657,
662
+ "럈": 658,
663
+ "량": 659,
664
+ "러": 660,
665
+ "럭": 661,
666
+ "런": 662,
667
+ "럴": 663,
668
+ "럼": 664,
669
+ "럽": 665,
670
+ "럿": 666,
671
+ "렀": 667,
672
+ "렁": 668,
673
+ "렇": 669,
674
+ "레": 670,
675
+ "렉": 671,
676
+ "렌": 672,
677
+ "렐": 673,
678
+ "렘": 674,
679
+ "렙": 675,
680
+ "렛": 676,
681
+ "렜": 677,
682
+ "렝": 678,
683
+ "렣": 679,
684
+ "려": 680,
685
+ "력": 681,
686
+ "련": 682,
687
+ "렬": 683,
688
+ "렴": 684,
689
+ "렵": 685,
690
+ "렷": 686,
691
+ "��": 687,
692
+ "령": 688,
693
+ "렼": 689,
694
+ "렿": 690,
695
+ "례": 691,
696
+ "로": 692,
697
+ "록": 693,
698
+ "론": 694,
699
+ "롤": 695,
700
+ "롬": 696,
701
+ "롭": 697,
702
+ "롯": 698,
703
+ "롱": 699,
704
+ "롷": 700,
705
+ "롸": 701,
706
+ "롹": 702,
707
+ "뢰": 703,
708
+ "료": 704,
709
+ "룐": 705,
710
+ "룔": 706,
711
+ "룝": 707,
712
+ "룟": 708,
713
+ "룡": 709,
714
+ "루": 710,
715
+ "룩": 711,
716
+ "룬": 712,
717
+ "룰": 713,
718
+ "룸": 714,
719
+ "룹": 715,
720
+ "룻": 716,
721
+ "룽": 717,
722
+ "뤄": 718,
723
+ "뤘": 719,
724
+ "뤠": 720,
725
+ "뤼": 721,
726
+ "뤽": 722,
727
+ "류": 723,
728
+ "륙": 724,
729
+ "륜": 725,
730
+ "률": 726,
731
+ "륨": 727,
732
+ "륭": 728,
733
+ "르": 729,
734
+ "륵": 730,
735
+ "른": 731,
736
+ "를": 732,
737
+ "름": 733,
738
+ "릅": 734,
739
+ "릇": 735,
740
+ "릉": 736,
741
+ "릎": 737,
742
+ "릏": 738,
743
+ "리": 739,
744
+ "릭": 740,
745
+ "린": 741,
746
+ "릴": 742,
747
+ "림": 743,
748
+ "립": 744,
749
+ "릿": 745,
750
+ "맀": 746,
751
+ "링": 747,
752
+ "마": 748,
753
+ "막": 749,
754
+ "만": 750,
755
+ "맍": 751,
756
+ "많": 752,
757
+ "맏": 753,
758
+ "말": 754,
759
+ "맑": 755,
760
+ "맘": 756,
761
+ "맙": 757,
762
+ "맛": 758,
763
+ "맜": 759,
764
+ "망": 760,
765
+ "맞": 761,
766
+ "맟": 762,
767
+ "맡": 763,
768
+ "맣": 764,
769
+ "매": 765,
770
+ "맥": 766,
771
+ "맨": 767,
772
+ "맬": 768,
773
+ "맴": 769,
774
+ "맵": 770,
775
+ "맷": 771,
776
+ "맸": 772,
777
+ "맹": 773,
778
+ "맺": 774,
779
+ "맻": 775,
780
+ "맽": 776,
781
+ "먀": 777,
782
+ "먄": 778,
783
+ "먆": 779,
784
+ "먕": 780,
785
+ "머": 781,
786
+ "먹": 782,
787
+ "먼": 783,
788
+ "멀": 784,
789
+ "멈": 785,
790
+ "멉": 786,
791
+ "멋": 787,
792
+ "멍": 788,
793
+ "멎": 789,
794
+ "멓": 790,
795
+ "메": 791,
796
+ "멕": 792,
797
+ "멘": 793,
798
+ "멜": 794,
799
+ "멤": 795,
800
+ "멥": 796,
801
+ "멧": 797,
802
+ "멨": 798,
803
+ "멩": 799,
804
+ "며": 800,
805
+ "멱": 801,
806
+ "면": 802,
807
+ "멸": 803,
808
+ "몀": 804,
809
+ "몄": 805,
810
+ "명": 806,
811
+ "몇": 807,
812
+ "몉": 808,
813
+ "모": 809,
814
+ "목": 810,
815
+ "몫": 811,
816
+ "몬": 812,
817
+ "몰": 813,
818
+ "몵": 814,
819
+ "몸": 815,
820
+ "몹": 816,
821
+ "못": 817,
822
+ "몽": 818,
823
+ "뫠": 819,
824
+ "묄": 820,
825
+ "묘": 821,
826
+ "묙": 822,
827
+ "묜": 823,
828
+ "묨": 824,
829
+ "묩": 825,
830
+ "무": 826,
831
+ "묵": 827,
832
+ "묶": 828,
833
+ "문": 829,
834
+ "묻": 830,
835
+ "물": 831,
836
+ "묽": 832,
837
+ "뭄": 833,
838
+ "뭅": 834,
839
+ "뭇": 835,
840
+ "뭉": 836,
841
+ "뭍": 837,
842
+ "뭐": 838,
843
+ "뭑": 839,
844
+ "뭔": 840,
845
+ "뭘": 841,
846
+ "뭡": 842,
847
+ "뭣": 843,
848
+ "뭥": 844,
849
+ "뭪": 845,
850
+ "뭬": 846,
851
+ "뮈": 847,
852
+ "뮌": 848,
853
+ "뮤": 849,
854
+ "뮨": 850,
855
+ "뮬": 851,
856
+ "뮵": 852,
857
+ "뮹": 853,
858
+ "므": 854,
859
+ "믁": 855,
860
+ "믄": 856,
861
+ "믈": 857,
862
+ "믐": 858,
863
+ "미": 859,
864
+ "믹": 860,
865
+ "민": 861,
866
+ "믾": 862,
867
+ "믿": 863,
868
+ "밀": 864,
869
+ "밈": 865,
870
+ "밉": 866,
871
+ "밋": 867,
872
+ "밌": 868,
873
+ "밍": 869,
874
+ "밎": 870,
875
+ "및": 871,
876
+ "밑": 872,
877
+ "바": 873,
878
+ "박": 874,
879
+ "밖": 875,
880
+ "반": 876,
881
+ "받": 877,
882
+ "발": 878,
883
+ "밝": 879,
884
+ "밟": 880,
885
+ "밤": 881,
886
+ "밥": 882,
887
+ "밧": 883,
888
+ "밨": 884,
889
+ "방": 885,
890
+ "밭": 886,
891
+ "배": 887,
892
+ "백": 888,
893
+ "밴": 889,
894
+ "밸": 890,
895
+ "뱀": 891,
896
+ "뱁": 892,
897
+ "뱃": 893,
898
+ "뱄": 894,
899
+ "뱅": 895,
900
+ "뱉": 896,
901
+ "뱌": 897,
902
+ "버": 898,
903
+ "벅": 899,
904
+ "번": 900,
905
+ "벌": 901,
906
+ "범": 902,
907
+ "법": 903,
908
+ "벗": 904,
909
+ "벘": 905,
910
+ "벙": 906,
911
+ "벚": 907,
912
+ "베": 908,
913
+ "벡": 909,
914
+ "벤": 910,
915
+ "벨": 911,
916
+ "벳": 912,
917
+ "벵": 913,
918
+ "벹": 914,
919
+ "벼": 915,
920
+ "벽": 916,
921
+ "변": 917,
922
+ "별": 918,
923
+ "볍": 919,
924
+ "볏": 920,
925
+ "볐": 921,
926
+ "병": 922,
927
+ "볕": 923,
928
+ "보": 924,
929
+ "복": 925,
930
+ "볶": 926,
931
+ "본": 927,
932
+ "볼": 928,
933
+ "봄": 929,
934
+ "봅": 930,
935
+ "봇": 931,
936
+ "봈": 932,
937
+ "봉": 933,
938
+ "봐": 934,
939
+ "봔": 935,
940
+ "봘": 936,
941
+ "봤": 937,
942
+ "봬": 938,
943
+ "봰": 939,
944
+ "봴": 940,
945
+ "봽": 941,
946
+ "뵀": 942,
947
+ "뵈": 943,
948
+ "뵌": 944,
949
+ "뵐": 945,
950
+ "뵙": 946,
951
+ "뵜": 947,
952
+ "뵤": 948,
953
+ "뵹": 949,
954
+ "부": 950,
955
+ "북": 951,
956
+ "분": 952,
957
+ "붇": 953,
958
+ "불": 954,
959
+ "붉": 955,
960
+ "붐": 956,
961
+ "붑": 957,
962
+ "붓": 958,
963
+ "붕": 959,
964
+ "붙": 960,
965
+ "붜": 961,
966
+ "뷔": 962,
967
+ "뷰": 963,
968
+ "뷸": 964,
969
+ "븅": 965,
970
+ "브": 966,
971
+ "븐": 967,
972
+ "블": 968,
973
+ "븡": 969,
974
+ "비": 970,
975
+ "빅": 971,
976
+ "빈": 972,
977
+ "빌": 973,
978
+ "빔": 974,
979
+ "빕": 975,
980
+ "빗": 976,
981
+ "빘": 977,
982
+ "빙": 978,
983
+ "빚": 979,
984
+ "빛": 980,
985
+ "빠": 981,
986
+ "빡": 982,
987
+ "빤": 983,
988
+ "빨": 984,
989
+ "빰": 985,
990
+ "빱": 986,
991
+ "빳": 987,
992
+ "빴": 988,
993
+ "빵": 989,
994
+ "빻": 990,
995
+ "빼": 991,
996
+ "빽": 992,
997
+ "뺀": 993,
998
+ "뺄": 994,
999
+ "뺌": 995,
1000
+ "뺍": 996,
1001
+ "뺏": 997,
1002
+ "뺐": 998,
1003
+ "뺑": 999,
1004
+ "뺨": 1000,
1005
+ "뺭": 1001,
1006
+ "뺴": 1002,
1007
+ "뺵": 1003,
1008
+ "뺼": 1004,
1009
+ "뻇": 1005,
1010
+ "뻈": 1006,
1011
+ "뻐": 1007,
1012
+ "뻑": 1008,
1013
+ "뻔": 1009,
1014
+ "뻗": 1010,
1015
+ "뻘": 1011,
1016
+ "뻠": 1012,
1017
+ "뻣": 1013,
1018
+ "뻤": 1014,
1019
+ "뻥": 1015,
1020
+ "뻬": 1016,
1021
+ "뻴": 1017,
1022
+ "뼈": 1018,
1023
+ "뼉": 1019,
1024
+ "뼘": 1020,
1025
+ "뼛": 1021,
1026
+ "뼝": 1022,
1027
+ "뽀": 1023,
1028
+ "뽁": 1024,
1029
+ "뽂": 1025,
1030
+ "뽄": 1026,
1031
+ "뽈": 1027,
1032
+ "뽐": 1028,
1033
+ "뽑": 1029,
1034
+ "뽕": 1030,
1035
+ "뽜": 1031,
1036
+ "뽝": 1032,
1037
+ "뾰": 1033,
1038
+ "뾱": 1034,
1039
+ "뿅": 1035,
1040
+ "뿌": 1036,
1041
+ "뿍": 1037,
1042
+ "뿐": 1038,
1043
+ "뿔": 1039,
1044
+ "뿜": 1040,
1045
+ "뿟": 1041,
1046
+ "뿡": 1042,
1047
+ "쀼": 1043,
1048
+ "쁘": 1044,
1049
+ "쁜": 1045,
1050
+ "쁠": 1046,
1051
+ "쁨": 1047,
1052
+ "쁩": 1048,
1053
+ "삐": 1049,
1054
+ "삑": 1050,
1055
+ "삔": 1051,
1056
+ "삘": 1052,
1057
+ "삣": 1053,
1058
+ "삥": 1054,
1059
+ "사": 1055,
1060
+ "삭": 1056,
1061
+ "삯": 1057,
1062
+ "산": 1058,
1063
+ "살": 1059,
1064
+ "삶": 1060,
1065
+ "삷": 1061,
1066
+ "삼": 1062,
1067
+ "삽": 1063,
1068
+ "삿": 1064,
1069
+ "샀": 1065,
1070
+ "상": 1066,
1071
+ "샅": 1067,
1072
+ "새": 1068,
1073
+ "색": 1069,
1074
+ "샊": 1070,
1075
+ "샌": 1071,
1076
+ "샐": 1072,
1077
+ "샘": 1073,
1078
+ "샙": 1074,
1079
+ "샛": 1075,
1080
+ "샜": 1076,
1081
+ "생": 1077,
1082
+ "샤": 1078,
1083
+ "샥": 1079,
1084
+ "샨": 1080,
1085
+ "샬": 1081,
1086
+ "샴": 1082,
1087
+ "샵": 1083,
1088
+ "샷": 1084,
1089
+ "샹": 1085,
1090
+ "섀": 1086,
1091
+ "서": 1087,
1092
+ "석": 1088,
1093
+ "섞": 1089,
1094
+ "선": 1090,
1095
+ "섣": 1091,
1096
+ "설": 1092,
1097
+ "섬": 1093,
1098
+ "섭": 1094,
1099
+ "섯": 1095,
1100
+ "섰": 1096,
1101
+ "성": 1097,
1102
+ "세": 1098,
1103
+ "섹": 1099,
1104
+ "센": 1100,
1105
+ "셀": 1101,
1106
+ "셈": 1102,
1107
+ "셉": 1103,
1108
+ "셋": 1104,
1109
+ "셌": 1105,
1110
+ "셍": 1106,
1111
+ "셔": 1107,
1112
+ "션": 1108,
1113
+ "셜": 1109,
1114
+ "셤": 1110,
1115
+ "셧": 1111,
1116
+ "셨": 1112,
1117
+ "셩": 1113,
1118
+ "셰": 1114,
1119
+ "셴": 1115,
1120
+ "셸": 1116,
1121
+ "솅": 1117,
1122
+ "소": 1118,
1123
+ "속": 1119,
1124
+ "솎": 1120,
1125
+ "손": 1121,
1126
+ "솔": 1122,
1127
+ "솜": 1123,
1128
+ "솝": 1124,
1129
+ "솟": 1125,
1130
+ "송": 1126,
1131
+ "솥": 1127,
1132
+ "솨": 1128,
1133
+ "솩": 1129,
1134
+ "솼": 1130,
1135
+ "쇄": 1131,
1136
+ "쇠": 1132,
1137
+ "쇤": 1133,
1138
+ "쇳": 1134,
1139
+ "쇼": 1135,
1140
+ "쇽": 1136,
1141
+ "숀": 1137,
1142
+ "숄": 1138,
1143
+ "숌": 1139,
1144
+ "숍": 1140,
1145
+ "숏": 1141,
1146
+ "숑": 1142,
1147
+ "수": 1143,
1148
+ "숙": 1144,
1149
+ "순": 1145,
1150
+ "숟": 1146,
1151
+ "술": 1147,
1152
+ "숨": 1148,
1153
+ "숩": 1149,
1154
+ "숫": 1150,
1155
+ "숭": 1151,
1156
+ "숯": 1152,
1157
+ "숱": 1153,
1158
+ "숲": 1154,
1159
+ "숴": 1155,
1160
+ "쉈": 1156,
1161
+ "쉐": 1157,
1162
+ "쉑": 1158,
1163
+ "쉔": 1159,
1164
+ "쉘": 1160,
1165
+ "쉣": 1161,
1166
+ "쉬": 1162,
1167
+ "쉭": 1163,
1168
+ "쉰": 1164,
1169
+ "쉴": 1165,
1170
+ "쉼": 1166,
1171
+ "쉽": 1167,
1172
+ "쉿": 1168,
1173
+ "슁": 1169,
1174
+ "슈": 1170,
1175
+ "슉": 1171,
1176
+ "슐": 1172,
1177
+ "슘": 1173,
1178
+ "슙": 1174,
1179
+ "슛": 1175,
1180
+ "슝": 1176,
1181
+ "슟": 1177,
1182
+ "스": 1178,
1183
+ "슥": 1179,
1184
+ "슨": 1180,
1185
+ "슬": 1181,
1186
+ "슴": 1182,
1187
+ "습": 1183,
1188
+ "슷": 1184,
1189
+ "승": 1185,
1190
+ "슼": 1186,
1191
+ "슾": 1187,
1192
+ "싑": 1188,
1193
+ "시": 1189,
1194
+ "식": 1190,
1195
+ "신": 1191,
1196
+ "싣": 1192,
1197
+ "실": 1193,
1198
+ "싫": 1194,
1199
+ "심": 1195,
1200
+ "십": 1196,
1201
+ "싯": 1197,
1202
+ "싰": 1198,
1203
+ "싱": 1199,
1204
+ "싴": 1200,
1205
+ "싶": 1201,
1206
+ "싷": 1202,
1207
+ "싸": 1203,
1208
+ "싹": 1204,
1209
+ "싼": 1205,
1210
+ "쌀": 1206,
1211
+ "쌂": 1207,
1212
+ "쌈": 1208,
1213
+ "쌉": 1209,
1214
+ "쌋": 1210,
1215
+ "쌌": 1211,
1216
+ "쌍": 1212,
1217
+ "쌓": 1213,
1218
+ "쌔": 1214,
1219
+ "쌕": 1215,
1220
+ "쌘": 1216,
1221
+ "쌤": 1217,
1222
+ "쌥": 1218,
1223
+ "쌧": 1219,
1224
+ "쌨": 1220,
1225
+ "쌩": 1221,
1226
+ "쌰": 1222,
1227
+ "썀": 1223,
1228
+ "썃": 1224,
1229
+ "썅": 1225,
1230
+ "썜": 1226,
1231
+ "써": 1227,
1232
+ "썩": 1228,
1233
+ "썪": 1229,
1234
+ "썬": 1230,
1235
+ "썰": 1231,
1236
+ "썸": 1232,
1237
+ "썹": 1233,
1238
+ "썻": 1234,
1239
+ "썼": 1235,
1240
+ "썽": 1236,
1241
+ "쎄": 1237,
1242
+ "쎅": 1238,
1243
+ "쎈": 1239,
1244
+ "쎌": 1240,
1245
+ "쎔": 1241,
1246
+ "쎕": 1242,
1247
+ "쎗": 1243,
1248
+ "쎘": 1244,
1249
+ "쎠": 1245,
1250
+ "쎴": 1246,
1251
+ "쎼": 1247,
1252
+ "쏘": 1248,
1253
+ "쏙": 1249,
1254
+ "쏜": 1250,
1255
+ "쏟": 1251,
1256
+ "쏠": 1252,
1257
+ "쏨": 1253,
1258
+ "쏩": 1254,
1259
+ "쏫": 1255,
1260
+ "쏭": 1256,
1261
+ "쏴": 1257,
1262
+ "쏵": 1258,
1263
+ "쐇": 1259,
1264
+ "쐈": 1260,
1265
+ "쐐": 1261,
1266
+ "쐤": 1262,
1267
+ "쐥": 1263,
1268
+ "쐬": 1264,
1269
+ "쐰": 1265,
1270
+ "쐴": 1266,
1271
+ "쑀": 1267,
1272
+ "쑈": 1268,
1273
+ "쑉": 1269,
1274
+ "쑝": 1270,
1275
+ "쑤": 1271,
1276
+ "쑥": 1272,
1277
+ "쑬": 1273,
1278
+ "쒀": 1274,
1279
+ "쒯": 1275,
1280
+ "쒸": 1276,
1281
+ "쓕": 1277,
1282
+ "쓰": 1278,
1283
+ "쓱": 1279,
1284
+ "쓴": 1280,
1285
+ "쓸": 1281,
1286
+ "씀": 1282,
1287
+ "씁": 1283,
1288
+ "씃": 1284,
1289
+ "씄": 1285,
1290
+ "씅": 1286,
1291
+ "씌": 1287,
1292
+ "씐": 1288,
1293
+ "씨": 1289,
1294
+ "씩": 1290,
1295
+ "씬": 1291,
1296
+ "씰": 1292,
1297
+ "씸": 1293,
1298
+ "씹": 1294,
1299
+ "씻": 1295,
1300
+ "씽": 1296,
1301
+ "아": 1297,
1302
+ "악": 1298,
1303
+ "안": 1299,
1304
+ "앉": 1300,
1305
+ "않": 1301,
1306
+ "알": 1302,
1307
+ "앎": 1303,
1308
+ "앏": 1304,
1309
+ "앓": 1305,
1310
+ "암": 1306,
1311
+ "압": 1307,
1312
+ "앗": 1308,
1313
+ "았": 1309,
1314
+ "앙": 1310,
1315
+ "앚": 1311,
1316
+ "앞": 1312,
1317
+ "앟": 1313,
1318
+ "애": 1314,
1319
+ "액": 1315,
1320
+ "앤": 1316,
1321
+ "앨": 1317,
1322
+ "앰": 1318,
1323
+ "앱": 1319,
1324
+ "앳": 1320,
1325
+ "앴": 1321,
1326
+ "앵": 1322,
1327
+ "앺": 1323,
1328
+ "야": 1324,
1329
+ "약": 1325,
1330
+ "얀": 1326,
1331
+ "얄": 1327,
1332
+ "얇": 1328,
1333
+ "얌": 1329,
1334
+ "얍": 1330,
1335
+ "얏": 1331,
1336
+ "양": 1332,
1337
+ "얕": 1333,
1338
+ "얗": 1334,
1339
+ "얘": 1335,
1340
+ "얜": 1336,
1341
+ "얨": 1337,
1342
+ "얬": 1338,
1343
+ "어": 1339,
1344
+ "억": 1340,
1345
+ "언": 1341,
1346
+ "얹": 1342,
1347
+ "얻": 1343,
1348
+ "얼": 1344,
1349
+ "얽": 1345,
1350
+ "엄": 1346,
1351
+ "업": 1347,
1352
+ "없": 1348,
1353
+ "엇": 1349,
1354
+ "었": 1350,
1355
+ "엉": 1351,
1356
+ "엊": 1352,
1357
+ "엌": 1353,
1358
+ "엎": 1354,
1359
+ "에": 1355,
1360
+ "엑": 1356,
1361
+ "엔": 1357,
1362
+ "엘": 1358,
1363
+ "엠": 1359,
1364
+ "엣": 1360,
1365
+ "엥": 1361,
1366
+ "엪": 1362,
1367
+ "여": 1363,
1368
+ "역": 1364,
1369
+ "엮": 1365,
1370
+ "연": 1366,
1371
+ "열": 1367,
1372
+ "염": 1368,
1373
+ "엽": 1369,
1374
+ "엿": 1370,
1375
+ "였": 1371,
1376
+ "영": 1372,
1377
+ "옂": 1373,
1378
+ "옅": 1374,
1379
+ "옆": 1375,
1380
+ "옇": 1376,
1381
+ "예": 1377,
1382
+ "옌": 1378,
1383
+ "옐": 1379,
1384
+ "옙": 1380,
1385
+ "옛": 1381,
1386
+ "옜": 1382,
1387
+ "오": 1383,
1388
+ "옥": 1384,
1389
+ "온": 1385,
1390
+ "올": 1386,
1391
+ "옭": 1387,
1392
+ "옮": 1388,
1393
+ "옳": 1389,
1394
+ "옴": 1390,
1395
+ "옵": 1391,
1396
+ "옷": 1392,
1397
+ "옹": 1393,
1398
+ "옻": 1394,
1399
+ "옾": 1395,
1400
+ "와": 1396,
1401
+ "왁": 1397,
1402
+ "완": 1398,
1403
+ "왈": 1399,
1404
+ "왑": 1400,
1405
+ "왓": 1401,
1406
+ "왔": 1402,
1407
+ "왕": 1403,
1408
+ "왜": 1404,
1409
+ "왠": 1405,
1410
+ "왤": 1406,
1411
+ "외": 1407,
1412
+ "왹": 1408,
1413
+ "왼": 1409,
1414
+ "욀": 1410,
1415
+ "요": 1411,
1416
+ "욕": 1412,
1417
+ "욘": 1413,
1418
+ "욜": 1414,
1419
+ "욤": 1415,
1420
+ "욥": 1416,
1421
+ "욧": 1417,
1422
+ "용": 1418,
1423
+ "욬": 1419,
1424
+ "우": 1420,
1425
+ "욱": 1421,
1426
+ "운": 1422,
1427
+ "울": 1423,
1428
+ "움": 1424,
1429
+ "웁": 1425,
1430
+ "웃": 1426,
1431
+ "웅": 1427,
1432
+ "워": 1428,
1433
+ "웍": 1429,
1434
+ "원": 1430,
1435
+ "월": 1431,
1436
+ "웜": 1432,
1437
+ "웟": 1433,
1438
+ "웠": 1434,
1439
+ "웡": 1435,
1440
+ "웨": 1436,
1441
+ "웩": 1437,
1442
+ "웬": 1438,
1443
+ "웰": 1439,
1444
+ "웹": 1440,
1445
+ "웻": 1441,
1446
+ "웽": 1442,
1447
+ "위": 1443,
1448
+ "윅": 1444,
1449
+ "윈": 1445,
1450
+ "윌": 1446,
1451
+ "윔": 1447,
1452
+ "윕": 1448,
1453
+ "윗": 1449,
1454
+ "윙": 1450,
1455
+ "유": 1451,
1456
+ "육": 1452,
1457
+ "윤": 1453,
1458
+ "율": 1454,
1459
+ "윯": 1455,
1460
+ "윱": 1456,
1461
+ "윳": 1457,
1462
+ "융": 1458,
1463
+ "윶": 1459,
1464
+ "윷": 1460,
1465
+ "윹": 1461,
1466
+ "으": 1462,
1467
+ "윽": 1463,
1468
+ "윾": 1464,
1469
+ "은": 1465,
1470
+ "읃": 1466,
1471
+ "을": 1467,
1472
+ "읇": 1468,
1473
+ "읊": 1469,
1474
+ "음": 1470,
1475
+ "읍": 1471,
1476
+ "읏": 1472,
1477
+ "응": 1473,
1478
+ "읒": 1474,
1479
+ "읓": 1475,
1480
+ "읔": 1476,
1481
+ "읕": 1477,
1482
+ "읗": 1478,
1483
+ "의": 1479,
1484
+ "이": 1480,
1485
+ "익": 1481,
1486
+ "인": 1482,
1487
+ "읹": 1483,
1488
+ "일": 1484,
1489
+ "읽": 1485,
1490
+ "잃": 1486,
1491
+ "임": 1487,
1492
+ "입": 1488,
1493
+ "잆": 1489,
1494
+ "잇": 1490,
1495
+ "있": 1491,
1496
+ "잉": 1492,
1497
+ "잊": 1493,
1498
+ "잌": 1494,
1499
+ "잎": 1495,
1500
+ "잏": 1496,
1501
+ "자": 1497,
1502
+ "작": 1498,
1503
+ "잔": 1499,
1504
+ "잖": 1500,
1505
+ "잘": 1501,
1506
+ "잚": 1502,
1507
+ "잠": 1503,
1508
+ "잡": 1504,
1509
+ "잣": 1505,
1510
+ "잤": 1506,
1511
+ "장": 1507,
1512
+ "잦": 1508,
1513
+ "잫": 1509,
1514
+ "재": 1510,
1515
+ "잭": 1511,
1516
+ "잰": 1512,
1517
+ "잴": 1513,
1518
+ "잼": 1514,
1519
+ "잽": 1515,
1520
+ "잿": 1516,
1521
+ "쟀": 1517,
1522
+ "쟁": 1518,
1523
+ "쟈": 1519,
1524
+ "쟌": 1520,
1525
+ "쟎": 1521,
1526
+ "쟝": 1522,
1527
+ "쟤": 1523,
1528
+ "쟨": 1524,
1529
+ "저": 1525,
1530
+ "적": 1526,
1531
+ "전": 1527,
1532
+ "절": 1528,
1533
+ "젊": 1529,
1534
+ "젏": 1530,
1535
+ "점": 1531,
1536
+ "접": 1532,
1537
+ "젓": 1533,
1538
+ "정": 1534,
1539
+ "젖": 1535,
1540
+ "제": 1536,
1541
+ "젝": 1537,
1542
+ "젠": 1538,
1543
+ "젤": 1539,
1544
+ "젬": 1540,
1545
+ "젭": 1541,
1546
+ "젯": 1542,
1547
+ "져": 1543,
1548
+ "젹": 1544,
1549
+ "젼": 1545,
1550
+ "졌": 1546,
1551
+ "졍": 1547,
1552
+ "조": 1548,
1553
+ "족": 1549,
1554
+ "존": 1550,
1555
+ "졸": 1551,
1556
+ "좀": 1552,
1557
+ "좁": 1553,
1558
+ "좃": 1554,
1559
+ "종": 1555,
1560
+ "좆": 1556,
1561
+ "좇": 1557,
1562
+ "좋": 1558,
1563
+ "좌": 1559,
1564
+ "좍": 1560,
1565
+ "좐": 1561,
1566
+ "좔": 1562,
1567
+ "좝": 1563,
1568
+ "좡": 1564,
1569
+ "죄": 1565,
1570
+ "죌": 1566,
1571
+ "죘": 1567,
1572
+ "죙": 1568,
1573
+ "죠": 1569,
1574
+ "죤": 1570,
1575
+ "죵": 1571,
1576
+ "주": 1572,
1577
+ "죽": 1573,
1578
+ "준": 1574,
1579
+ "줄": 1575,
1580
+ "줌": 1576,
1581
+ "줍": 1577,
1582
+ "줏": 1578,
1583
+ "줐": 1579,
1584
+ "중": 1580,
1585
+ "줒": 1581,
1586
+ "줗": 1582,
1587
+ "줘": 1583,
1588
+ "줠": 1584,
1589
+ "줬": 1585,
1590
+ "쥐": 1586,
1591
+ "쥑": 1587,
1592
+ "쥔": 1588,
1593
+ "쥘": 1589,
1594
+ "쥠": 1590,
1595
+ "쥬": 1591,
1596
+ "쥭": 1592,
1597
+ "쥰": 1593,
1598
+ "쥴": 1594,
1599
+ "쥿": 1595,
1600
+ "즈": 1596,
1601
+ "즉": 1597,
1602
+ "즌": 1598,
1603
+ "즐": 1599,
1604
+ "즘": 1600,
1605
+ "즙": 1601,
1606
+ "즛": 1602,
1607
+ "증": 1603,
1608
+ "즞": 1604,
1609
+ "지": 1605,
1610
+ "직": 1606,
1611
+ "진": 1607,
1612
+ "짆": 1608,
1613
+ "질": 1609,
1614
+ "짊": 1610,
1615
+ "짐": 1611,
1616
+ "집": 1612,
1617
+ "짓": 1613,
1618
+ "짔": 1614,
1619
+ "징": 1615,
1620
+ "짖": 1616,
1621
+ "짙": 1617,
1622
+ "짚": 1618,
1623
+ "짜": 1619,
1624
+ "짝": 1620,
1625
+ "짠": 1621,
1626
+ "짢": 1622,
1627
+ "짤": 1623,
1628
+ "짥": 1624,
1629
+ "짦": 1625,
1630
+ "짧": 1626,
1631
+ "짬": 1627,
1632
+ "짭": 1628,
1633
+ "짯": 1629,
1634
+ "짰": 1630,
1635
+ "짱": 1631,
1636
+ "째": 1632,
1637
+ "짹": 1633,
1638
+ "짼": 1634,
1639
+ "쨈": 1635,
1640
+ "쨉": 1636,
1641
+ "쨋": 1637,
1642
+ "쨌": 1638,
1643
+ "쨍": 1639,
1644
+ "쨎": 1640,
1645
+ "쨔": 1641,
1646
+ "쨘": 1642,
1647
+ "쨜": 1643,
1648
+ "쨩": 1644,
1649
+ "쨰": 1645,
1650
+ "쩃": 1646,
1651
+ "쩄": 1647,
1652
+ "쩅": 1648,
1653
+ "쩌": 1649,
1654
+ "쩍": 1650,
1655
+ "쩐": 1651,
1656
+ "쩔": 1652,
1657
+ "쩜": 1653,
1658
+ "쩝": 1654,
1659
+ "쩠": 1655,
1660
+ "쩡": 1656,
1661
+ "쩧": 1657,
1662
+ "쩨": 1658,
1663
+ "쩰": 1659,
1664
+ "쩼": 1660,
1665
+ "쩽": 1661,
1666
+ "쪄": 1662,
1667
+ "쪘": 1663,
1668
+ "쪙": 1664,
1669
+ "쪼": 1665,
1670
+ "쪽": 1666,
1671
+ "쫀": 1667,
1672
+ "쫄": 1668,
1673
+ "쫌": 1669,
1674
+ "쫍": 1670,
1675
+ "쫑": 1671,
1676
+ "쫒": 1672,
1677
+ "쫓": 1673,
1678
+ "쫘": 1674,
1679
+ "쫙": 1675,
1680
+ "쬐": 1676,
1681
+ "쬘": 1677,
1682
+ "쬤": 1678,
1683
+ "쬬": 1679,
1684
+ "쬭": 1680,
1685
+ "쭈": 1681,
1686
+ "쭉": 1682,
1687
+ "쭊": 1683,
1688
+ "쭌": 1684,
1689
+ "쭐": 1685,
1690
+ "쭘": 1686,
1691
+ "쭙": 1687,
1692
+ "쭤": 1688,
1693
+ "쮜": 1689,
1694
+ "쮸": 1690,
1695
+ "쯔": 1691,
1696
+ "쯕": 1692,
1697
+ "쯤": 1693,
1698
+ "쯥": 1694,
1699
+ "쯧": 1695,
1700
+ "쯩": 1696,
1701
+ "쯪": 1697,
1702
+ "찌": 1698,
1703
+ "찍": 1699,
1704
+ "찐": 1700,
1705
+ "찔": 1701,
1706
+ "찜": 1702,
1707
+ "찝": 1703,
1708
+ "찡": 1704,
1709
+ "찢": 1705,
1710
+ "찧": 1706,
1711
+ "차": 1707,
1712
+ "착": 1708,
1713
+ "찬": 1709,
1714
+ "찮": 1710,
1715
+ "찰": 1711,
1716
+ "참": 1712,
1717
+ "찹": 1713,
1718
+ "찻": 1714,
1719
+ "찼": 1715,
1720
+ "창": 1716,
1721
+ "찾": 1717,
1722
+ "챃": 1718,
1723
+ "채": 1719,
1724
+ "책": 1720,
1725
+ "챈": 1721,
1726
+ "챌": 1722,
1727
+ "챔": 1723,
1728
+ "챕": 1724,
1729
+ "챗": 1725,
1730
+ "챘": 1726,
1731
+ "챙": 1727,
1732
+ "챠": 1728,
1733
+ "챤": 1729,
1734
+ "챱": 1730,
1735
+ "처": 1731,
1736
+ "척": 1732,
1737
+ "천": 1733,
1738
+ "철": 1734,
1739
+ "첨": 1735,
1740
+ "첩": 1736,
1741
+ "첫": 1737,
1742
+ "청": 1738,
1743
+ "체": 1739,
1744
+ "첵": 1740,
1745
+ "첸": 1741,
1746
+ "첼": 1742,
1747
+ "쳄": 1743,
1748
+ "쳅": 1744,
1749
+ "쳇": 1745,
1750
+ "쳐": 1746,
1751
+ "쳘": 1747,
1752
+ "쳤": 1748,
1753
+ "초": 1749,
1754
+ "촉": 1750,
1755
+ "촌": 1751,
1756
+ "촐": 1752,
1757
+ "촘": 1753,
1758
+ "촙": 1754,
1759
+ "촛": 1755,
1760
+ "총": 1756,
1761
+ "촤": 1757,
1762
+ "촥": 1758,
1763
+ "촬": 1759,
1764
+ "촵": 1760,
1765
+ "최": 1761,
1766
+ "쵝": 1762,
1767
+ "쵠": 1763,
1768
+ "쵸": 1764,
1769
+ "춋": 1765,
1770
+ "추": 1766,
1771
+ "축": 1767,
1772
+ "춘": 1768,
1773
+ "출": 1769,
1774
+ "춤": 1770,
1775
+ "춥": 1771,
1776
+ "춧": 1772,
1777
+ "충": 1773,
1778
+ "춰": 1774,
1779
+ "춱": 1775,
1780
+ "췄": 1776,
1781
+ "췌": 1777,
1782
+ "취": 1778,
1783
+ "췩": 1779,
1784
+ "췬": 1780,
1785
+ "췹": 1781,
1786
+ "츄": 1782,
1787
+ "츅": 1783,
1788
+ "츈": 1784,
1789
+ "츌": 1785,
1790
+ "츕": 1786,
1791
+ "츠": 1787,
1792
+ "측": 1788,
1793
+ "츤": 1789,
1794
+ "츨": 1790,
1795
+ "츰": 1791,
1796
+ "츱": 1792,
1797
+ "츳": 1793,
1798
+ "층": 1794,
1799
+ "치": 1795,
1800
+ "칙": 1796,
1801
+ "친": 1797,
1802
+ "칟": 1798,
1803
+ "칠": 1799,
1804
+ "칡": 1800,
1805
+ "침": 1801,
1806
+ "칩": 1802,
1807
+ "칫": 1803,
1808
+ "칬": 1804,
1809
+ "칭": 1805,
1810
+ "카": 1806,
1811
+ "칵": 1807,
1812
+ "칸": 1808,
1813
+ "칼": 1809,
1814
+ "캄": 1810,
1815
+ "캅": 1811,
1816
+ "캇": 1812,
1817
+ "캉": 1813,
1818
+ "캐": 1814,
1819
+ "캔": 1815,
1820
+ "캘": 1816,
1821
+ "캠": 1817,
1822
+ "캡": 1818,
1823
+ "캣": 1819,
1824
+ "캤": 1820,
1825
+ "캥": 1821,
1826
+ "캬": 1822,
1827
+ "캭": 1823,
1828
+ "컁": 1824,
1829
+ "커": 1825,
1830
+ "컥": 1826,
1831
+ "컨": 1827,
1832
+ "컫": 1828,
1833
+ "컬": 1829,
1834
+ "컴": 1830,
1835
+ "컵": 1831,
1836
+ "컷": 1832,
1837
+ "컸": 1833,
1838
+ "컹": 1834,
1839
+ "케": 1835,
1840
+ "켁": 1836,
1841
+ "켄": 1837,
1842
+ "켈": 1838,
1843
+ "켐": 1839,
1844
+ "켑": 1840,
1845
+ "켓": 1841,
1846
+ "켔": 1842,
1847
+ "켜": 1843,
1848
+ "켠": 1844,
1849
+ "켤": 1845,
1850
+ "켬": 1846,
1851
+ "켭": 1847,
1852
+ "켯": 1848,
1853
+ "켰": 1849,
1854
+ "켱": 1850,
1855
+ "코": 1851,
1856
+ "콕": 1852,
1857
+ "콘": 1853,
1858
+ "콜": 1854,
1859
+ "콤": 1855,
1860
+ "콥": 1856,
1861
+ "콧": 1857,
1862
+ "콩": 1858,
1863
+ "콰": 1859,
1864
+ "콱": 1860,
1865
+ "콴": 1861,
1866
+ "콸": 1862,
1867
+ "쾃": 1863,
1868
+ "쾅": 1864,
1869
+ "쾌": 1865,
1870
+ "쾡": 1866,
1871
+ "쾨": 1867,
1872
+ "쾰": 1868,
1873
+ "쿄": 1869,
1874
+ "쿙": 1870,
1875
+ "쿠": 1871,
1876
+ "쿡": 1872,
1877
+ "쿤": 1873,
1878
+ "쿨": 1874,
1879
+ "쿰": 1875,
1880
+ "쿱": 1876,
1881
+ "쿵": 1877,
1882
+ "쿼": 1878,
1883
+ "퀀": 1879,
1884
+ "퀄": 1880,
1885
+ "퀏": 1881,
1886
+ "퀘": 1882,
1887
+ "퀠": 1883,
1888
+ "퀭": 1884,
1889
+ "퀴": 1885,
1890
+ "퀵": 1886,
1891
+ "퀸": 1887,
1892
+ "퀼": 1888,
1893
+ "큄": 1889,
1894
+ "큐": 1890,
1895
+ "큘": 1891,
1896
+ "큠": 1892,
1897
+ "크": 1893,
1898
+ "큭": 1894,
1899
+ "큰": 1895,
1900
+ "클": 1896,
1901
+ "큼": 1897,
1902
+ "큽": 1898,
1903
+ "킁": 1899,
1904
+ "키": 1900,
1905
+ "킥": 1901,
1906
+ "킨": 1902,
1907
+ "킬": 1903,
1908
+ "킴": 1904,
1909
+ "킵": 1905,
1910
+ "킷": 1906,
1911
+ "킸": 1907,
1912
+ "킹": 1908,
1913
+ "타": 1909,
1914
+ "탁": 1910,
1915
+ "탄": 1911,
1916
+ "탈": 1912,
1917
+ "탉": 1913,
1918
+ "탐": 1914,
1919
+ "탑": 1915,
1920
+ "탓": 1916,
1921
+ "탔": 1917,
1922
+ "탕": 1918,
1923
+ "태": 1919,
1924
+ "택": 1920,
1925
+ "탠": 1921,
1926
+ "탤": 1922,
1927
+ "탬": 1923,
1928
+ "탭": 1924,
1929
+ "탯": 1925,
1930
+ "탰": 1926,
1931
+ "탱": 1927,
1932
+ "탸": 1928,
1933
+ "터": 1929,
1934
+ "턱": 1930,
1935
+ "턴": 1931,
1936
+ "털": 1932,
1937
+ "텀": 1933,
1938
+ "텁": 1934,
1939
+ "텃": 1935,
1940
+ "텄": 1936,
1941
+ "텅": 1937,
1942
+ "테": 1938,
1943
+ "텍": 1939,
1944
+ "텐": 1940,
1945
+ "텔": 1941,
1946
+ "템": 1942,
1947
+ "텝": 1943,
1948
+ "텟": 1944,
1949
+ "텡": 1945,
1950
+ "텨": 1946,
1951
+ "텼": 1947,
1952
+ "토": 1948,
1953
+ "톡": 1949,
1954
+ "톤": 1950,
1955
+ "톨": 1951,
1956
+ "톰": 1952,
1957
+ "톱": 1953,
1958
+ "톳": 1954,
1959
+ "통": 1955,
1960
+ "퇑": 1956,
1961
+ "퇘": 1957,
1962
+ "퇴": 1958,
1963
+ "투": 1959,
1964
+ "툭": 1960,
1965
+ "툰": 1961,
1966
+ "툴": 1962,
1967
+ "툼": 1963,
1968
+ "툽": 1964,
1969
+ "툿": 1965,
1970
+ "퉁": 1966,
1971
+ "퉈": 1967,
1972
+ "퉜": 1968,
1973
+ "퉤": 1969,
1974
+ "튀": 1970,
1975
+ "튄": 1971,
1976
+ "튈": 1972,
1977
+ "튐": 1973,
1978
+ "튑": 1974,
1979
+ "튕": 1975,
1980
+ "튜": 1976,
1981
+ "튠": 1977,
1982
+ "튤": 1978,
1983
+ "튬": 1979,
1984
+ "튭": 1980,
1985
+ "튱": 1981,
1986
+ "트": 1982,
1987
+ "특": 1983,
1988
+ "튼": 1984,
1989
+ "튿": 1985,
1990
+ "틀": 1986,
1991
+ "틈": 1987,
1992
+ "틉": 1988,
1993
+ "틋": 1989,
1994
+ "틍": 1990,
1995
+ "틔": 1991,
1996
+ "티": 1992,
1997
+ "틱": 1993,
1998
+ "틴": 1994,
1999
+ "틸": 1995,
2000
+ "팀": 1996,
2001
+ "팁": 1997,
2002
+ "팃": 1998,
2003
+ "팅": 1999,
2004
+ "파": 2000,
2005
+ "팍": 2001,
2006
+ "팎": 2002,
2007
+ "판": 2003,
2008
+ "팔": 2004,
2009
+ "팜": 2005,
2010
+ "팝": 2006,
2011
+ "팟": 2007,
2012
+ "팠": 2008,
2013
+ "팡": 2009,
2014
+ "팥": 2010,
2015
+ "패": 2011,
2016
+ "팩": 2012,
2017
+ "팬": 2013,
2018
+ "팰": 2014,
2019
+ "팸": 2015,
2020
+ "팹": 2016,
2021
+ "팻": 2017,
2022
+ "팼": 2018,
2023
+ "팽": 2019,
2024
+ "퍄": 2020,
2025
+ "퍈": 2021,
2026
+ "퍼": 2022,
2027
+ "퍽": 2023,
2028
+ "펀": 2024,
2029
+ "펄": 2025,
2030
+ "펌": 2026,
2031
+ "펍": 2027,
2032
+ "펐": 2028,
2033
+ "펑": 2029,
2034
+ "페": 2030,
2035
+ "펙": 2031,
2036
+ "펜": 2032,
2037
+ "펠": 2033,
2038
+ "펨": 2034,
2039
+ "펩": 2035,
2040
+ "펫": 2036,
2041
+ "펭": 2037,
2042
+ "펴": 2038,
2043
+ "편": 2039,
2044
+ "펼": 2040,
2045
+ "폄": 2041,
2046
+ "폈": 2042,
2047
+ "평": 2043,
2048
+ "폐": 2044,
2049
+ "포": 2045,
2050
+ "폭": 2046,
2051
+ "폰": 2047,
2052
+ "폴": 2048,
2053
+ "폼": 2049,
2054
+ "폿": 2050,
2055
+ "퐁": 2051,
2056
+ "퐈": 2052,
2057
+ "퐉": 2053,
2058
+ "퐌": 2054,
2059
+ "퐐": 2055,
2060
+ "푀": 2056,
2061
+ "표": 2057,
2062
+ "푠": 2058,
2063
+ "푬": 2059,
2064
+ "푭": 2060,
2065
+ "푯": 2061,
2066
+ "푸": 2062,
2067
+ "푹": 2063,
2068
+ "푼": 2064,
2069
+ "푿": 2065,
2070
+ "풀": 2066,
2071
+ "품": 2067,
2072
+ "풉": 2068,
2073
+ "풋": 2069,
2074
+ "풍": 2070,
2075
+ "퓌": 2071,
2076
+ "퓨": 2072,
2077
+ "퓰": 2073,
2078
+ "퓸": 2074,
2079
+ "프": 2075,
2080
+ "픈": 2076,
2081
+ "플": 2077,
2082
+ "픔": 2078,
2083
+ "픕": 2079,
2084
+ "픗": 2080,
2085
+ "피": 2081,
2086
+ "픽": 2082,
2087
+ "핀": 2083,
2088
+ "필": 2084,
2089
+ "핌": 2085,
2090
+ "핍": 2086,
2091
+ "핏": 2087,
2092
+ "핑": 2088,
2093
+ "하": 2089,
2094
+ "학": 2090,
2095
+ "한": 2091,
2096
+ "할": 2092,
2097
+ "핡": 2093,
2098
+ "핥": 2094,
2099
+ "핧": 2095,
2100
+ "함": 2096,
2101
+ "합": 2097,
2102
+ "핫": 2098,
2103
+ "핬": 2099,
2104
+ "항": 2100,
2105
+ "해": 2101,
2106
+ "핵": 2102,
2107
+ "핸": 2103,
2108
+ "핼": 2104,
2109
+ "햄": 2105,
2110
+ "햅": 2106,
2111
+ "햇": 2107,
2112
+ "했": 2108,
2113
+ "행": 2109,
2114
+ "햍": 2110,
2115
+ "햎": 2111,
2116
+ "햐": 2112,
2117
+ "햑": 2113,
2118
+ "햔": 2114,
2119
+ "햘": 2115,
2120
+ "햝": 2116,
2121
+ "향": 2117,
2122
+ "헀": 2118,
2123
+ "허": 2119,
2124
+ "헉": 2120,
2125
+ "헌": 2121,
2126
+ "헐": 2122,
2127
+ "험": 2123,
2128
+ "헙": 2124,
2129
+ "헛": 2125,
2130
+ "헝": 2126,
2131
+ "헤": 2127,
2132
+ "헥": 2128,
2133
+ "헨": 2129,
2134
+ "헬": 2130,
2135
+ "헴": 2131,
2136
+ "헵": 2132,
2137
+ "헷": 2133,
2138
+ "헸": 2134,
2139
+ "헹": 2135,
2140
+ "헿": 2136,
2141
+ "혀": 2137,
2142
+ "혁": 2138,
2143
+ "현": 2139,
2144
+ "혈": 2140,
2145
+ "혐": 2141,
2146
+ "협": 2142,
2147
+ "혓": 2143,
2148
+ "혔": 2144,
2149
+ "형": 2145,
2150
+ "혛": 2146,
2151
+ "혜": 2147,
2152
+ "호": 2148,
2153
+ "혹": 2149,
2154
+ "혼": 2150,
2155
+ "홀": 2151,
2156
+ "홈": 2152,
2157
+ "홉": 2153,
2158
+ "홋": 2154,
2159
+ "홍": 2155,
2160
+ "홑": 2156,
2161
+ "화": 2157,
2162
+ "확": 2158,
2163
+ "환": 2159,
2164
+ "활": 2160,
2165
+ "홥": 2161,
2166
+ "홧": 2162,
2167
+ "황": 2163,
2168
+ "홰": 2164,
2169
+ "홱": 2165,
2170
+ "횃": 2166,
2171
+ "회": 2167,
2172
+ "획": 2168,
2173
+ "횐": 2169,
2174
+ "횝": 2170,
2175
+ "횟": 2171,
2176
+ "횡": 2172,
2177
+ "효": 2173,
2178
+ "후": 2174,
2179
+ "훅": 2175,
2180
+ "훈": 2176,
2181
+ "훌": 2177,
2182
+ "훑": 2178,
2183
+ "훔": 2179,
2184
+ "훕": 2180,
2185
+ "훗": 2181,
2186
+ "훙": 2182,
2187
+ "훠": 2183,
2188
+ "훤": 2184,
2189
+ "훨": 2185,
2190
+ "훼": 2186,
2191
+ "휀": 2187,
2192
+ "휑": 2188,
2193
+ "휘": 2189,
2194
+ "휙": 2190,
2195
+ "휜": 2191,
2196
+ "휠": 2192,
2197
+ "휨": 2193,
2198
+ "휩": 2194,
2199
+ "휴": 2195,
2200
+ "휸": 2196,
2201
+ "흉": 2197,
2202
+ "흐": 2198,
2203
+ "흑": 2199,
2204
+ "흔": 2200,
2205
+ "흘": 2201,
2206
+ "흙": 2202,
2207
+ "흠": 2203,
2208
+ "흡": 2204,
2209
+ "흣": 2205,
2210
+ "흥": 2206,
2211
+ "흩": 2207,
2212
+ "흫": 2208,
2213
+ "희": 2209,
2214
+ "흰": 2210,
2215
+ "흿": 2211,
2216
+ "히": 2212,
2217
+ "힉": 2213,
2218
+ "힌": 2214,
2219
+ "힐": 2215,
2220
+ "힘": 2216,
2221
+ "힙": 2217,
2222
+ "힛": 2218,
2223
+ "힝": 2219,
2224
+ ".": 2220
2225
+ }