diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..829446601ff84cec0cc08f8c28cdf9add885ec34
--- /dev/null
+++ b/README.md
@@ -0,0 +1,60 @@
+---
+license: apache-2.0
+base_model: facebook/wav2vec2-large-xlsr-53
+tags:
+- automatic-speech-recognition
+- ./train_dataset.py
+- generated_from_trainer
+model-index:
+- name: kozh_xlsr_100p_run1
+ results: []
+---
+
+
+
+# kozh_xlsr_100p_run1
+
+This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./TRAIN_DATASET.PY - NA dataset.
+
+## Model description
+
+More information needed
+
+## Intended uses & limitations
+
+More information needed
+
+## Training and evaluation data
+
+More information needed
+
+## Training procedure
+
+### Training hyperparameters
+
+The following hyperparameters were used during training:
+- learning_rate: 0.0003
+- train_batch_size: 2
+- eval_batch_size: 8
+- seed: 42
+- distributed_type: multi-GPU
+- num_devices: 4
+- gradient_accumulation_steps: 2
+- total_train_batch_size: 16
+- total_eval_batch_size: 32
+- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
+- lr_scheduler_type: linear
+- lr_scheduler_warmup_ratio: 0.01
+- num_epochs: 30
+
+### Training results
+
+
+
+### Framework versions
+
+- Transformers 4.35.2
+- Pytorch 2.1.1+cu121
+- Datasets 2.15.0
+- Tokenizers 0.15.0
diff --git a/added_tokens.json b/added_tokens.json
new file mode 100644
index 0000000000000000000000000000000000000000..d392b99065410e4f6426fe9804e13955991f19e9
--- /dev/null
+++ b/added_tokens.json
@@ -0,0 +1,4 @@
+{
+ "": 2252,
+ "": 2251
+}
diff --git a/all_results.json b/all_results.json
new file mode 100644
index 0000000000000000000000000000000000000000..bf24a3cbae753fcf622504b0c320e5503314f30f
--- /dev/null
+++ b/all_results.json
@@ -0,0 +1,8 @@
+{
+ "epoch": 30.0,
+ "train_loss": 0.5678151446034709,
+ "train_runtime": 679738.019,
+ "train_samples": 642553,
+ "train_samples_per_second": 28.359,
+ "train_steps_per_second": 1.772
+}
\ No newline at end of file
diff --git a/checkpoint-1124480/added_tokens.json b/checkpoint-1124480/added_tokens.json
new file mode 100644
index 0000000000000000000000000000000000000000..d392b99065410e4f6426fe9804e13955991f19e9
--- /dev/null
+++ b/checkpoint-1124480/added_tokens.json
@@ -0,0 +1,4 @@
+{
+ "": 2252,
+ "": 2251
+}
diff --git a/checkpoint-1124480/config.json b/checkpoint-1124480/config.json
new file mode 100644
index 0000000000000000000000000000000000000000..f0f9dff62c09f38f93a6b44b656ef396b4046dcb
--- /dev/null
+++ b/checkpoint-1124480/config.json
@@ -0,0 +1,117 @@
+{
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
+ "activation_dropout": 0.0,
+ "adapter_attn_dim": null,
+ "adapter_kernel_size": 3,
+ "adapter_stride": 2,
+ "add_adapter": false,
+ "apply_spec_augment": true,
+ "architectures": [
+ "Wav2Vec2ForCTC"
+ ],
+ "attention_dropout": 0.05,
+ "bos_token_id": 1,
+ "classifier_proj_size": 256,
+ "codevector_dim": 768,
+ "contrastive_logits_temperature": 0.1,
+ "conv_bias": true,
+ "conv_dim": [
+ 512,
+ 512,
+ 512,
+ 512,
+ 512,
+ 512,
+ 512
+ ],
+ "conv_kernel": [
+ 10,
+ 3,
+ 3,
+ 3,
+ 3,
+ 2,
+ 2
+ ],
+ "conv_stride": [
+ 5,
+ 2,
+ 2,
+ 2,
+ 2,
+ 2,
+ 2
+ ],
+ "ctc_loss_reduction": "mean",
+ "ctc_zero_infinity": true,
+ "diversity_loss_weight": 0.1,
+ "do_stable_layer_norm": true,
+ "eos_token_id": 2,
+ "feat_extract_activation": "gelu",
+ "feat_extract_dropout": 0.0,
+ "feat_extract_norm": "layer",
+ "feat_proj_dropout": 0.05,
+ "feat_quantizer_dropout": 0.0,
+ "final_dropout": 0.0,
+ "gradient_checkpointing": false,
+ "hidden_act": "gelu",
+ "hidden_dropout": 0.05,
+ "hidden_size": 1024,
+ "initializer_range": 0.02,
+ "intermediate_size": 4096,
+ "layer_norm_eps": 1e-05,
+ "layerdrop": 0.05,
+ "mask_channel_length": 10,
+ "mask_channel_min_space": 1,
+ "mask_channel_other": 0.0,
+ "mask_channel_prob": 0.0,
+ "mask_channel_selection": "static",
+ "mask_feature_length": 10,
+ "mask_feature_min_masks": 0,
+ "mask_feature_prob": 0.0,
+ "mask_time_length": 10,
+ "mask_time_min_masks": 2,
+ "mask_time_min_space": 1,
+ "mask_time_other": 0.0,
+ "mask_time_prob": 0.05,
+ "mask_time_selection": "static",
+ "model_type": "wav2vec2",
+ "num_adapter_layers": 3,
+ "num_attention_heads": 16,
+ "num_codevector_groups": 2,
+ "num_codevectors_per_group": 320,
+ "num_conv_pos_embedding_groups": 16,
+ "num_conv_pos_embeddings": 128,
+ "num_feat_extract_layers": 7,
+ "num_hidden_layers": 24,
+ "num_negatives": 100,
+ "output_hidden_size": 1024,
+ "pad_token_id": 2250,
+ "proj_codevector_dim": 768,
+ "tdnn_dilation": [
+ 1,
+ 2,
+ 3,
+ 1,
+ 1
+ ],
+ "tdnn_dim": [
+ 512,
+ 512,
+ 512,
+ 512,
+ 1500
+ ],
+ "tdnn_kernel": [
+ 5,
+ 3,
+ 3,
+ 1,
+ 1
+ ],
+ "torch_dtype": "float32",
+ "transformers_version": "4.35.2",
+ "use_weighted_layer_sum": false,
+ "vocab_size": 2253,
+ "xvector_output_dim": 512
+}
diff --git a/checkpoint-1124480/model.safetensors b/checkpoint-1124480/model.safetensors
new file mode 100644
index 0000000000000000000000000000000000000000..7e9074b6ca1d5d4045dede72f66c0d6d58dec7e4
--- /dev/null
+++ b/checkpoint-1124480/model.safetensors
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b6f1573f7bc42ee50fc2ad5b64d4a4add56f1e529304547f463724e9c753bb30
+size 1271044804
diff --git a/checkpoint-1124480/optimizer.pt b/checkpoint-1124480/optimizer.pt
new file mode 100644
index 0000000000000000000000000000000000000000..7a8b4586b05db0375f83e136193e496a79ea30fb
--- /dev/null
+++ b/checkpoint-1124480/optimizer.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9ff9c4bd8bcef23b0f99daa35e61dee6656a6d7323817eadc6705f30b92963a9
+size 2508634294
diff --git a/checkpoint-1124480/preprocessor_config.json b/checkpoint-1124480/preprocessor_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..e7d53bd058c34639e2dec1357537a3d013bcda63
--- /dev/null
+++ b/checkpoint-1124480/preprocessor_config.json
@@ -0,0 +1,10 @@
+{
+ "do_normalize": true,
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
+ "feature_size": 1,
+ "padding_side": "right",
+ "padding_value": 0,
+ "processor_class": "Wav2Vec2Processor",
+ "return_attention_mask": true,
+ "sampling_rate": 16000
+}
diff --git a/checkpoint-1124480/rng_state_0.pth b/checkpoint-1124480/rng_state_0.pth
new file mode 100644
index 0000000000000000000000000000000000000000..e042519d29b733ad6ce5025a73f1a79556e0c4fb
--- /dev/null
+++ b/checkpoint-1124480/rng_state_0.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:72c8c6883e200ab2ba13e0312ed4d2ac0bb0668a0257a1ba21424e00539a78c7
+size 15024
diff --git a/checkpoint-1124480/rng_state_1.pth b/checkpoint-1124480/rng_state_1.pth
new file mode 100644
index 0000000000000000000000000000000000000000..bd7bff73aaff0897447a662f7f019bf52fa42433
--- /dev/null
+++ b/checkpoint-1124480/rng_state_1.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5fa672be3c1c3fb61a938deb3932aad7906b881b404f401e9236295526a54d42
+size 15024
diff --git a/checkpoint-1124480/rng_state_2.pth b/checkpoint-1124480/rng_state_2.pth
new file mode 100644
index 0000000000000000000000000000000000000000..06bdc65d58830ee4d249043abd8e9539ff079884
--- /dev/null
+++ b/checkpoint-1124480/rng_state_2.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3bc125fcc4b3f18c047200837a82990ccdf3583d6f4474c8f8e725ef702f3d4f
+size 15088
diff --git a/checkpoint-1124480/rng_state_3.pth b/checkpoint-1124480/rng_state_3.pth
new file mode 100644
index 0000000000000000000000000000000000000000..f331000a096c347f202a5e02f05909d8bf8d6617
--- /dev/null
+++ b/checkpoint-1124480/rng_state_3.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9fe9c2d6ec1ac99082b07153fec172582b9c0f3b40f2039c4e224c3bc956d10b
+size 15024
diff --git a/checkpoint-1124480/scheduler.pt b/checkpoint-1124480/scheduler.pt
new file mode 100644
index 0000000000000000000000000000000000000000..7e9fb23ccb787c969183486c859aef5d7e4373e7
--- /dev/null
+++ b/checkpoint-1124480/scheduler.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:28cae401e50096f56ffdc1df52efb7d594d8b712216cba89e0d9f2f0d43b591e
+size 1064
diff --git a/checkpoint-1124480/special_tokens_map.json b/checkpoint-1124480/special_tokens_map.json
new file mode 100644
index 0000000000000000000000000000000000000000..c7771b3470e665ede683e35dbcbbd3643ddb0c98
--- /dev/null
+++ b/checkpoint-1124480/special_tokens_map.json
@@ -0,0 +1,30 @@
+{
+ "bos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "eos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "pad_token": {
+ "content": "[PAD]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false
+ },
+ "unk_token": {
+ "content": "[UNK]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false
+ }
+}
diff --git a/checkpoint-1124480/tokenizer_config.json b/checkpoint-1124480/tokenizer_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..30b0a1991f27c208f900171c8af8c0a8670b10aa
--- /dev/null
+++ b/checkpoint-1124480/tokenizer_config.json
@@ -0,0 +1,51 @@
+{
+ "added_tokens_decoder": {
+ "2249": {
+ "content": "[UNK]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false,
+ "special": false
+ },
+ "2250": {
+ "content": "[PAD]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false,
+ "special": false
+ },
+ "2251": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "2252": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ }
+ },
+ "bos_token": "",
+ "clean_up_tokenization_spaces": true,
+ "config": null,
+ "do_lower_case": false,
+ "eos_token": "",
+ "model_max_length": 1000000000000000019884624838656,
+ "pad_token": "[PAD]",
+ "processor_class": "Wav2Vec2Processor",
+ "replace_word_delimiter_char": " ",
+ "target_lang": null,
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
+ "tokenizer_type": "wav2vec2",
+ "trust_remote_code": false,
+ "unk_token": "[UNK]",
+ "word_delimiter_token": "|"
+}
diff --git a/checkpoint-1124480/trainer_state.json b/checkpoint-1124480/trainer_state.json
new file mode 100644
index 0000000000000000000000000000000000000000..850f99cfe866bc53dcddf7cd30c408e7d4591c39
--- /dev/null
+++ b/checkpoint-1124480/trainer_state.json
@@ -0,0 +1,2263 @@
+{
+ "best_metric": null,
+ "best_model_checkpoint": null,
+ "epoch": 28.0,
+ "eval_steps": 500,
+ "global_step": 1124480,
+ "is_hyper_param_search": false,
+ "is_local_process_zero": true,
+ "is_world_process_zero": true,
+ "log_history": [
+ {
+ "epoch": 0.07,
+ "learning_rate": 7.47011952191235e-05,
+ "loss": 11.8613,
+ "step": 3000
+ },
+ {
+ "epoch": 0.15,
+ "learning_rate": 0.000149402390438247,
+ "loss": 1.9866,
+ "step": 6000
+ },
+ {
+ "epoch": 0.22,
+ "learning_rate": 0.0002241035856573705,
+ "loss": 1.4383,
+ "step": 9000
+ },
+ {
+ "epoch": 0.3,
+ "learning_rate": 0.000298804780876494,
+ "loss": 1.3467,
+ "step": 12000
+ },
+ {
+ "epoch": 0.37,
+ "learning_rate": 0.0002992575153929735,
+ "loss": 1.3175,
+ "step": 15000
+ },
+ {
+ "epoch": 0.45,
+ "learning_rate": 0.00029850295786550764,
+ "loss": 1.2551,
+ "step": 18000
+ },
+ {
+ "epoch": 0.52,
+ "learning_rate": 0.00029774840033804177,
+ "loss": 1.2058,
+ "step": 21000
+ },
+ {
+ "epoch": 0.6,
+ "learning_rate": 0.00029699384281057584,
+ "loss": 1.1759,
+ "step": 24000
+ },
+ {
+ "epoch": 0.67,
+ "learning_rate": 0.00029623928528310997,
+ "loss": 1.148,
+ "step": 27000
+ },
+ {
+ "epoch": 0.75,
+ "learning_rate": 0.0002954847277556441,
+ "loss": 1.116,
+ "step": 30000
+ },
+ {
+ "epoch": 0.82,
+ "learning_rate": 0.00029473017022817817,
+ "loss": 1.0933,
+ "step": 33000
+ },
+ {
+ "epoch": 0.9,
+ "learning_rate": 0.00029397561270071225,
+ "loss": 1.0788,
+ "step": 36000
+ },
+ {
+ "epoch": 0.97,
+ "learning_rate": 0.0002932210551732464,
+ "loss": 1.0578,
+ "step": 39000
+ },
+ {
+ "epoch": 1.05,
+ "learning_rate": 0.0002924664976457805,
+ "loss": 1.0363,
+ "step": 42000
+ },
+ {
+ "epoch": 1.12,
+ "learning_rate": 0.0002917119401183146,
+ "loss": 1.0198,
+ "step": 45000
+ },
+ {
+ "epoch": 1.2,
+ "learning_rate": 0.0002909573825908487,
+ "loss": 1.0132,
+ "step": 48000
+ },
+ {
+ "epoch": 1.27,
+ "learning_rate": 0.00029020282506338283,
+ "loss": 0.9995,
+ "step": 51000
+ },
+ {
+ "epoch": 1.34,
+ "learning_rate": 0.0002894482675359169,
+ "loss": 0.992,
+ "step": 54000
+ },
+ {
+ "epoch": 1.42,
+ "learning_rate": 0.000288693710008451,
+ "loss": 0.9821,
+ "step": 57000
+ },
+ {
+ "epoch": 1.49,
+ "learning_rate": 0.0002879391524809851,
+ "loss": 0.9878,
+ "step": 60000
+ },
+ {
+ "epoch": 1.57,
+ "learning_rate": 0.00028718459495351924,
+ "loss": 0.9952,
+ "step": 63000
+ },
+ {
+ "epoch": 1.64,
+ "learning_rate": 0.0002864300374260533,
+ "loss": 0.9804,
+ "step": 66000
+ },
+ {
+ "epoch": 1.72,
+ "learning_rate": 0.00028567547989858744,
+ "loss": 0.9736,
+ "step": 69000
+ },
+ {
+ "epoch": 1.79,
+ "learning_rate": 0.00028492092237112157,
+ "loss": 0.9681,
+ "step": 72000
+ },
+ {
+ "epoch": 1.87,
+ "learning_rate": 0.00028416636484365564,
+ "loss": 0.965,
+ "step": 75000
+ },
+ {
+ "epoch": 1.94,
+ "learning_rate": 0.00028341180731618977,
+ "loss": 0.9519,
+ "step": 78000
+ },
+ {
+ "epoch": 2.02,
+ "learning_rate": 0.00028265724978872385,
+ "loss": 0.9525,
+ "step": 81000
+ },
+ {
+ "epoch": 2.09,
+ "learning_rate": 0.000281902692261258,
+ "loss": 0.9175,
+ "step": 84000
+ },
+ {
+ "epoch": 2.17,
+ "learning_rate": 0.00028114813473379205,
+ "loss": 0.9129,
+ "step": 87000
+ },
+ {
+ "epoch": 2.24,
+ "learning_rate": 0.0002803935772063262,
+ "loss": 0.9167,
+ "step": 90000
+ },
+ {
+ "epoch": 2.32,
+ "learning_rate": 0.0002796390196788603,
+ "loss": 0.9037,
+ "step": 93000
+ },
+ {
+ "epoch": 2.39,
+ "learning_rate": 0.0002788844621513944,
+ "loss": 0.8967,
+ "step": 96000
+ },
+ {
+ "epoch": 2.47,
+ "learning_rate": 0.0002781299046239285,
+ "loss": 0.8896,
+ "step": 99000
+ },
+ {
+ "epoch": 2.54,
+ "learning_rate": 0.0002773753470964626,
+ "loss": 0.8848,
+ "step": 102000
+ },
+ {
+ "epoch": 2.61,
+ "learning_rate": 0.0002766207895689967,
+ "loss": 0.8864,
+ "step": 105000
+ },
+ {
+ "epoch": 2.69,
+ "learning_rate": 0.00027586623204153084,
+ "loss": 0.8793,
+ "step": 108000
+ },
+ {
+ "epoch": 2.76,
+ "learning_rate": 0.0002751116745140649,
+ "loss": 0.8727,
+ "step": 111000
+ },
+ {
+ "epoch": 2.84,
+ "learning_rate": 0.00027435711698659904,
+ "loss": 0.8605,
+ "step": 114000
+ },
+ {
+ "epoch": 2.91,
+ "learning_rate": 0.00027360255945913317,
+ "loss": 0.8614,
+ "step": 117000
+ },
+ {
+ "epoch": 2.99,
+ "learning_rate": 0.00027284800193166724,
+ "loss": 0.8584,
+ "step": 120000
+ },
+ {
+ "epoch": 3.06,
+ "learning_rate": 0.00027209344440420137,
+ "loss": 0.8322,
+ "step": 123000
+ },
+ {
+ "epoch": 3.14,
+ "learning_rate": 0.0002713388868767355,
+ "loss": 0.8182,
+ "step": 126000
+ },
+ {
+ "epoch": 3.21,
+ "learning_rate": 0.0002705843293492696,
+ "loss": 0.8203,
+ "step": 129000
+ },
+ {
+ "epoch": 3.29,
+ "learning_rate": 0.00026982977182180365,
+ "loss": 0.824,
+ "step": 132000
+ },
+ {
+ "epoch": 3.36,
+ "learning_rate": 0.0002690752142943378,
+ "loss": 0.819,
+ "step": 135000
+ },
+ {
+ "epoch": 3.44,
+ "learning_rate": 0.0002683206567668719,
+ "loss": 0.8144,
+ "step": 138000
+ },
+ {
+ "epoch": 3.51,
+ "learning_rate": 0.000267566099239406,
+ "loss": 0.8158,
+ "step": 141000
+ },
+ {
+ "epoch": 3.59,
+ "learning_rate": 0.0002668115417119401,
+ "loss": 0.8148,
+ "step": 144000
+ },
+ {
+ "epoch": 3.66,
+ "learning_rate": 0.00026605698418447424,
+ "loss": 0.8188,
+ "step": 147000
+ },
+ {
+ "epoch": 3.74,
+ "learning_rate": 0.0002653024266570083,
+ "loss": 0.8064,
+ "step": 150000
+ },
+ {
+ "epoch": 3.81,
+ "learning_rate": 0.0002645478691295424,
+ "loss": 0.8047,
+ "step": 153000
+ },
+ {
+ "epoch": 3.88,
+ "learning_rate": 0.0002637933116020765,
+ "loss": 0.8008,
+ "step": 156000
+ },
+ {
+ "epoch": 3.96,
+ "learning_rate": 0.00026303875407461064,
+ "loss": 0.799,
+ "step": 159000
+ },
+ {
+ "epoch": 4.03,
+ "learning_rate": 0.0002622841965471447,
+ "loss": 0.7822,
+ "step": 162000
+ },
+ {
+ "epoch": 4.11,
+ "learning_rate": 0.00026152963901967884,
+ "loss": 0.7657,
+ "step": 165000
+ },
+ {
+ "epoch": 4.18,
+ "learning_rate": 0.00026077508149221297,
+ "loss": 0.7627,
+ "step": 168000
+ },
+ {
+ "epoch": 4.26,
+ "learning_rate": 0.00026002052396474705,
+ "loss": 0.7603,
+ "step": 171000
+ },
+ {
+ "epoch": 4.33,
+ "learning_rate": 0.0002592659664372812,
+ "loss": 0.7608,
+ "step": 174000
+ },
+ {
+ "epoch": 4.41,
+ "learning_rate": 0.00025851140890981525,
+ "loss": 0.7642,
+ "step": 177000
+ },
+ {
+ "epoch": 4.48,
+ "learning_rate": 0.0002577568513823494,
+ "loss": 0.7607,
+ "step": 180000
+ },
+ {
+ "epoch": 4.56,
+ "learning_rate": 0.0002570022938548835,
+ "loss": 0.7546,
+ "step": 183000
+ },
+ {
+ "epoch": 4.63,
+ "learning_rate": 0.0002562477363274176,
+ "loss": 0.7531,
+ "step": 186000
+ },
+ {
+ "epoch": 4.71,
+ "learning_rate": 0.0002554931787999517,
+ "loss": 0.7572,
+ "step": 189000
+ },
+ {
+ "epoch": 4.78,
+ "learning_rate": 0.0002547386212724858,
+ "loss": 0.7578,
+ "step": 192000
+ },
+ {
+ "epoch": 4.86,
+ "learning_rate": 0.0002539840637450199,
+ "loss": 0.7558,
+ "step": 195000
+ },
+ {
+ "epoch": 4.93,
+ "learning_rate": 0.000253229506217554,
+ "loss": 0.7556,
+ "step": 198000
+ },
+ {
+ "epoch": 5.0,
+ "learning_rate": 0.0002524749486900881,
+ "loss": 0.7476,
+ "step": 201000
+ },
+ {
+ "epoch": 5.08,
+ "learning_rate": 0.00025172039116262224,
+ "loss": 0.721,
+ "step": 204000
+ },
+ {
+ "epoch": 5.15,
+ "learning_rate": 0.0002509658336351563,
+ "loss": 0.7241,
+ "step": 207000
+ },
+ {
+ "epoch": 5.23,
+ "learning_rate": 0.00025021127610769044,
+ "loss": 0.7183,
+ "step": 210000
+ },
+ {
+ "epoch": 5.3,
+ "learning_rate": 0.00024945671858022457,
+ "loss": 0.7163,
+ "step": 213000
+ },
+ {
+ "epoch": 5.38,
+ "learning_rate": 0.00024870216105275865,
+ "loss": 0.716,
+ "step": 216000
+ },
+ {
+ "epoch": 5.45,
+ "learning_rate": 0.0002479476035252927,
+ "loss": 0.7208,
+ "step": 219000
+ },
+ {
+ "epoch": 5.53,
+ "learning_rate": 0.00024719304599782685,
+ "loss": 0.7149,
+ "step": 222000
+ },
+ {
+ "epoch": 5.6,
+ "learning_rate": 0.000246438488470361,
+ "loss": 0.7168,
+ "step": 225000
+ },
+ {
+ "epoch": 5.68,
+ "learning_rate": 0.00024568393094289505,
+ "loss": 0.7131,
+ "step": 228000
+ },
+ {
+ "epoch": 5.75,
+ "learning_rate": 0.0002449293734154292,
+ "loss": 0.7134,
+ "step": 231000
+ },
+ {
+ "epoch": 5.83,
+ "learning_rate": 0.0002441748158879633,
+ "loss": 0.7088,
+ "step": 234000
+ },
+ {
+ "epoch": 5.9,
+ "learning_rate": 0.00024342025836049738,
+ "loss": 0.7101,
+ "step": 237000
+ },
+ {
+ "epoch": 5.98,
+ "learning_rate": 0.00024266570083303148,
+ "loss": 0.7106,
+ "step": 240000
+ },
+ {
+ "epoch": 6.05,
+ "learning_rate": 0.0002419111433055656,
+ "loss": 0.6846,
+ "step": 243000
+ },
+ {
+ "epoch": 6.13,
+ "learning_rate": 0.00024115658577809968,
+ "loss": 0.6761,
+ "step": 246000
+ },
+ {
+ "epoch": 6.2,
+ "learning_rate": 0.00024040202825063379,
+ "loss": 0.6783,
+ "step": 249000
+ },
+ {
+ "epoch": 6.27,
+ "learning_rate": 0.00023964747072316791,
+ "loss": 0.6815,
+ "step": 252000
+ },
+ {
+ "epoch": 6.35,
+ "learning_rate": 0.00023889291319570202,
+ "loss": 0.6864,
+ "step": 255000
+ },
+ {
+ "epoch": 6.42,
+ "learning_rate": 0.00023813835566823612,
+ "loss": 0.688,
+ "step": 258000
+ },
+ {
+ "epoch": 6.5,
+ "learning_rate": 0.00023738379814077025,
+ "loss": 0.6843,
+ "step": 261000
+ },
+ {
+ "epoch": 6.57,
+ "learning_rate": 0.00023662924061330435,
+ "loss": 0.6842,
+ "step": 264000
+ },
+ {
+ "epoch": 6.65,
+ "learning_rate": 0.00023587468308583842,
+ "loss": 0.6874,
+ "step": 267000
+ },
+ {
+ "epoch": 6.72,
+ "learning_rate": 0.00023512012555837258,
+ "loss": 0.6777,
+ "step": 270000
+ },
+ {
+ "epoch": 6.8,
+ "learning_rate": 0.00023436556803090665,
+ "loss": 0.6813,
+ "step": 273000
+ },
+ {
+ "epoch": 6.87,
+ "learning_rate": 0.00023361101050344075,
+ "loss": 0.6859,
+ "step": 276000
+ },
+ {
+ "epoch": 6.95,
+ "learning_rate": 0.00023285645297597488,
+ "loss": 0.6756,
+ "step": 279000
+ },
+ {
+ "epoch": 7.02,
+ "learning_rate": 0.00023210189544850898,
+ "loss": 0.6682,
+ "step": 282000
+ },
+ {
+ "epoch": 7.1,
+ "learning_rate": 0.00023134733792104308,
+ "loss": 0.6456,
+ "step": 285000
+ },
+ {
+ "epoch": 7.17,
+ "learning_rate": 0.00023059278039357716,
+ "loss": 0.6463,
+ "step": 288000
+ },
+ {
+ "epoch": 7.25,
+ "learning_rate": 0.0002298382228661113,
+ "loss": 0.6508,
+ "step": 291000
+ },
+ {
+ "epoch": 7.32,
+ "learning_rate": 0.00022908366533864539,
+ "loss": 0.6513,
+ "step": 294000
+ },
+ {
+ "epoch": 7.4,
+ "learning_rate": 0.0002283291078111795,
+ "loss": 0.6479,
+ "step": 297000
+ },
+ {
+ "epoch": 7.47,
+ "learning_rate": 0.00022757455028371362,
+ "loss": 0.6514,
+ "step": 300000
+ },
+ {
+ "epoch": 7.54,
+ "learning_rate": 0.00022681999275624772,
+ "loss": 0.648,
+ "step": 303000
+ },
+ {
+ "epoch": 7.62,
+ "learning_rate": 0.00022606543522878182,
+ "loss": 0.6467,
+ "step": 306000
+ },
+ {
+ "epoch": 7.69,
+ "learning_rate": 0.00022531087770131595,
+ "loss": 0.6476,
+ "step": 309000
+ },
+ {
+ "epoch": 7.77,
+ "learning_rate": 0.00022455632017385005,
+ "loss": 0.6485,
+ "step": 312000
+ },
+ {
+ "epoch": 7.84,
+ "learning_rate": 0.00022380176264638412,
+ "loss": 0.6464,
+ "step": 315000
+ },
+ {
+ "epoch": 7.92,
+ "learning_rate": 0.00022304720511891825,
+ "loss": 0.644,
+ "step": 318000
+ },
+ {
+ "epoch": 7.99,
+ "learning_rate": 0.00022229264759145235,
+ "loss": 0.6423,
+ "step": 321000
+ },
+ {
+ "epoch": 8.07,
+ "learning_rate": 0.00022153809006398645,
+ "loss": 0.6169,
+ "step": 324000
+ },
+ {
+ "epoch": 8.14,
+ "learning_rate": 0.00022078353253652058,
+ "loss": 0.6166,
+ "step": 327000
+ },
+ {
+ "epoch": 8.22,
+ "learning_rate": 0.00022002897500905468,
+ "loss": 0.6174,
+ "step": 330000
+ },
+ {
+ "epoch": 8.29,
+ "learning_rate": 0.00021927441748158878,
+ "loss": 0.62,
+ "step": 333000
+ },
+ {
+ "epoch": 8.37,
+ "learning_rate": 0.00021851985995412286,
+ "loss": 0.6217,
+ "step": 336000
+ },
+ {
+ "epoch": 8.44,
+ "learning_rate": 0.00021776530242665699,
+ "loss": 0.6187,
+ "step": 339000
+ },
+ {
+ "epoch": 8.52,
+ "learning_rate": 0.0002170107448991911,
+ "loss": 0.6221,
+ "step": 342000
+ },
+ {
+ "epoch": 8.59,
+ "learning_rate": 0.0002162561873717252,
+ "loss": 0.6202,
+ "step": 345000
+ },
+ {
+ "epoch": 8.67,
+ "learning_rate": 0.00021550162984425932,
+ "loss": 0.6198,
+ "step": 348000
+ },
+ {
+ "epoch": 8.74,
+ "learning_rate": 0.00021474707231679342,
+ "loss": 0.6159,
+ "step": 351000
+ },
+ {
+ "epoch": 8.81,
+ "learning_rate": 0.00021399251478932752,
+ "loss": 0.615,
+ "step": 354000
+ },
+ {
+ "epoch": 8.89,
+ "learning_rate": 0.00021323795726186165,
+ "loss": 0.6188,
+ "step": 357000
+ },
+ {
+ "epoch": 8.96,
+ "learning_rate": 0.00021248339973439572,
+ "loss": 0.6167,
+ "step": 360000
+ },
+ {
+ "epoch": 9.04,
+ "learning_rate": 0.00021172884220692982,
+ "loss": 0.6022,
+ "step": 363000
+ },
+ {
+ "epoch": 9.11,
+ "learning_rate": 0.00021097428467946395,
+ "loss": 0.5912,
+ "step": 366000
+ },
+ {
+ "epoch": 9.19,
+ "learning_rate": 0.00021021972715199805,
+ "loss": 0.5906,
+ "step": 369000
+ },
+ {
+ "epoch": 9.26,
+ "learning_rate": 0.00020946516962453215,
+ "loss": 0.5921,
+ "step": 372000
+ },
+ {
+ "epoch": 9.34,
+ "learning_rate": 0.00020871061209706628,
+ "loss": 0.584,
+ "step": 375000
+ },
+ {
+ "epoch": 9.41,
+ "learning_rate": 0.00020795605456960038,
+ "loss": 0.5884,
+ "step": 378000
+ },
+ {
+ "epoch": 9.49,
+ "learning_rate": 0.00020720149704213446,
+ "loss": 0.585,
+ "step": 381000
+ },
+ {
+ "epoch": 9.56,
+ "learning_rate": 0.00020644693951466859,
+ "loss": 0.5878,
+ "step": 384000
+ },
+ {
+ "epoch": 9.64,
+ "learning_rate": 0.0002056923819872027,
+ "loss": 0.5894,
+ "step": 387000
+ },
+ {
+ "epoch": 9.71,
+ "learning_rate": 0.0002049378244597368,
+ "loss": 0.5875,
+ "step": 390000
+ },
+ {
+ "epoch": 9.79,
+ "learning_rate": 0.0002041832669322709,
+ "loss": 0.5877,
+ "step": 393000
+ },
+ {
+ "epoch": 9.86,
+ "learning_rate": 0.00020342870940480502,
+ "loss": 0.5876,
+ "step": 396000
+ },
+ {
+ "epoch": 9.94,
+ "learning_rate": 0.00020267415187733912,
+ "loss": 0.5876,
+ "step": 399000
+ },
+ {
+ "epoch": 10.01,
+ "learning_rate": 0.0002019195943498732,
+ "loss": 0.5885,
+ "step": 402000
+ },
+ {
+ "epoch": 10.08,
+ "learning_rate": 0.00020116503682240732,
+ "loss": 0.5606,
+ "step": 405000
+ },
+ {
+ "epoch": 10.16,
+ "learning_rate": 0.00020041047929494142,
+ "loss": 0.5618,
+ "step": 408000
+ },
+ {
+ "epoch": 10.23,
+ "learning_rate": 0.00019965592176747552,
+ "loss": 0.5661,
+ "step": 411000
+ },
+ {
+ "epoch": 10.31,
+ "learning_rate": 0.00019890136424000965,
+ "loss": 0.5723,
+ "step": 414000
+ },
+ {
+ "epoch": 10.38,
+ "learning_rate": 0.00019814680671254375,
+ "loss": 0.5665,
+ "step": 417000
+ },
+ {
+ "epoch": 10.46,
+ "learning_rate": 0.00019739224918507786,
+ "loss": 0.5635,
+ "step": 420000
+ },
+ {
+ "epoch": 10.53,
+ "learning_rate": 0.00019663769165761198,
+ "loss": 0.5677,
+ "step": 423000
+ },
+ {
+ "epoch": 10.61,
+ "learning_rate": 0.00019588313413014606,
+ "loss": 0.5657,
+ "step": 426000
+ },
+ {
+ "epoch": 10.68,
+ "learning_rate": 0.00019512857660268016,
+ "loss": 0.5675,
+ "step": 429000
+ },
+ {
+ "epoch": 10.76,
+ "learning_rate": 0.0001943740190752143,
+ "loss": 0.5646,
+ "step": 432000
+ },
+ {
+ "epoch": 10.83,
+ "learning_rate": 0.0001936194615477484,
+ "loss": 0.5663,
+ "step": 435000
+ },
+ {
+ "epoch": 10.91,
+ "learning_rate": 0.0001928649040202825,
+ "loss": 0.5692,
+ "step": 438000
+ },
+ {
+ "epoch": 10.98,
+ "learning_rate": 0.0001921103464928166,
+ "loss": 0.5664,
+ "step": 441000
+ },
+ {
+ "epoch": 11.06,
+ "learning_rate": 0.00019135578896535072,
+ "loss": 0.5487,
+ "step": 444000
+ },
+ {
+ "epoch": 11.13,
+ "learning_rate": 0.0001906012314378848,
+ "loss": 0.5436,
+ "step": 447000
+ },
+ {
+ "epoch": 11.21,
+ "learning_rate": 0.0001898466739104189,
+ "loss": 0.5438,
+ "step": 450000
+ },
+ {
+ "epoch": 11.28,
+ "learning_rate": 0.00018909211638295302,
+ "loss": 0.5444,
+ "step": 453000
+ },
+ {
+ "epoch": 11.35,
+ "learning_rate": 0.00018833755885548712,
+ "loss": 0.5422,
+ "step": 456000
+ },
+ {
+ "epoch": 11.43,
+ "learning_rate": 0.00018758300132802123,
+ "loss": 0.5452,
+ "step": 459000
+ },
+ {
+ "epoch": 11.5,
+ "learning_rate": 0.00018682844380055535,
+ "loss": 0.545,
+ "step": 462000
+ },
+ {
+ "epoch": 11.58,
+ "learning_rate": 0.00018607388627308946,
+ "loss": 0.5418,
+ "step": 465000
+ },
+ {
+ "epoch": 11.65,
+ "learning_rate": 0.00018531932874562353,
+ "loss": 0.5457,
+ "step": 468000
+ },
+ {
+ "epoch": 11.73,
+ "learning_rate": 0.00018456477121815766,
+ "loss": 0.5425,
+ "step": 471000
+ },
+ {
+ "epoch": 11.8,
+ "learning_rate": 0.00018381021369069176,
+ "loss": 0.5435,
+ "step": 474000
+ },
+ {
+ "epoch": 11.88,
+ "learning_rate": 0.00018305565616322586,
+ "loss": 0.5489,
+ "step": 477000
+ },
+ {
+ "epoch": 11.95,
+ "learning_rate": 0.00018230109863576,
+ "loss": 0.5457,
+ "step": 480000
+ },
+ {
+ "epoch": 12.03,
+ "learning_rate": 0.0001815465411082941,
+ "loss": 0.5353,
+ "step": 483000
+ },
+ {
+ "epoch": 12.1,
+ "learning_rate": 0.0001807919835808282,
+ "loss": 0.5185,
+ "step": 486000
+ },
+ {
+ "epoch": 12.18,
+ "learning_rate": 0.00018003742605336227,
+ "loss": 0.5223,
+ "step": 489000
+ },
+ {
+ "epoch": 12.25,
+ "learning_rate": 0.0001792828685258964,
+ "loss": 0.5172,
+ "step": 492000
+ },
+ {
+ "epoch": 12.33,
+ "learning_rate": 0.0001785283109984305,
+ "loss": 0.5191,
+ "step": 495000
+ },
+ {
+ "epoch": 12.4,
+ "learning_rate": 0.0001777737534709646,
+ "loss": 0.5221,
+ "step": 498000
+ },
+ {
+ "epoch": 12.48,
+ "learning_rate": 0.00017701919594349872,
+ "loss": 0.522,
+ "step": 501000
+ },
+ {
+ "epoch": 12.55,
+ "learning_rate": 0.00017626463841603283,
+ "loss": 0.525,
+ "step": 504000
+ },
+ {
+ "epoch": 12.62,
+ "learning_rate": 0.00017551008088856693,
+ "loss": 0.5265,
+ "step": 507000
+ },
+ {
+ "epoch": 12.7,
+ "learning_rate": 0.00017475552336110106,
+ "loss": 0.526,
+ "step": 510000
+ },
+ {
+ "epoch": 12.77,
+ "learning_rate": 0.00017400096583363513,
+ "loss": 0.527,
+ "step": 513000
+ },
+ {
+ "epoch": 12.85,
+ "learning_rate": 0.00017324640830616923,
+ "loss": 0.5259,
+ "step": 516000
+ },
+ {
+ "epoch": 12.92,
+ "learning_rate": 0.00017249185077870336,
+ "loss": 0.5234,
+ "step": 519000
+ },
+ {
+ "epoch": 13.0,
+ "learning_rate": 0.00017173729325123746,
+ "loss": 0.5259,
+ "step": 522000
+ },
+ {
+ "epoch": 13.07,
+ "learning_rate": 0.00017098273572377156,
+ "loss": 0.5027,
+ "step": 525000
+ },
+ {
+ "epoch": 13.15,
+ "learning_rate": 0.0001702281781963057,
+ "loss": 0.5043,
+ "step": 528000
+ },
+ {
+ "epoch": 13.22,
+ "learning_rate": 0.0001694736206688398,
+ "loss": 0.5051,
+ "step": 531000
+ },
+ {
+ "epoch": 13.3,
+ "learning_rate": 0.00016871906314137387,
+ "loss": 0.5062,
+ "step": 534000
+ },
+ {
+ "epoch": 13.37,
+ "learning_rate": 0.00016796450561390797,
+ "loss": 0.5062,
+ "step": 537000
+ },
+ {
+ "epoch": 13.45,
+ "learning_rate": 0.0001672099480864421,
+ "loss": 0.508,
+ "step": 540000
+ },
+ {
+ "epoch": 13.52,
+ "learning_rate": 0.0001664553905589762,
+ "loss": 0.5086,
+ "step": 543000
+ },
+ {
+ "epoch": 13.6,
+ "learning_rate": 0.0001657008330315103,
+ "loss": 0.5072,
+ "step": 546000
+ },
+ {
+ "epoch": 13.67,
+ "learning_rate": 0.00016494627550404443,
+ "loss": 0.5,
+ "step": 549000
+ },
+ {
+ "epoch": 13.75,
+ "learning_rate": 0.00016419171797657853,
+ "loss": 0.5067,
+ "step": 552000
+ },
+ {
+ "epoch": 13.82,
+ "learning_rate": 0.0001634371604491126,
+ "loss": 0.5055,
+ "step": 555000
+ },
+ {
+ "epoch": 13.89,
+ "learning_rate": 0.00016268260292164673,
+ "loss": 0.501,
+ "step": 558000
+ },
+ {
+ "epoch": 13.97,
+ "learning_rate": 0.00016192804539418083,
+ "loss": 0.5068,
+ "step": 561000
+ },
+ {
+ "epoch": 14.04,
+ "learning_rate": 0.00016117348786671493,
+ "loss": 0.4915,
+ "step": 564000
+ },
+ {
+ "epoch": 14.12,
+ "learning_rate": 0.00016041893033924906,
+ "loss": 0.4865,
+ "step": 567000
+ },
+ {
+ "epoch": 14.19,
+ "learning_rate": 0.00015966437281178316,
+ "loss": 0.4881,
+ "step": 570000
+ },
+ {
+ "epoch": 14.27,
+ "learning_rate": 0.00015890981528431726,
+ "loss": 0.4842,
+ "step": 573000
+ },
+ {
+ "epoch": 14.34,
+ "learning_rate": 0.0001581552577568514,
+ "loss": 0.4873,
+ "step": 576000
+ },
+ {
+ "epoch": 14.42,
+ "learning_rate": 0.00015740070022938547,
+ "loss": 0.4861,
+ "step": 579000
+ },
+ {
+ "epoch": 14.49,
+ "learning_rate": 0.00015664614270191957,
+ "loss": 0.4867,
+ "step": 582000
+ },
+ {
+ "epoch": 14.57,
+ "learning_rate": 0.00015589158517445367,
+ "loss": 0.4902,
+ "step": 585000
+ },
+ {
+ "epoch": 14.64,
+ "learning_rate": 0.0001551370276469878,
+ "loss": 0.4927,
+ "step": 588000
+ },
+ {
+ "epoch": 14.72,
+ "learning_rate": 0.0001543824701195219,
+ "loss": 0.4904,
+ "step": 591000
+ },
+ {
+ "epoch": 14.79,
+ "learning_rate": 0.000153627912592056,
+ "loss": 0.4909,
+ "step": 594000
+ },
+ {
+ "epoch": 14.87,
+ "learning_rate": 0.00015287335506459013,
+ "loss": 0.4914,
+ "step": 597000
+ },
+ {
+ "epoch": 14.94,
+ "learning_rate": 0.00015211879753712423,
+ "loss": 0.4864,
+ "step": 600000
+ },
+ {
+ "epoch": 15.01,
+ "learning_rate": 0.0001513642400096583,
+ "loss": 0.4834,
+ "step": 603000
+ },
+ {
+ "epoch": 15.09,
+ "learning_rate": 0.00015060968248219243,
+ "loss": 0.4687,
+ "step": 606000
+ },
+ {
+ "epoch": 15.16,
+ "learning_rate": 0.00014985512495472653,
+ "loss": 0.4683,
+ "step": 609000
+ },
+ {
+ "epoch": 15.24,
+ "learning_rate": 0.00014910056742726066,
+ "loss": 0.4657,
+ "step": 612000
+ },
+ {
+ "epoch": 15.31,
+ "learning_rate": 0.00014834600989979473,
+ "loss": 0.4727,
+ "step": 615000
+ },
+ {
+ "epoch": 15.39,
+ "learning_rate": 0.00014759145237232886,
+ "loss": 0.4709,
+ "step": 618000
+ },
+ {
+ "epoch": 15.46,
+ "learning_rate": 0.00014683689484486296,
+ "loss": 0.4703,
+ "step": 621000
+ },
+ {
+ "epoch": 15.54,
+ "learning_rate": 0.00014608233731739707,
+ "loss": 0.4709,
+ "step": 624000
+ },
+ {
+ "epoch": 15.61,
+ "learning_rate": 0.00014532777978993117,
+ "loss": 0.4726,
+ "step": 627000
+ },
+ {
+ "epoch": 15.69,
+ "learning_rate": 0.00014457322226246527,
+ "loss": 0.4684,
+ "step": 630000
+ },
+ {
+ "epoch": 15.76,
+ "learning_rate": 0.0001438186647349994,
+ "loss": 0.4725,
+ "step": 633000
+ },
+ {
+ "epoch": 15.84,
+ "learning_rate": 0.0001430641072075335,
+ "loss": 0.4689,
+ "step": 636000
+ },
+ {
+ "epoch": 15.91,
+ "learning_rate": 0.0001423095496800676,
+ "loss": 0.468,
+ "step": 639000
+ },
+ {
+ "epoch": 15.99,
+ "learning_rate": 0.0001415549921526017,
+ "loss": 0.4749,
+ "step": 642000
+ },
+ {
+ "epoch": 16.06,
+ "learning_rate": 0.00014080043462513583,
+ "loss": 0.4551,
+ "step": 645000
+ },
+ {
+ "epoch": 16.14,
+ "learning_rate": 0.0001400458770976699,
+ "loss": 0.4536,
+ "step": 648000
+ },
+ {
+ "epoch": 16.21,
+ "learning_rate": 0.00013929131957020403,
+ "loss": 0.4548,
+ "step": 651000
+ },
+ {
+ "epoch": 16.28,
+ "learning_rate": 0.00013853676204273813,
+ "loss": 0.4541,
+ "step": 654000
+ },
+ {
+ "epoch": 16.36,
+ "learning_rate": 0.00013778220451527223,
+ "loss": 0.4573,
+ "step": 657000
+ },
+ {
+ "epoch": 16.43,
+ "learning_rate": 0.00013702764698780633,
+ "loss": 0.4521,
+ "step": 660000
+ },
+ {
+ "epoch": 16.51,
+ "learning_rate": 0.00013627308946034044,
+ "loss": 0.4564,
+ "step": 663000
+ },
+ {
+ "epoch": 16.58,
+ "learning_rate": 0.00013551853193287456,
+ "loss": 0.4563,
+ "step": 666000
+ },
+ {
+ "epoch": 16.66,
+ "learning_rate": 0.00013476397440540867,
+ "loss": 0.4582,
+ "step": 669000
+ },
+ {
+ "epoch": 16.73,
+ "learning_rate": 0.00013400941687794277,
+ "loss": 0.4556,
+ "step": 672000
+ },
+ {
+ "epoch": 16.81,
+ "learning_rate": 0.00013325485935047687,
+ "loss": 0.4527,
+ "step": 675000
+ },
+ {
+ "epoch": 16.88,
+ "learning_rate": 0.00013250030182301097,
+ "loss": 0.4535,
+ "step": 678000
+ },
+ {
+ "epoch": 16.96,
+ "learning_rate": 0.00013174574429554507,
+ "loss": 0.4578,
+ "step": 681000
+ },
+ {
+ "epoch": 17.03,
+ "learning_rate": 0.0001309911867680792,
+ "loss": 0.449,
+ "step": 684000
+ },
+ {
+ "epoch": 17.11,
+ "learning_rate": 0.0001302366292406133,
+ "loss": 0.4389,
+ "step": 687000
+ },
+ {
+ "epoch": 17.18,
+ "learning_rate": 0.0001294820717131474,
+ "loss": 0.438,
+ "step": 690000
+ },
+ {
+ "epoch": 17.26,
+ "learning_rate": 0.0001287275141856815,
+ "loss": 0.4396,
+ "step": 693000
+ },
+ {
+ "epoch": 17.33,
+ "learning_rate": 0.0001279729566582156,
+ "loss": 0.437,
+ "step": 696000
+ },
+ {
+ "epoch": 17.41,
+ "learning_rate": 0.00012721839913074973,
+ "loss": 0.443,
+ "step": 699000
+ },
+ {
+ "epoch": 17.48,
+ "learning_rate": 0.0001264638416032838,
+ "loss": 0.4428,
+ "step": 702000
+ },
+ {
+ "epoch": 17.55,
+ "learning_rate": 0.00012570928407581793,
+ "loss": 0.4384,
+ "step": 705000
+ },
+ {
+ "epoch": 17.63,
+ "learning_rate": 0.00012495472654835204,
+ "loss": 0.4387,
+ "step": 708000
+ },
+ {
+ "epoch": 17.7,
+ "learning_rate": 0.00012420016902088614,
+ "loss": 0.4416,
+ "step": 711000
+ },
+ {
+ "epoch": 17.78,
+ "learning_rate": 0.00012344561149342024,
+ "loss": 0.4398,
+ "step": 714000
+ },
+ {
+ "epoch": 17.85,
+ "learning_rate": 0.00012269105396595437,
+ "loss": 0.437,
+ "step": 717000
+ },
+ {
+ "epoch": 17.93,
+ "learning_rate": 0.00012193649643848845,
+ "loss": 0.4393,
+ "step": 720000
+ },
+ {
+ "epoch": 18.0,
+ "learning_rate": 0.00012118193891102257,
+ "loss": 0.4416,
+ "step": 723000
+ },
+ {
+ "epoch": 18.08,
+ "learning_rate": 0.00012042738138355667,
+ "loss": 0.4216,
+ "step": 726000
+ },
+ {
+ "epoch": 18.15,
+ "learning_rate": 0.00011967282385609077,
+ "loss": 0.4206,
+ "step": 729000
+ },
+ {
+ "epoch": 18.23,
+ "learning_rate": 0.00011891826632862489,
+ "loss": 0.4223,
+ "step": 732000
+ },
+ {
+ "epoch": 18.3,
+ "learning_rate": 0.00011816370880115899,
+ "loss": 0.4261,
+ "step": 735000
+ },
+ {
+ "epoch": 18.38,
+ "learning_rate": 0.0001174091512736931,
+ "loss": 0.4238,
+ "step": 738000
+ },
+ {
+ "epoch": 18.45,
+ "learning_rate": 0.0001166545937462272,
+ "loss": 0.4224,
+ "step": 741000
+ },
+ {
+ "epoch": 18.53,
+ "learning_rate": 0.0001159000362187613,
+ "loss": 0.4261,
+ "step": 744000
+ },
+ {
+ "epoch": 18.6,
+ "learning_rate": 0.00011514547869129542,
+ "loss": 0.4287,
+ "step": 747000
+ },
+ {
+ "epoch": 18.68,
+ "learning_rate": 0.00011439092116382951,
+ "loss": 0.4261,
+ "step": 750000
+ },
+ {
+ "epoch": 18.75,
+ "learning_rate": 0.00011363636363636362,
+ "loss": 0.4259,
+ "step": 753000
+ },
+ {
+ "epoch": 18.82,
+ "learning_rate": 0.00011288180610889774,
+ "loss": 0.4233,
+ "step": 756000
+ },
+ {
+ "epoch": 18.9,
+ "learning_rate": 0.00011212724858143184,
+ "loss": 0.427,
+ "step": 759000
+ },
+ {
+ "epoch": 18.97,
+ "learning_rate": 0.00011137269105396594,
+ "loss": 0.4302,
+ "step": 762000
+ },
+ {
+ "epoch": 19.05,
+ "learning_rate": 0.00011061813352650005,
+ "loss": 0.4109,
+ "step": 765000
+ },
+ {
+ "epoch": 19.12,
+ "learning_rate": 0.00010986357599903416,
+ "loss": 0.4088,
+ "step": 768000
+ },
+ {
+ "epoch": 19.2,
+ "learning_rate": 0.00010910901847156827,
+ "loss": 0.4078,
+ "step": 771000
+ },
+ {
+ "epoch": 19.27,
+ "learning_rate": 0.00010835446094410236,
+ "loss": 0.4094,
+ "step": 774000
+ },
+ {
+ "epoch": 19.35,
+ "learning_rate": 0.00010759990341663647,
+ "loss": 0.409,
+ "step": 777000
+ },
+ {
+ "epoch": 19.42,
+ "learning_rate": 0.00010684534588917059,
+ "loss": 0.4086,
+ "step": 780000
+ },
+ {
+ "epoch": 19.5,
+ "learning_rate": 0.00010609078836170468,
+ "loss": 0.406,
+ "step": 783000
+ },
+ {
+ "epoch": 19.57,
+ "learning_rate": 0.00010533623083423879,
+ "loss": 0.4102,
+ "step": 786000
+ },
+ {
+ "epoch": 19.65,
+ "learning_rate": 0.0001045816733067729,
+ "loss": 0.4089,
+ "step": 789000
+ },
+ {
+ "epoch": 19.72,
+ "learning_rate": 0.000103827115779307,
+ "loss": 0.4096,
+ "step": 792000
+ },
+ {
+ "epoch": 19.8,
+ "learning_rate": 0.00010307255825184111,
+ "loss": 0.4119,
+ "step": 795000
+ },
+ {
+ "epoch": 19.87,
+ "learning_rate": 0.00010231800072437521,
+ "loss": 0.4101,
+ "step": 798000
+ },
+ {
+ "epoch": 19.95,
+ "learning_rate": 0.00010156344319690932,
+ "loss": 0.4125,
+ "step": 801000
+ },
+ {
+ "epoch": 20.02,
+ "learning_rate": 0.00010080888566944344,
+ "loss": 0.4091,
+ "step": 804000
+ },
+ {
+ "epoch": 20.09,
+ "learning_rate": 0.00010005432814197753,
+ "loss": 0.3946,
+ "step": 807000
+ },
+ {
+ "epoch": 20.17,
+ "learning_rate": 9.929977061451164e-05,
+ "loss": 0.3959,
+ "step": 810000
+ },
+ {
+ "epoch": 20.24,
+ "learning_rate": 9.854521308704576e-05,
+ "loss": 0.3954,
+ "step": 813000
+ },
+ {
+ "epoch": 20.32,
+ "learning_rate": 9.779065555957984e-05,
+ "loss": 0.3974,
+ "step": 816000
+ },
+ {
+ "epoch": 20.39,
+ "learning_rate": 9.703609803211396e-05,
+ "loss": 0.3943,
+ "step": 819000
+ },
+ {
+ "epoch": 20.47,
+ "learning_rate": 9.628154050464806e-05,
+ "loss": 0.3984,
+ "step": 822000
+ },
+ {
+ "epoch": 20.54,
+ "learning_rate": 9.552698297718217e-05,
+ "loss": 0.3963,
+ "step": 825000
+ },
+ {
+ "epoch": 20.62,
+ "learning_rate": 9.477242544971629e-05,
+ "loss": 0.3927,
+ "step": 828000
+ },
+ {
+ "epoch": 20.69,
+ "learning_rate": 9.401786792225038e-05,
+ "loss": 0.3955,
+ "step": 831000
+ },
+ {
+ "epoch": 20.77,
+ "learning_rate": 9.326331039478449e-05,
+ "loss": 0.3982,
+ "step": 834000
+ },
+ {
+ "epoch": 20.84,
+ "learning_rate": 9.25087528673186e-05,
+ "loss": 0.3976,
+ "step": 837000
+ },
+ {
+ "epoch": 20.92,
+ "learning_rate": 9.17541953398527e-05,
+ "loss": 0.3957,
+ "step": 840000
+ },
+ {
+ "epoch": 20.99,
+ "learning_rate": 9.099963781238681e-05,
+ "loss": 0.3982,
+ "step": 843000
+ },
+ {
+ "epoch": 21.07,
+ "learning_rate": 9.024508028492091e-05,
+ "loss": 0.3806,
+ "step": 846000
+ },
+ {
+ "epoch": 21.14,
+ "learning_rate": 8.949052275745503e-05,
+ "loss": 0.3819,
+ "step": 849000
+ },
+ {
+ "epoch": 21.22,
+ "learning_rate": 8.873596522998913e-05,
+ "loss": 0.3847,
+ "step": 852000
+ },
+ {
+ "epoch": 21.29,
+ "learning_rate": 8.798140770252323e-05,
+ "loss": 0.3843,
+ "step": 855000
+ },
+ {
+ "epoch": 21.36,
+ "learning_rate": 8.722685017505734e-05,
+ "loss": 0.3859,
+ "step": 858000
+ },
+ {
+ "epoch": 21.44,
+ "learning_rate": 8.647229264759146e-05,
+ "loss": 0.3821,
+ "step": 861000
+ },
+ {
+ "epoch": 21.51,
+ "learning_rate": 8.571773512012555e-05,
+ "loss": 0.386,
+ "step": 864000
+ },
+ {
+ "epoch": 21.59,
+ "learning_rate": 8.496317759265966e-05,
+ "loss": 0.3853,
+ "step": 867000
+ },
+ {
+ "epoch": 21.66,
+ "learning_rate": 8.420862006519376e-05,
+ "loss": 0.3856,
+ "step": 870000
+ },
+ {
+ "epoch": 21.74,
+ "learning_rate": 8.345406253772786e-05,
+ "loss": 0.3843,
+ "step": 873000
+ },
+ {
+ "epoch": 21.81,
+ "learning_rate": 8.269950501026198e-05,
+ "loss": 0.3845,
+ "step": 876000
+ },
+ {
+ "epoch": 21.89,
+ "learning_rate": 8.194494748279608e-05,
+ "loss": 0.3809,
+ "step": 879000
+ },
+ {
+ "epoch": 21.96,
+ "learning_rate": 8.11903899553302e-05,
+ "loss": 0.3824,
+ "step": 882000
+ },
+ {
+ "epoch": 22.04,
+ "learning_rate": 8.04358324278643e-05,
+ "loss": 0.3801,
+ "step": 885000
+ },
+ {
+ "epoch": 22.11,
+ "learning_rate": 7.96812749003984e-05,
+ "loss": 0.3702,
+ "step": 888000
+ },
+ {
+ "epoch": 22.19,
+ "learning_rate": 7.892671737293251e-05,
+ "loss": 0.3713,
+ "step": 891000
+ },
+ {
+ "epoch": 22.26,
+ "learning_rate": 7.817215984546663e-05,
+ "loss": 0.3715,
+ "step": 894000
+ },
+ {
+ "epoch": 22.34,
+ "learning_rate": 7.741760231800071e-05,
+ "loss": 0.3681,
+ "step": 897000
+ },
+ {
+ "epoch": 22.41,
+ "learning_rate": 7.666304479053483e-05,
+ "loss": 0.3714,
+ "step": 900000
+ },
+ {
+ "epoch": 22.49,
+ "learning_rate": 7.590848726306893e-05,
+ "loss": 0.3725,
+ "step": 903000
+ },
+ {
+ "epoch": 22.56,
+ "learning_rate": 7.515392973560303e-05,
+ "loss": 0.3692,
+ "step": 906000
+ },
+ {
+ "epoch": 22.63,
+ "learning_rate": 7.439937220813715e-05,
+ "loss": 0.375,
+ "step": 909000
+ },
+ {
+ "epoch": 22.71,
+ "learning_rate": 7.364481468067125e-05,
+ "loss": 0.3721,
+ "step": 912000
+ },
+ {
+ "epoch": 22.78,
+ "learning_rate": 7.289025715320536e-05,
+ "loss": 0.3699,
+ "step": 915000
+ },
+ {
+ "epoch": 22.86,
+ "learning_rate": 7.213569962573946e-05,
+ "loss": 0.37,
+ "step": 918000
+ },
+ {
+ "epoch": 22.93,
+ "learning_rate": 7.138114209827356e-05,
+ "loss": 0.3702,
+ "step": 921000
+ },
+ {
+ "epoch": 23.01,
+ "learning_rate": 7.062658457080768e-05,
+ "loss": 0.3668,
+ "step": 924000
+ },
+ {
+ "epoch": 23.08,
+ "learning_rate": 6.987202704334178e-05,
+ "loss": 0.3602,
+ "step": 927000
+ },
+ {
+ "epoch": 23.16,
+ "learning_rate": 6.911746951587588e-05,
+ "loss": 0.3557,
+ "step": 930000
+ },
+ {
+ "epoch": 23.23,
+ "learning_rate": 6.836291198840998e-05,
+ "loss": 0.3607,
+ "step": 933000
+ },
+ {
+ "epoch": 23.31,
+ "learning_rate": 6.76083544609441e-05,
+ "loss": 0.3571,
+ "step": 936000
+ },
+ {
+ "epoch": 23.38,
+ "learning_rate": 6.68537969334782e-05,
+ "loss": 0.3589,
+ "step": 939000
+ },
+ {
+ "epoch": 23.46,
+ "learning_rate": 6.609923940601231e-05,
+ "loss": 0.361,
+ "step": 942000
+ },
+ {
+ "epoch": 23.53,
+ "learning_rate": 6.534468187854641e-05,
+ "loss": 0.3595,
+ "step": 945000
+ },
+ {
+ "epoch": 23.61,
+ "learning_rate": 6.459012435108053e-05,
+ "loss": 0.3554,
+ "step": 948000
+ },
+ {
+ "epoch": 23.68,
+ "learning_rate": 6.383556682361463e-05,
+ "loss": 0.3572,
+ "step": 951000
+ },
+ {
+ "epoch": 23.75,
+ "learning_rate": 6.308100929614873e-05,
+ "loss": 0.3604,
+ "step": 954000
+ },
+ {
+ "epoch": 23.83,
+ "learning_rate": 6.232645176868283e-05,
+ "loss": 0.3591,
+ "step": 957000
+ },
+ {
+ "epoch": 23.9,
+ "learning_rate": 6.157189424121695e-05,
+ "loss": 0.3582,
+ "step": 960000
+ },
+ {
+ "epoch": 23.98,
+ "learning_rate": 6.0817336713751056e-05,
+ "loss": 0.3568,
+ "step": 963000
+ },
+ {
+ "epoch": 24.05,
+ "learning_rate": 6.006277918628516e-05,
+ "loss": 0.3495,
+ "step": 966000
+ },
+ {
+ "epoch": 24.13,
+ "learning_rate": 5.930822165881926e-05,
+ "loss": 0.3484,
+ "step": 969000
+ },
+ {
+ "epoch": 24.2,
+ "learning_rate": 5.855366413135337e-05,
+ "loss": 0.3449,
+ "step": 972000
+ },
+ {
+ "epoch": 24.28,
+ "learning_rate": 5.7799106603887474e-05,
+ "loss": 0.3471,
+ "step": 975000
+ },
+ {
+ "epoch": 24.35,
+ "learning_rate": 5.704454907642158e-05,
+ "loss": 0.3495,
+ "step": 978000
+ },
+ {
+ "epoch": 24.43,
+ "learning_rate": 5.6289991548955684e-05,
+ "loss": 0.3489,
+ "step": 981000
+ },
+ {
+ "epoch": 24.5,
+ "learning_rate": 5.55354340214898e-05,
+ "loss": 0.3464,
+ "step": 984000
+ },
+ {
+ "epoch": 24.58,
+ "learning_rate": 5.47808764940239e-05,
+ "loss": 0.3485,
+ "step": 987000
+ },
+ {
+ "epoch": 24.65,
+ "learning_rate": 5.402631896655801e-05,
+ "loss": 0.3486,
+ "step": 990000
+ },
+ {
+ "epoch": 24.73,
+ "learning_rate": 5.327176143909211e-05,
+ "loss": 0.3476,
+ "step": 993000
+ },
+ {
+ "epoch": 24.8,
+ "learning_rate": 5.2517203911626224e-05,
+ "loss": 0.3502,
+ "step": 996000
+ },
+ {
+ "epoch": 24.88,
+ "learning_rate": 5.1762646384160325e-05,
+ "loss": 0.3492,
+ "step": 999000
+ },
+ {
+ "epoch": 24.95,
+ "learning_rate": 5.1008088856694426e-05,
+ "loss": 0.347,
+ "step": 1002000
+ },
+ {
+ "epoch": 25.02,
+ "learning_rate": 5.0253531329228534e-05,
+ "loss": 0.343,
+ "step": 1005000
+ },
+ {
+ "epoch": 25.1,
+ "learning_rate": 4.949897380176264e-05,
+ "loss": 0.3366,
+ "step": 1008000
+ },
+ {
+ "epoch": 25.17,
+ "learning_rate": 4.874441627429675e-05,
+ "loss": 0.3348,
+ "step": 1011000
+ },
+ {
+ "epoch": 25.25,
+ "learning_rate": 4.798985874683085e-05,
+ "loss": 0.3344,
+ "step": 1014000
+ },
+ {
+ "epoch": 25.32,
+ "learning_rate": 4.723530121936496e-05,
+ "loss": 0.3406,
+ "step": 1017000
+ },
+ {
+ "epoch": 25.4,
+ "learning_rate": 4.648074369189907e-05,
+ "loss": 0.3366,
+ "step": 1020000
+ },
+ {
+ "epoch": 25.47,
+ "learning_rate": 4.5726186164433176e-05,
+ "loss": 0.3392,
+ "step": 1023000
+ },
+ {
+ "epoch": 25.55,
+ "learning_rate": 4.497162863696728e-05,
+ "loss": 0.3379,
+ "step": 1026000
+ },
+ {
+ "epoch": 25.62,
+ "learning_rate": 4.421707110950138e-05,
+ "loss": 0.3388,
+ "step": 1029000
+ },
+ {
+ "epoch": 25.7,
+ "learning_rate": 4.346251358203549e-05,
+ "loss": 0.3383,
+ "step": 1032000
+ },
+ {
+ "epoch": 25.77,
+ "learning_rate": 4.27079560545696e-05,
+ "loss": 0.3372,
+ "step": 1035000
+ },
+ {
+ "epoch": 25.85,
+ "learning_rate": 4.19533985271037e-05,
+ "loss": 0.3358,
+ "step": 1038000
+ },
+ {
+ "epoch": 25.92,
+ "learning_rate": 4.1198840999637803e-05,
+ "loss": 0.3353,
+ "step": 1041000
+ },
+ {
+ "epoch": 26.0,
+ "learning_rate": 4.044428347217192e-05,
+ "loss": 0.34,
+ "step": 1044000
+ },
+ {
+ "epoch": 26.07,
+ "learning_rate": 3.968972594470602e-05,
+ "loss": 0.3282,
+ "step": 1047000
+ },
+ {
+ "epoch": 26.15,
+ "learning_rate": 3.893516841724013e-05,
+ "loss": 0.3267,
+ "step": 1050000
+ },
+ {
+ "epoch": 26.22,
+ "learning_rate": 3.818061088977423e-05,
+ "loss": 0.3268,
+ "step": 1053000
+ },
+ {
+ "epoch": 26.29,
+ "learning_rate": 3.742605336230834e-05,
+ "loss": 0.3248,
+ "step": 1056000
+ },
+ {
+ "epoch": 26.37,
+ "learning_rate": 3.6671495834842445e-05,
+ "loss": 0.3268,
+ "step": 1059000
+ },
+ {
+ "epoch": 26.44,
+ "learning_rate": 3.591693830737655e-05,
+ "loss": 0.324,
+ "step": 1062000
+ },
+ {
+ "epoch": 26.52,
+ "learning_rate": 3.516238077991066e-05,
+ "loss": 0.3298,
+ "step": 1065000
+ },
+ {
+ "epoch": 26.59,
+ "learning_rate": 3.440782325244476e-05,
+ "loss": 0.3296,
+ "step": 1068000
+ },
+ {
+ "epoch": 26.67,
+ "learning_rate": 3.365326572497887e-05,
+ "loss": 0.3261,
+ "step": 1071000
+ },
+ {
+ "epoch": 26.74,
+ "learning_rate": 3.289870819751297e-05,
+ "loss": 0.3284,
+ "step": 1074000
+ },
+ {
+ "epoch": 26.82,
+ "learning_rate": 3.214415067004708e-05,
+ "loss": 0.3279,
+ "step": 1077000
+ },
+ {
+ "epoch": 26.89,
+ "learning_rate": 3.138959314258119e-05,
+ "loss": 0.3273,
+ "step": 1080000
+ },
+ {
+ "epoch": 26.97,
+ "learning_rate": 3.0635035615115295e-05,
+ "loss": 0.3275,
+ "step": 1083000
+ },
+ {
+ "epoch": 27.04,
+ "learning_rate": 2.9880478087649397e-05,
+ "loss": 0.323,
+ "step": 1086000
+ },
+ {
+ "epoch": 27.12,
+ "learning_rate": 2.9125920560183505e-05,
+ "loss": 0.3182,
+ "step": 1089000
+ },
+ {
+ "epoch": 27.19,
+ "learning_rate": 2.837136303271761e-05,
+ "loss": 0.3209,
+ "step": 1092000
+ },
+ {
+ "epoch": 27.27,
+ "learning_rate": 2.7616805505251717e-05,
+ "loss": 0.3185,
+ "step": 1095000
+ },
+ {
+ "epoch": 27.34,
+ "learning_rate": 2.6862247977785822e-05,
+ "loss": 0.3214,
+ "step": 1098000
+ },
+ {
+ "epoch": 27.42,
+ "learning_rate": 2.610769045031993e-05,
+ "loss": 0.3164,
+ "step": 1101000
+ },
+ {
+ "epoch": 27.49,
+ "learning_rate": 2.5353132922854035e-05,
+ "loss": 0.3206,
+ "step": 1104000
+ },
+ {
+ "epoch": 27.56,
+ "learning_rate": 2.4598575395388143e-05,
+ "loss": 0.3175,
+ "step": 1107000
+ },
+ {
+ "epoch": 27.64,
+ "learning_rate": 2.3844017867922247e-05,
+ "loss": 0.3185,
+ "step": 1110000
+ },
+ {
+ "epoch": 27.71,
+ "learning_rate": 2.3089460340456355e-05,
+ "loss": 0.3199,
+ "step": 1113000
+ },
+ {
+ "epoch": 27.79,
+ "learning_rate": 2.233490281299046e-05,
+ "loss": 0.318,
+ "step": 1116000
+ },
+ {
+ "epoch": 27.86,
+ "learning_rate": 2.1580345285524568e-05,
+ "loss": 0.319,
+ "step": 1119000
+ },
+ {
+ "epoch": 27.94,
+ "learning_rate": 2.082578775805867e-05,
+ "loss": 0.3152,
+ "step": 1122000
+ }
+ ],
+ "logging_steps": 3000,
+ "max_steps": 1204800,
+ "num_train_epochs": 30,
+ "save_steps": 500,
+ "total_flos": 2.2337303175142268e+21,
+ "trial_name": null,
+ "trial_params": null
+}
diff --git a/checkpoint-1124480/training_args.bin b/checkpoint-1124480/training_args.bin
new file mode 100644
index 0000000000000000000000000000000000000000..fd8dc3cd49483d3920a9ebf868118e8673b4a989
--- /dev/null
+++ b/checkpoint-1124480/training_args.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3ba804e9f40dd8d142a57ab99d24265056b11e547908881dba51c1cd9148def3
+size 4600
diff --git a/checkpoint-1124480/vocab.json b/checkpoint-1124480/vocab.json
new file mode 100644
index 0000000000000000000000000000000000000000..8b9102f390f8bc2f807efc9dac5ec470f0fe2f38
--- /dev/null
+++ b/checkpoint-1124480/vocab.json
@@ -0,0 +1,2253 @@
+{
+ "\b": 0,
+ "\"": 2,
+ "#": 3,
+ ";": 4,
+ "=": 5,
+ ">": 6,
+ "[PAD]": 2250,
+ "[UNK]": 2249,
+ "_": 7,
+ "`": 8,
+ "|": 1,
+ "}": 9,
+ "°": 10,
+ "è": 11,
+ "฿": 12,
+ "ᆫ": 13,
+ "ᆯ": 14,
+ "ᆷ": 15,
+ "ᇂ": 16,
+ "": 17,
+ "℃": 18,
+ "ℓ": 19,
+ "ㄱ": 20,
+ "ㄴ": 21,
+ "ㄸ": 22,
+ "ㄹ": 23,
+ "ㅁ": 24,
+ "ㅂ": 25,
+ "ㅅ": 26,
+ "ㅇ": 27,
+ "ㅋ": 28,
+ "ㅌ": 29,
+ "ㅍ": 30,
+ "ㅏ": 31,
+ "ㅔ": 32,
+ "ㅠ": 33,
+ "ㅡ": 34,
+ "無": 35,
+ "가": 36,
+ "각": 37,
+ "간": 38,
+ "갇": 39,
+ "갈": 40,
+ "갉": 41,
+ "감": 42,
+ "갑": 43,
+ "값": 44,
+ "갓": 45,
+ "갔": 46,
+ "강": 47,
+ "갖": 48,
+ "갗": 49,
+ "같": 50,
+ "갚": 51,
+ "갛": 52,
+ "개": 53,
+ "객": 54,
+ "갠": 55,
+ "갤": 56,
+ "갬": 57,
+ "갭": 58,
+ "갯": 59,
+ "갰": 60,
+ "갱": 61,
+ "갸": 62,
+ "갼": 63,
+ "걀": 64,
+ "걈": 65,
+ "걉": 66,
+ "걍": 67,
+ "걎": 68,
+ "걔": 69,
+ "걘": 70,
+ "거": 71,
+ "걱": 72,
+ "건": 73,
+ "걷": 74,
+ "걸": 75,
+ "검": 76,
+ "겁": 77,
+ "것": 78,
+ "겄": 79,
+ "겅": 80,
+ "겉": 81,
+ "겋": 82,
+ "게": 83,
+ "겐": 84,
+ "겔": 85,
+ "겜": 86,
+ "겝": 87,
+ "겟": 88,
+ "겠": 89,
+ "겡": 90,
+ "겨": 91,
+ "격": 92,
+ "겪": 93,
+ "견": 94,
+ "결": 95,
+ "겸": 96,
+ "겹": 97,
+ "겼": 98,
+ "경": 99,
+ "곁": 100,
+ "곃": 101,
+ "계": 102,
+ "곈": 103,
+ "곘": 104,
+ "고": 105,
+ "곡": 106,
+ "곤": 107,
+ "곧": 108,
+ "골": 109,
+ "곪": 110,
+ "곯": 111,
+ "곰": 112,
+ "곱": 113,
+ "곳": 114,
+ "공": 115,
+ "곶": 116,
+ "과": 117,
+ "곽": 118,
+ "관": 119,
+ "괄": 120,
+ "괌": 121,
+ "괍": 122,
+ "광": 123,
+ "괘": 124,
+ "괜": 125,
+ "괭": 126,
+ "괴": 127,
+ "괸": 128,
+ "괼": 129,
+ "굉": 130,
+ "교": 131,
+ "굑": 132,
+ "굔": 133,
+ "굣": 134,
+ "굥": 135,
+ "구": 136,
+ "국": 137,
+ "군": 138,
+ "굳": 139,
+ "굴": 140,
+ "굵": 141,
+ "굶": 142,
+ "굼": 143,
+ "굽": 144,
+ "굿": 145,
+ "궁": 146,
+ "궂": 147,
+ "궄": 148,
+ "궈": 149,
+ "권": 150,
+ "궐": 151,
+ "궜": 152,
+ "궤": 153,
+ "귀": 154,
+ "귄": 155,
+ "귈": 156,
+ "귓": 157,
+ "규": 158,
+ "귝": 159,
+ "균": 160,
+ "귤": 161,
+ "그": 162,
+ "극": 163,
+ "근": 164,
+ "귿": 165,
+ "글": 166,
+ "긁": 167,
+ "금": 168,
+ "급": 169,
+ "긋": 170,
+ "긍": 171,
+ "긑": 172,
+ "긔": 173,
+ "기": 174,
+ "긱": 175,
+ "긴": 176,
+ "길": 177,
+ "김": 178,
+ "깁": 179,
+ "깃": 180,
+ "깄": 181,
+ "깅": 182,
+ "깆": 183,
+ "깉": 184,
+ "깊": 185,
+ "까": 186,
+ "깍": 187,
+ "깎": 188,
+ "깐": 189,
+ "깔": 190,
+ "깜": 191,
+ "깝": 192,
+ "깟": 193,
+ "깠": 194,
+ "깡": 195,
+ "깥": 196,
+ "깨": 197,
+ "깩": 198,
+ "깬": 199,
+ "깰": 200,
+ "깸": 201,
+ "깹": 202,
+ "깻": 203,
+ "깼": 204,
+ "깽": 205,
+ "꺄": 206,
+ "꺅": 207,
+ "꺠": 208,
+ "꺤": 209,
+ "꺨": 210,
+ "꺴": 211,
+ "꺼": 212,
+ "꺽": 213,
+ "꺾": 214,
+ "껀": 215,
+ "껄": 216,
+ "껌": 217,
+ "껍": 218,
+ "껏": 219,
+ "껐": 220,
+ "껑": 221,
+ "껗": 222,
+ "께": 223,
+ "껜": 224,
+ "껨": 225,
+ "껫": 226,
+ "껭": 227,
+ "껴": 228,
+ "꼈": 229,
+ "꼉": 230,
+ "꼐": 231,
+ "꼬": 232,
+ "꼭": 233,
+ "꼰": 234,
+ "꼴": 235,
+ "꼼": 236,
+ "꼽": 237,
+ "꼿": 238,
+ "꽁": 239,
+ "꽂": 240,
+ "꽃": 241,
+ "꽅": 242,
+ "꽈": 243,
+ "꽉": 244,
+ "꽌": 245,
+ "꽐": 246,
+ "꽝": 247,
+ "꽤": 248,
+ "꽥": 249,
+ "꾀": 250,
+ "꾜": 251,
+ "꾸": 252,
+ "꾹": 253,
+ "꾼": 254,
+ "꿀": 255,
+ "꿇": 256,
+ "꿈": 257,
+ "꿉": 258,
+ "꿋": 259,
+ "꿍": 260,
+ "꿎": 261,
+ "꿔": 262,
+ "꿘": 263,
+ "꿧": 264,
+ "꿨": 265,
+ "꿩": 266,
+ "꿰": 267,
+ "뀌": 268,
+ "뀐": 269,
+ "뀔": 270,
+ "뀜": 271,
+ "뀝": 272,
+ "뀠": 273,
+ "뀨": 274,
+ "뀽": 275,
+ "끄": 276,
+ "끈": 277,
+ "끊": 278,
+ "끋": 279,
+ "끌": 280,
+ "끓": 281,
+ "끔": 282,
+ "끕": 283,
+ "끗": 284,
+ "끙": 285,
+ "끝": 286,
+ "끼": 287,
+ "끽": 288,
+ "낀": 289,
+ "낄": 290,
+ "낌": 291,
+ "낍": 292,
+ "낏": 293,
+ "낑": 294,
+ "나": 295,
+ "낙": 296,
+ "낚": 297,
+ "난": 298,
+ "날": 299,
+ "낡": 300,
+ "남": 301,
+ "납": 302,
+ "낫": 303,
+ "났": 304,
+ "낭": 305,
+ "낮": 306,
+ "낯": 307,
+ "낱": 308,
+ "낳": 309,
+ "내": 310,
+ "낵": 311,
+ "낸": 312,
+ "낼": 313,
+ "냄": 314,
+ "냅": 315,
+ "냇": 316,
+ "냈": 317,
+ "냉": 318,
+ "냐": 319,
+ "냑": 320,
+ "냔": 321,
+ "냘": 322,
+ "냠": 323,
+ "냥": 324,
+ "냬": 325,
+ "너": 326,
+ "넉": 327,
+ "넋": 328,
+ "넌": 329,
+ "널": 330,
+ "넒": 331,
+ "넓": 332,
+ "넘": 333,
+ "넙": 334,
+ "넛": 335,
+ "넜": 336,
+ "넝": 337,
+ "넢": 338,
+ "넣": 339,
+ "네": 340,
+ "넥": 341,
+ "넨": 342,
+ "넫": 343,
+ "넬": 344,
+ "넴": 345,
+ "넵": 346,
+ "넷": 347,
+ "넸": 348,
+ "넹": 349,
+ "녀": 350,
+ "녁": 351,
+ "년": 352,
+ "념": 353,
+ "녑": 354,
+ "녔": 355,
+ "녕": 356,
+ "녘": 357,
+ "녜": 358,
+ "노": 359,
+ "녹": 360,
+ "논": 361,
+ "놀": 362,
+ "놇": 363,
+ "놈": 364,
+ "놉": 365,
+ "놋": 366,
+ "농": 367,
+ "높": 368,
+ "놓": 369,
+ "놔": 370,
+ "놧": 371,
+ "놨": 372,
+ "놯": 373,
+ "뇌": 374,
+ "뇨": 375,
+ "뇰": 376,
+ "뇸": 377,
+ "뇽": 378,
+ "누": 379,
+ "눅": 380,
+ "눈": 381,
+ "눌": 382,
+ "눔": 383,
+ "눕": 384,
+ "눗": 385,
+ "눙": 386,
+ "눞": 387,
+ "눠": 388,
+ "눴": 389,
+ "뉘": 390,
+ "뉜": 391,
+ "뉠": 392,
+ "뉩": 393,
+ "뉴": 394,
+ "늄": 395,
+ "늉": 396,
+ "느": 397,
+ "늑": 398,
+ "는": 399,
+ "늗": 400,
+ "늘": 401,
+ "늙": 402,
+ "늠": 403,
+ "늡": 404,
+ "능": 405,
+ "늦": 406,
+ "늪": 407,
+ "늫": 408,
+ "늬": 409,
+ "니": 410,
+ "닉": 411,
+ "닌": 412,
+ "닐": 413,
+ "님": 414,
+ "닙": 415,
+ "닛": 416,
+ "닝": 417,
+ "다": 418,
+ "닥": 419,
+ "닦": 420,
+ "단": 421,
+ "닫": 422,
+ "달": 423,
+ "닭": 424,
+ "닮": 425,
+ "닯": 426,
+ "닳": 427,
+ "담": 428,
+ "답": 429,
+ "닷": 430,
+ "닸": 431,
+ "당": 432,
+ "닺": 433,
+ "닿": 434,
+ "대": 435,
+ "댁": 436,
+ "댄": 437,
+ "댈": 438,
+ "댐": 439,
+ "댑": 440,
+ "댓": 441,
+ "댔": 442,
+ "댕": 443,
+ "댗": 444,
+ "댜": 445,
+ "더": 446,
+ "덕": 447,
+ "던": 448,
+ "덜": 449,
+ "덞": 450,
+ "덟": 451,
+ "덤": 452,
+ "덥": 453,
+ "덧": 454,
+ "덩": 455,
+ "덪": 456,
+ "덫": 457,
+ "덮": 458,
+ "데": 459,
+ "덱": 460,
+ "덴": 461,
+ "델": 462,
+ "뎀": 463,
+ "뎁": 464,
+ "뎃": 465,
+ "뎅": 466,
+ "뎊": 467,
+ "뎌": 468,
+ "뎠": 469,
+ "뎡": 470,
+ "도": 471,
+ "독": 472,
+ "돈": 473,
+ "돋": 474,
+ "돌": 475,
+ "돔": 476,
+ "돕": 477,
+ "돗": 478,
+ "동": 479,
+ "돚": 480,
+ "돠": 481,
+ "돨": 482,
+ "돼": 483,
+ "됀": 484,
+ "됌": 485,
+ "됍": 486,
+ "됐": 487,
+ "됑": 488,
+ "되": 489,
+ "된": 490,
+ "될": 491,
+ "됨": 492,
+ "됩": 493,
+ "됬": 494,
+ "됴": 495,
+ "두": 496,
+ "둑": 497,
+ "둔": 498,
+ "둘": 499,
+ "둠": 500,
+ "둡": 501,
+ "둣": 502,
+ "둥": 503,
+ "둬": 504,
+ "뒀": 505,
+ "뒈": 506,
+ "뒤": 507,
+ "뒨": 508,
+ "뒷": 509,
+ "뒹": 510,
+ "듀": 511,
+ "듄": 512,
+ "듈": 513,
+ "듐": 514,
+ "드": 515,
+ "득": 516,
+ "든": 517,
+ "듣": 518,
+ "들": 519,
+ "듦": 520,
+ "듬": 521,
+ "듭": 522,
+ "듯": 523,
+ "등": 524,
+ "디": 525,
+ "딕": 526,
+ "딘": 527,
+ "딛": 528,
+ "딜": 529,
+ "딣": 530,
+ "딤": 531,
+ "딥": 532,
+ "딧": 533,
+ "딨": 534,
+ "딩": 535,
+ "딪": 536,
+ "딫": 537,
+ "따": 538,
+ "딱": 539,
+ "딲": 540,
+ "딴": 541,
+ "딸": 542,
+ "땀": 543,
+ "땁": 544,
+ "땃": 545,
+ "땄": 546,
+ "땅": 547,
+ "땋": 548,
+ "때": 549,
+ "땍": 550,
+ "땐": 551,
+ "땔": 552,
+ "땜": 553,
+ "땝": 554,
+ "땟": 555,
+ "땠": 556,
+ "땡": 557,
+ "떄": 558,
+ "떈": 559,
+ "떌": 560,
+ "떘": 561,
+ "떙": 562,
+ "떠": 563,
+ "떡": 564,
+ "떢": 565,
+ "떤": 566,
+ "떨": 567,
+ "떫": 568,
+ "떰": 569,
+ "떱": 570,
+ "떳": 571,
+ "떴": 572,
+ "떵": 573,
+ "떻": 574,
+ "떼": 575,
+ "떽": 576,
+ "뗀": 577,
+ "뗄": 578,
+ "뗌": 579,
+ "뗍": 580,
+ "뗏": 581,
+ "뗐": 582,
+ "뗘": 583,
+ "뗴": 584,
+ "뗸": 585,
+ "또": 586,
+ "똑": 587,
+ "똔": 588,
+ "똘": 589,
+ "똟": 590,
+ "똠": 591,
+ "똣": 592,
+ "똥": 593,
+ "똬": 594,
+ "뙈": 595,
+ "뙤": 596,
+ "뚜": 597,
+ "뚝": 598,
+ "뚠": 599,
+ "뚤": 600,
+ "뚫": 601,
+ "뚱": 602,
+ "뚷": 603,
+ "뛰": 604,
+ "뛴": 605,
+ "뛸": 606,
+ "뜀": 607,
+ "뜁": 608,
+ "뜨": 609,
+ "뜩": 610,
+ "뜬": 611,
+ "뜯": 612,
+ "뜰": 613,
+ "뜷": 614,
+ "뜸": 615,
+ "뜹": 616,
+ "뜻": 617,
+ "뜽": 618,
+ "띁": 619,
+ "띄": 620,
+ "띈": 621,
+ "띌": 622,
+ "띕": 623,
+ "띠": 624,
+ "띡": 625,
+ "띤": 626,
+ "띨": 627,
+ "띰": 628,
+ "띱": 629,
+ "띵": 630,
+ "라": 631,
+ "락": 632,
+ "란": 633,
+ "랄": 634,
+ "람": 635,
+ "랍": 636,
+ "랏": 637,
+ "랐": 638,
+ "랑": 639,
+ "랖": 640,
+ "랗": 641,
+ "래": 642,
+ "랙": 643,
+ "랜": 644,
+ "랠": 645,
+ "램": 646,
+ "랩": 647,
+ "랫": 648,
+ "랬": 649,
+ "랭": 650,
+ "랴": 651,
+ "략": 652,
+ "량": 653,
+ "럤": 654,
+ "러": 655,
+ "럭": 656,
+ "런": 657,
+ "럴": 658,
+ "럼": 659,
+ "럽": 660,
+ "럿": 661,
+ "렀": 662,
+ "렁": 663,
+ "렇": 664,
+ "레": 665,
+ "렉": 666,
+ "렌": 667,
+ "렐": 668,
+ "렘": 669,
+ "렙": 670,
+ "렛": 671,
+ "렜": 672,
+ "렝": 673,
+ "렣": 674,
+ "려": 675,
+ "력": 676,
+ "련": 677,
+ "렬": 678,
+ "렴": 679,
+ "렵": 680,
+ "렷": 681,
+ "렸": 682,
+ "령": 683,
+ "렿": 684,
+ "례": 685,
+ "롄": 686,
+ "로": 687,
+ "록": 688,
+ "론": 689,
+ "롤": 690,
+ "롬": 691,
+ "롭": 692,
+ "롯": 693,
+ "롱": 694,
+ "롷": 695,
+ "롸": 696,
+ "뢋": 697,
+ "뢍": 698,
+ "뢰": 699,
+ "룃": 700,
+ "료": 701,
+ "룐": 702,
+ "룡": 703,
+ "루": 704,
+ "룩": 705,
+ "룬": 706,
+ "룰": 707,
+ "룸": 708,
+ "룹": 709,
+ "룻": 710,
+ "룽": 711,
+ "뤄": 712,
+ "뤘": 713,
+ "뤙": 714,
+ "뤼": 715,
+ "륑": 716,
+ "류": 717,
+ "륙": 718,
+ "륜": 719,
+ "률": 720,
+ "륨": 721,
+ "륭": 722,
+ "르": 723,
+ "륵": 724,
+ "른": 725,
+ "륻": 726,
+ "를": 727,
+ "름": 728,
+ "릅": 729,
+ "릇": 730,
+ "릈": 731,
+ "릉": 732,
+ "릎": 733,
+ "릏": 734,
+ "리": 735,
+ "릭": 736,
+ "린": 737,
+ "릴": 738,
+ "림": 739,
+ "립": 740,
+ "릿": 741,
+ "맀": 742,
+ "링": 743,
+ "마": 744,
+ "막": 745,
+ "만": 746,
+ "맍": 747,
+ "많": 748,
+ "맏": 749,
+ "말": 750,
+ "맑": 751,
+ "맗": 752,
+ "맘": 753,
+ "맙": 754,
+ "맛": 755,
+ "맜": 756,
+ "망": 757,
+ "맞": 758,
+ "맡": 759,
+ "맣": 760,
+ "매": 761,
+ "맥": 762,
+ "맨": 763,
+ "맫": 764,
+ "맬": 765,
+ "맴": 766,
+ "맵": 767,
+ "맷": 768,
+ "맸": 769,
+ "맹": 770,
+ "맺": 771,
+ "맻": 772,
+ "맽": 773,
+ "먀": 774,
+ "먕": 775,
+ "먖": 776,
+ "머": 777,
+ "먹": 778,
+ "먼": 779,
+ "멀": 780,
+ "멈": 781,
+ "멉": 782,
+ "멋": 783,
+ "멌": 784,
+ "멍": 785,
+ "멎": 786,
+ "멏": 787,
+ "멓": 788,
+ "메": 789,
+ "멕": 790,
+ "멘": 791,
+ "멜": 792,
+ "멤": 793,
+ "멥": 794,
+ "멧": 795,
+ "멨": 796,
+ "멩": 797,
+ "멫": 798,
+ "며": 799,
+ "멱": 800,
+ "면": 801,
+ "멸": 802,
+ "몀": 803,
+ "몄": 804,
+ "명": 805,
+ "몇": 806,
+ "몊": 807,
+ "몌": 808,
+ "모": 809,
+ "목": 810,
+ "몫": 811,
+ "몬": 812,
+ "몰": 813,
+ "몸": 814,
+ "몹": 815,
+ "못": 816,
+ "몽": 817,
+ "뫼": 818,
+ "묘": 819,
+ "묜": 820,
+ "묭": 821,
+ "무": 822,
+ "묵": 823,
+ "묶": 824,
+ "문": 825,
+ "묻": 826,
+ "물": 827,
+ "묽": 828,
+ "뭄": 829,
+ "뭅": 830,
+ "뭇": 831,
+ "뭉": 832,
+ "뭍": 833,
+ "뭐": 834,
+ "뭔": 835,
+ "뭘": 836,
+ "뭡": 837,
+ "뭣": 838,
+ "뭥": 839,
+ "뭬": 840,
+ "뭰": 841,
+ "뮈": 842,
+ "뮌": 843,
+ "뮐": 844,
+ "뮤": 845,
+ "뮨": 846,
+ "뮬": 847,
+ "므": 848,
+ "믄": 849,
+ "믈": 850,
+ "믐": 851,
+ "믕": 852,
+ "미": 853,
+ "믹": 854,
+ "민": 855,
+ "믾": 856,
+ "믿": 857,
+ "밀": 858,
+ "밈": 859,
+ "밉": 860,
+ "밋": 861,
+ "밌": 862,
+ "밍": 863,
+ "밎": 864,
+ "및": 865,
+ "밐": 866,
+ "밑": 867,
+ "바": 868,
+ "박": 869,
+ "밖": 870,
+ "반": 871,
+ "받": 872,
+ "발": 873,
+ "밝": 874,
+ "밟": 875,
+ "밤": 876,
+ "밥": 877,
+ "밧": 878,
+ "밨": 879,
+ "방": 880,
+ "밭": 881,
+ "배": 882,
+ "백": 883,
+ "밴": 884,
+ "밸": 885,
+ "뱀": 886,
+ "뱁": 887,
+ "뱃": 888,
+ "뱄": 889,
+ "뱅": 890,
+ "뱉": 891,
+ "뱌": 892,
+ "뱐": 893,
+ "버": 894,
+ "벅": 895,
+ "번": 896,
+ "벌": 897,
+ "범": 898,
+ "법": 899,
+ "벗": 900,
+ "벘": 901,
+ "벙": 902,
+ "벚": 903,
+ "벛": 904,
+ "벞": 905,
+ "베": 906,
+ "벡": 907,
+ "벤": 908,
+ "벨": 909,
+ "벳": 910,
+ "벴": 911,
+ "벵": 912,
+ "벼": 913,
+ "벽": 914,
+ "변": 915,
+ "별": 916,
+ "볌": 917,
+ "볍": 918,
+ "볏": 919,
+ "볐": 920,
+ "병": 921,
+ "볓": 922,
+ "볕": 923,
+ "보": 924,
+ "복": 925,
+ "볶": 926,
+ "본": 927,
+ "볼": 928,
+ "봄": 929,
+ "봅": 930,
+ "봇": 931,
+ "봉": 932,
+ "봐": 933,
+ "봔": 934,
+ "봘": 935,
+ "봣": 936,
+ "봤": 937,
+ "봥": 938,
+ "봬": 939,
+ "봽": 940,
+ "뵀": 941,
+ "뵈": 942,
+ "뵌": 943,
+ "뵐": 944,
+ "뵙": 945,
+ "뵜": 946,
+ "뵤": 947,
+ "뵬": 948,
+ "뵹": 949,
+ "부": 950,
+ "북": 951,
+ "분": 952,
+ "붇": 953,
+ "불": 954,
+ "붉": 955,
+ "붐": 956,
+ "붑": 957,
+ "붓": 958,
+ "붔": 959,
+ "붕": 960,
+ "붙": 961,
+ "붚": 962,
+ "붰": 963,
+ "뷔": 964,
+ "뷜": 965,
+ "뷰": 966,
+ "뷸": 967,
+ "븁": 968,
+ "븅": 969,
+ "브": 970,
+ "븍": 971,
+ "븐": 972,
+ "블": 973,
+ "븕": 974,
+ "븜": 975,
+ "븝": 976,
+ "븟": 977,
+ "비": 978,
+ "빅": 979,
+ "빈": 980,
+ "빋": 981,
+ "빌": 982,
+ "빔": 983,
+ "빕": 984,
+ "빗": 985,
+ "빘": 986,
+ "빙": 987,
+ "빚": 988,
+ "빛": 989,
+ "빝": 990,
+ "빠": 991,
+ "빡": 992,
+ "빤": 993,
+ "빨": 994,
+ "빰": 995,
+ "빳": 996,
+ "빴": 997,
+ "빵": 998,
+ "빻": 999,
+ "빼": 1000,
+ "빽": 1001,
+ "뺀": 1002,
+ "뺄": 1003,
+ "뺌": 1004,
+ "뺍": 1005,
+ "뺏": 1006,
+ "뺐": 1007,
+ "뺑": 1008,
+ "뺘": 1009,
+ "뺙": 1010,
+ "뺨": 1011,
+ "뺴": 1012,
+ "뺵": 1013,
+ "뺼": 1014,
+ "뻇": 1015,
+ "뻈": 1016,
+ "뻉": 1017,
+ "뻐": 1018,
+ "뻑": 1019,
+ "뻔": 1020,
+ "뻗": 1021,
+ "뻘": 1022,
+ "뻠": 1023,
+ "뻣": 1024,
+ "뻤": 1025,
+ "뻥": 1026,
+ "뻬": 1027,
+ "뻰": 1028,
+ "뻴": 1029,
+ "뼀": 1030,
+ "뼁": 1031,
+ "뼈": 1032,
+ "뼉": 1033,
+ "뼐": 1034,
+ "뼘": 1035,
+ "뼛": 1036,
+ "뼝": 1037,
+ "뼨": 1038,
+ "뽀": 1039,
+ "뽁": 1040,
+ "뽂": 1041,
+ "뽄": 1042,
+ "뽈": 1043,
+ "뽐": 1044,
+ "뽑": 1045,
+ "뽓": 1046,
+ "뽕": 1047,
+ "뽝": 1048,
+ "뾰": 1049,
+ "뾱": 1050,
+ "뿅": 1051,
+ "뿌": 1052,
+ "뿍": 1053,
+ "뿐": 1054,
+ "뿓": 1055,
+ "뿔": 1056,
+ "뿜": 1057,
+ "뿝": 1058,
+ "뿟": 1059,
+ "뿠": 1060,
+ "뿡": 1061,
+ "쀼": 1062,
+ "쁘": 1063,
+ "쁜": 1064,
+ "쁠": 1065,
+ "쁨": 1066,
+ "쁩": 1067,
+ "삐": 1068,
+ "삑": 1069,
+ "삔": 1070,
+ "삘": 1071,
+ "삣": 1072,
+ "삥": 1073,
+ "삫": 1074,
+ "사": 1075,
+ "삭": 1076,
+ "산": 1077,
+ "살": 1078,
+ "삶": 1079,
+ "삼": 1080,
+ "삽": 1081,
+ "삿": 1082,
+ "샀": 1083,
+ "상": 1084,
+ "샅": 1085,
+ "새": 1086,
+ "색": 1087,
+ "샌": 1088,
+ "샐": 1089,
+ "샘": 1090,
+ "샙": 1091,
+ "샛": 1092,
+ "샜": 1093,
+ "생": 1094,
+ "샤": 1095,
+ "샥": 1096,
+ "샨": 1097,
+ "샬": 1098,
+ "샴": 1099,
+ "샵": 1100,
+ "샷": 1101,
+ "샸": 1102,
+ "샹": 1103,
+ "샾": 1104,
+ "섀": 1105,
+ "서": 1106,
+ "석": 1107,
+ "섞": 1108,
+ "선": 1109,
+ "섣": 1110,
+ "설": 1111,
+ "섬": 1112,
+ "섭": 1113,
+ "섯": 1114,
+ "섰": 1115,
+ "성": 1116,
+ "세": 1117,
+ "섹": 1118,
+ "센": 1119,
+ "셀": 1120,
+ "셈": 1121,
+ "셉": 1122,
+ "셋": 1123,
+ "셌": 1124,
+ "셍": 1125,
+ "셔": 1126,
+ "션": 1127,
+ "셜": 1128,
+ "셤": 1129,
+ "셥": 1130,
+ "셧": 1131,
+ "셨": 1132,
+ "셩": 1133,
+ "셰": 1134,
+ "셱": 1135,
+ "셴": 1136,
+ "셸": 1137,
+ "솁": 1138,
+ "소": 1139,
+ "속": 1140,
+ "솎": 1141,
+ "손": 1142,
+ "솓": 1143,
+ "솔": 1144,
+ "솜": 1145,
+ "솝": 1146,
+ "솟": 1147,
+ "송": 1148,
+ "솥": 1149,
+ "솧": 1150,
+ "솨": 1151,
+ "솩": 1152,
+ "쇄": 1153,
+ "쇠": 1154,
+ "쇳": 1155,
+ "쇼": 1156,
+ "쇽": 1157,
+ "숀": 1158,
+ "숄": 1159,
+ "숍": 1160,
+ "숏": 1161,
+ "숑": 1162,
+ "수": 1163,
+ "숙": 1164,
+ "순": 1165,
+ "숟": 1166,
+ "술": 1167,
+ "숨": 1168,
+ "숩": 1169,
+ "숫": 1170,
+ "숬": 1171,
+ "숭": 1172,
+ "숮": 1173,
+ "숯": 1174,
+ "숱": 1175,
+ "숲": 1176,
+ "숴": 1177,
+ "쉈": 1178,
+ "쉐": 1179,
+ "쉑": 1180,
+ "쉔": 1181,
+ "쉘": 1182,
+ "쉣": 1183,
+ "쉤": 1184,
+ "쉥": 1185,
+ "쉬": 1186,
+ "쉭": 1187,
+ "쉰": 1188,
+ "쉴": 1189,
+ "쉼": 1190,
+ "쉽": 1191,
+ "쉿": 1192,
+ "슈": 1193,
+ "슉": 1194,
+ "슌": 1195,
+ "슐": 1196,
+ "슘": 1197,
+ "슛": 1198,
+ "슝": 1199,
+ "스": 1200,
+ "슥": 1201,
+ "슨": 1202,
+ "슬": 1203,
+ "슭": 1204,
+ "슴": 1205,
+ "습": 1206,
+ "슷": 1207,
+ "승": 1208,
+ "슾": 1209,
+ "싀": 1210,
+ "싁": 1211,
+ "싑": 1212,
+ "시": 1213,
+ "식": 1214,
+ "신": 1215,
+ "싣": 1216,
+ "실": 1217,
+ "싫": 1218,
+ "심": 1219,
+ "십": 1220,
+ "싯": 1221,
+ "싰": 1222,
+ "싱": 1223,
+ "싵": 1224,
+ "싶": 1225,
+ "싸": 1226,
+ "싹": 1227,
+ "싼": 1228,
+ "쌀": 1229,
+ "쌈": 1230,
+ "쌉": 1231,
+ "쌋": 1232,
+ "쌌": 1233,
+ "쌍": 1234,
+ "쌓": 1235,
+ "쌔": 1236,
+ "쌕": 1237,
+ "쌘": 1238,
+ "쌜": 1239,
+ "쌤": 1240,
+ "쌥": 1241,
+ "쌨": 1242,
+ "쌩": 1243,
+ "쌰": 1244,
+ "썅": 1245,
+ "썜": 1246,
+ "썝": 1247,
+ "썡": 1248,
+ "써": 1249,
+ "썩": 1250,
+ "썪": 1251,
+ "썬": 1252,
+ "썰": 1253,
+ "썸": 1254,
+ "썹": 1255,
+ "썻": 1256,
+ "썼": 1257,
+ "썽": 1258,
+ "쎄": 1259,
+ "쎅": 1260,
+ "쎈": 1261,
+ "쎌": 1262,
+ "쎔": 1263,
+ "쎕": 1264,
+ "쎗": 1265,
+ "쎘": 1266,
+ "쎱": 1267,
+ "쎼": 1268,
+ "쎽": 1269,
+ "쏀": 1270,
+ "쏄": 1271,
+ "쏍": 1272,
+ "쏘": 1273,
+ "쏙": 1274,
+ "쏜": 1275,
+ "쏟": 1276,
+ "쏠": 1277,
+ "쏨": 1278,
+ "쏩": 1279,
+ "쏭": 1280,
+ "쏴": 1281,
+ "쏵": 1282,
+ "쐇": 1283,
+ "쐈": 1284,
+ "쐐": 1285,
+ "쐤": 1286,
+ "쐬": 1287,
+ "쐰": 1288,
+ "쐴": 1289,
+ "쐿": 1290,
+ "쑈": 1291,
+ "쑝": 1292,
+ "쑤": 1293,
+ "쑥": 1294,
+ "쑨": 1295,
+ "쑬": 1296,
+ "쒀": 1297,
+ "쒔": 1298,
+ "쒜": 1299,
+ "쒝": 1300,
+ "쒯": 1301,
+ "쒸": 1302,
+ "쒹": 1303,
+ "쓉": 1304,
+ "쓔": 1305,
+ "쓕": 1306,
+ "쓩": 1307,
+ "쓰": 1308,
+ "쓱": 1309,
+ "쓴": 1310,
+ "쓸": 1311,
+ "씀": 1312,
+ "씁": 1313,
+ "씅": 1314,
+ "씌": 1315,
+ "씨": 1316,
+ "씩": 1317,
+ "씬": 1318,
+ "씰": 1319,
+ "씸": 1320,
+ "씹": 1321,
+ "씻": 1322,
+ "씽": 1323,
+ "아": 1324,
+ "악": 1325,
+ "앆": 1326,
+ "안": 1327,
+ "앉": 1328,
+ "않": 1329,
+ "알": 1330,
+ "앎": 1331,
+ "앓": 1332,
+ "암": 1333,
+ "압": 1334,
+ "앗": 1335,
+ "았": 1336,
+ "앙": 1337,
+ "앚": 1338,
+ "앞": 1339,
+ "애": 1340,
+ "액": 1341,
+ "앤": 1342,
+ "앧": 1343,
+ "앨": 1344,
+ "앰": 1345,
+ "앱": 1346,
+ "앳": 1347,
+ "앴": 1348,
+ "앵": 1349,
+ "야": 1350,
+ "약": 1351,
+ "얀": 1352,
+ "얄": 1353,
+ "얇": 1354,
+ "얌": 1355,
+ "얍": 1356,
+ "얏": 1357,
+ "얐": 1358,
+ "양": 1359,
+ "얕": 1360,
+ "얗": 1361,
+ "얘": 1362,
+ "얜": 1363,
+ "얠": 1364,
+ "얫": 1365,
+ "얬": 1366,
+ "어": 1367,
+ "억": 1368,
+ "언": 1369,
+ "얹": 1370,
+ "얻": 1371,
+ "얼": 1372,
+ "얽": 1373,
+ "엄": 1374,
+ "업": 1375,
+ "없": 1376,
+ "엇": 1377,
+ "었": 1378,
+ "엉": 1379,
+ "엊": 1380,
+ "엌": 1381,
+ "엎": 1382,
+ "에": 1383,
+ "엑": 1384,
+ "엔": 1385,
+ "엘": 1386,
+ "엠": 1387,
+ "엡": 1388,
+ "엣": 1389,
+ "엤": 1390,
+ "엥": 1391,
+ "여": 1392,
+ "역": 1393,
+ "엮": 1394,
+ "연": 1395,
+ "열": 1396,
+ "엷": 1397,
+ "염": 1398,
+ "엽": 1399,
+ "엿": 1400,
+ "였": 1401,
+ "영": 1402,
+ "옅": 1403,
+ "옆": 1404,
+ "옇": 1405,
+ "예": 1406,
+ "옌": 1407,
+ "옐": 1408,
+ "옘": 1409,
+ "옙": 1410,
+ "옛": 1411,
+ "옜": 1412,
+ "오": 1413,
+ "옥": 1414,
+ "온": 1415,
+ "올": 1416,
+ "옭": 1417,
+ "옮": 1418,
+ "옳": 1419,
+ "옴": 1420,
+ "옵": 1421,
+ "옷": 1422,
+ "옹": 1423,
+ "옻": 1424,
+ "옾": 1425,
+ "와": 1426,
+ "왁": 1427,
+ "완": 1428,
+ "왈": 1429,
+ "왐": 1430,
+ "왑": 1431,
+ "왓": 1432,
+ "왔": 1433,
+ "왕": 1434,
+ "왜": 1435,
+ "왠": 1436,
+ "왤": 1437,
+ "왯": 1438,
+ "왱": 1439,
+ "외": 1440,
+ "왼": 1441,
+ "욉": 1442,
+ "요": 1443,
+ "욕": 1444,
+ "욘": 1445,
+ "욜": 1446,
+ "욤": 1447,
+ "욥": 1448,
+ "욧": 1449,
+ "용": 1450,
+ "우": 1451,
+ "욱": 1452,
+ "운": 1453,
+ "욷": 1454,
+ "울": 1455,
+ "움": 1456,
+ "웁": 1457,
+ "웃": 1458,
+ "웅": 1459,
+ "워": 1460,
+ "웍": 1461,
+ "원": 1462,
+ "월": 1463,
+ "웜": 1464,
+ "웝": 1465,
+ "웠": 1466,
+ "웡": 1467,
+ "웨": 1468,
+ "웩": 1469,
+ "웬": 1470,
+ "웰": 1471,
+ "웸": 1472,
+ "웹": 1473,
+ "웻": 1474,
+ "웽": 1475,
+ "위": 1476,
+ "윅": 1477,
+ "윈": 1478,
+ "윌": 1479,
+ "윔": 1480,
+ "윕": 1481,
+ "윗": 1482,
+ "윙": 1483,
+ "유": 1484,
+ "육": 1485,
+ "윤": 1486,
+ "율": 1487,
+ "윰": 1488,
+ "윱": 1489,
+ "윳": 1490,
+ "융": 1491,
+ "윷": 1492,
+ "으": 1493,
+ "윽": 1494,
+ "은": 1495,
+ "읃": 1496,
+ "을": 1497,
+ "읊": 1498,
+ "음": 1499,
+ "읍": 1500,
+ "읎": 1501,
+ "읏": 1502,
+ "응": 1503,
+ "읒": 1504,
+ "읔": 1505,
+ "읕": 1506,
+ "읖": 1507,
+ "읗": 1508,
+ "의": 1509,
+ "읭": 1510,
+ "이": 1511,
+ "익": 1512,
+ "인": 1513,
+ "읺": 1514,
+ "일": 1515,
+ "읽": 1516,
+ "잃": 1517,
+ "임": 1518,
+ "입": 1519,
+ "잇": 1520,
+ "있": 1521,
+ "잉": 1522,
+ "잊": 1523,
+ "잌": 1524,
+ "잍": 1525,
+ "잎": 1526,
+ "자": 1527,
+ "작": 1528,
+ "잔": 1529,
+ "잖": 1530,
+ "잘": 1531,
+ "잠": 1532,
+ "잡": 1533,
+ "잣": 1534,
+ "잤": 1535,
+ "장": 1536,
+ "잦": 1537,
+ "재": 1538,
+ "잭": 1539,
+ "잰": 1540,
+ "잴": 1541,
+ "잼": 1542,
+ "잽": 1543,
+ "잿": 1544,
+ "쟀": 1545,
+ "쟁": 1546,
+ "쟈": 1547,
+ "쟌": 1548,
+ "쟎": 1549,
+ "쟐": 1550,
+ "쟤": 1551,
+ "쟨": 1552,
+ "쟬": 1553,
+ "저": 1554,
+ "적": 1555,
+ "전": 1556,
+ "절": 1557,
+ "젊": 1558,
+ "점": 1559,
+ "접": 1560,
+ "젓": 1561,
+ "젔": 1562,
+ "정": 1563,
+ "젖": 1564,
+ "제": 1565,
+ "젝": 1566,
+ "젠": 1567,
+ "젤": 1568,
+ "젬": 1569,
+ "젭": 1570,
+ "젯": 1571,
+ "젱": 1572,
+ "져": 1573,
+ "젼": 1574,
+ "졌": 1575,
+ "졍": 1576,
+ "졔": 1577,
+ "조": 1578,
+ "족": 1579,
+ "존": 1580,
+ "졸": 1581,
+ "좀": 1582,
+ "좁": 1583,
+ "좃": 1584,
+ "종": 1585,
+ "좆": 1586,
+ "좇": 1587,
+ "좋": 1588,
+ "좌": 1589,
+ "좍": 1590,
+ "좔": 1591,
+ "좟": 1592,
+ "죄": 1593,
+ "죌": 1594,
+ "죔": 1595,
+ "죙": 1596,
+ "죠": 1597,
+ "죵": 1598,
+ "주": 1599,
+ "죽": 1600,
+ "준": 1601,
+ "줄": 1602,
+ "줌": 1603,
+ "줍": 1604,
+ "줏": 1605,
+ "중": 1606,
+ "줒": 1607,
+ "줘": 1608,
+ "줜": 1609,
+ "줬": 1610,
+ "줴": 1611,
+ "줸": 1612,
+ "쥐": 1613,
+ "쥑": 1614,
+ "쥔": 1615,
+ "쥘": 1616,
+ "쥡": 1617,
+ "쥤": 1618,
+ "쥬": 1619,
+ "쥰": 1620,
+ "쥴": 1621,
+ "쥼": 1622,
+ "즈": 1623,
+ "즉": 1624,
+ "즌": 1625,
+ "즐": 1626,
+ "즘": 1627,
+ "즙": 1628,
+ "즛": 1629,
+ "증": 1630,
+ "즞": 1631,
+ "지": 1632,
+ "직": 1633,
+ "진": 1634,
+ "짆": 1635,
+ "질": 1636,
+ "짊": 1637,
+ "짐": 1638,
+ "집": 1639,
+ "짓": 1640,
+ "징": 1641,
+ "짖": 1642,
+ "짙": 1643,
+ "짚": 1644,
+ "짜": 1645,
+ "짝": 1646,
+ "짠": 1647,
+ "짢": 1648,
+ "짤": 1649,
+ "짧": 1650,
+ "짫": 1651,
+ "짬": 1652,
+ "짭": 1653,
+ "짰": 1654,
+ "짱": 1655,
+ "째": 1656,
+ "짹": 1657,
+ "짼": 1658,
+ "쨀": 1659,
+ "쨈": 1660,
+ "쨉": 1661,
+ "쨋": 1662,
+ "쨌": 1663,
+ "쨍": 1664,
+ "쨔": 1665,
+ "쨘": 1666,
+ "쨥": 1667,
+ "쨩": 1668,
+ "쨰": 1669,
+ "쨱": 1670,
+ "쨴": 1671,
+ "쩃": 1672,
+ "쩄": 1673,
+ "쩅": 1674,
+ "쩌": 1675,
+ "쩍": 1676,
+ "쩐": 1677,
+ "쩔": 1678,
+ "쩜": 1679,
+ "쩝": 1680,
+ "쩠": 1681,
+ "쩡": 1682,
+ "쩨": 1683,
+ "쩰": 1684,
+ "쩻": 1685,
+ "쪄": 1686,
+ "쪅": 1687,
+ "쪘": 1688,
+ "쪙": 1689,
+ "쪨": 1690,
+ "쪼": 1691,
+ "쪽": 1692,
+ "쫀": 1693,
+ "쫄": 1694,
+ "쫌": 1695,
+ "쫍": 1696,
+ "쫑": 1697,
+ "쫒": 1698,
+ "쫓": 1699,
+ "쫘": 1700,
+ "쫙": 1701,
+ "쫜": 1702,
+ "쫠": 1703,
+ "쬐": 1704,
+ "쬔": 1705,
+ "쭀": 1706,
+ "쭈": 1707,
+ "쭉": 1708,
+ "쭌": 1709,
+ "쭐": 1710,
+ "쭘": 1711,
+ "쭙": 1712,
+ "쭝": 1713,
+ "쭤": 1714,
+ "쭸": 1715,
+ "쮸": 1716,
+ "쮹": 1717,
+ "쯔": 1718,
+ "쯘": 1719,
+ "쯜": 1720,
+ "쯤": 1721,
+ "쯥": 1722,
+ "쯧": 1723,
+ "쯩": 1724,
+ "찌": 1725,
+ "찍": 1726,
+ "찐": 1727,
+ "찔": 1728,
+ "찜": 1729,
+ "찝": 1730,
+ "찟": 1731,
+ "찡": 1732,
+ "찢": 1733,
+ "찧": 1734,
+ "차": 1735,
+ "착": 1736,
+ "찬": 1737,
+ "찮": 1738,
+ "찰": 1739,
+ "참": 1740,
+ "찹": 1741,
+ "찻": 1742,
+ "찼": 1743,
+ "창": 1744,
+ "찾": 1745,
+ "찿": 1746,
+ "챁": 1747,
+ "채": 1748,
+ "책": 1749,
+ "챈": 1750,
+ "챌": 1751,
+ "챔": 1752,
+ "챕": 1753,
+ "챗": 1754,
+ "챘": 1755,
+ "챙": 1756,
+ "챝": 1757,
+ "챠": 1758,
+ "챦": 1759,
+ "챱": 1760,
+ "챴": 1761,
+ "처": 1762,
+ "척": 1763,
+ "천": 1764,
+ "철": 1765,
+ "첨": 1766,
+ "첩": 1767,
+ "첫": 1768,
+ "청": 1769,
+ "체": 1770,
+ "첵": 1771,
+ "첸": 1772,
+ "첼": 1773,
+ "쳄": 1774,
+ "쳅": 1775,
+ "쳇": 1776,
+ "쳌": 1777,
+ "쳐": 1778,
+ "쳘": 1779,
+ "쳡": 1780,
+ "쳣": 1781,
+ "쳤": 1782,
+ "쳥": 1783,
+ "초": 1784,
+ "촉": 1785,
+ "촌": 1786,
+ "촐": 1787,
+ "촘": 1788,
+ "촙": 1789,
+ "촛": 1790,
+ "총": 1791,
+ "촤": 1792,
+ "촥": 1793,
+ "촨": 1794,
+ "촬": 1795,
+ "최": 1796,
+ "쵸": 1797,
+ "추": 1798,
+ "축": 1799,
+ "춘": 1800,
+ "출": 1801,
+ "춤": 1802,
+ "춥": 1803,
+ "춧": 1804,
+ "충": 1805,
+ "춰": 1806,
+ "췄": 1807,
+ "췌": 1808,
+ "취": 1809,
+ "츄": 1810,
+ "츈": 1811,
+ "츌": 1812,
+ "츠": 1813,
+ "측": 1814,
+ "츤": 1815,
+ "츨": 1816,
+ "츰": 1817,
+ "츱": 1818,
+ "층": 1819,
+ "츼": 1820,
+ "치": 1821,
+ "칙": 1822,
+ "친": 1823,
+ "칠": 1824,
+ "칡": 1825,
+ "침": 1826,
+ "칩": 1827,
+ "칫": 1828,
+ "칬": 1829,
+ "칭": 1830,
+ "칲": 1831,
+ "카": 1832,
+ "칵": 1833,
+ "칸": 1834,
+ "칼": 1835,
+ "캄": 1836,
+ "캅": 1837,
+ "캇": 1838,
+ "캉": 1839,
+ "캌": 1840,
+ "캍": 1841,
+ "캐": 1842,
+ "캑": 1843,
+ "캔": 1844,
+ "캘": 1845,
+ "캠": 1846,
+ "캡": 1847,
+ "캣": 1848,
+ "캤": 1849,
+ "캥": 1850,
+ "캬": 1851,
+ "커": 1852,
+ "컥": 1853,
+ "컨": 1854,
+ "컫": 1855,
+ "컬": 1856,
+ "컴": 1857,
+ "컵": 1858,
+ "컷": 1859,
+ "컸": 1860,
+ "컹": 1861,
+ "컾": 1862,
+ "케": 1863,
+ "켁": 1864,
+ "켄": 1865,
+ "켈": 1866,
+ "켐": 1867,
+ "켓": 1868,
+ "켔": 1869,
+ "켕": 1870,
+ "켜": 1871,
+ "켠": 1872,
+ "켤": 1873,
+ "켬": 1874,
+ "켭": 1875,
+ "켰": 1876,
+ "켱": 1877,
+ "코": 1878,
+ "콕": 1879,
+ "콘": 1880,
+ "콜": 1881,
+ "콤": 1882,
+ "콥": 1883,
+ "콧": 1884,
+ "콩": 1885,
+ "콬": 1886,
+ "콰": 1887,
+ "콱": 1888,
+ "콸": 1889,
+ "쾅": 1890,
+ "쾌": 1891,
+ "쾡": 1892,
+ "쾬": 1893,
+ "쾰": 1894,
+ "쿄": 1895,
+ "쿠": 1896,
+ "쿡": 1897,
+ "쿤": 1898,
+ "쿨": 1899,
+ "쿰": 1900,
+ "쿱": 1901,
+ "쿵": 1902,
+ "쿼": 1903,
+ "퀀": 1904,
+ "퀄": 1905,
+ "퀉": 1906,
+ "퀘": 1907,
+ "퀭": 1908,
+ "퀴": 1909,
+ "퀵": 1910,
+ "퀸": 1911,
+ "퀼": 1912,
+ "큄": 1913,
+ "큉": 1914,
+ "큐": 1915,
+ "큔": 1916,
+ "큘": 1917,
+ "큠": 1918,
+ "큥": 1919,
+ "크": 1920,
+ "큭": 1921,
+ "큰": 1922,
+ "클": 1923,
+ "큼": 1924,
+ "큽": 1925,
+ "큿": 1926,
+ "킁": 1927,
+ "키": 1928,
+ "킥": 1929,
+ "킨": 1930,
+ "킬": 1931,
+ "킴": 1932,
+ "킵": 1933,
+ "킷": 1934,
+ "킹": 1935,
+ "킾": 1936,
+ "킿": 1937,
+ "타": 1938,
+ "탁": 1939,
+ "탄": 1940,
+ "탈": 1941,
+ "탉": 1942,
+ "탐": 1943,
+ "탑": 1944,
+ "탓": 1945,
+ "탔": 1946,
+ "탕": 1947,
+ "태": 1948,
+ "택": 1949,
+ "탠": 1950,
+ "탤": 1951,
+ "탬": 1952,
+ "탭": 1953,
+ "탯": 1954,
+ "탰": 1955,
+ "탱": 1956,
+ "탶": 1957,
+ "터": 1958,
+ "턱": 1959,
+ "턴": 1960,
+ "털": 1961,
+ "텀": 1962,
+ "텁": 1963,
+ "텃": 1964,
+ "텄": 1965,
+ "텅": 1966,
+ "테": 1967,
+ "텍": 1968,
+ "텐": 1969,
+ "텔": 1970,
+ "템": 1971,
+ "텝": 1972,
+ "텟": 1973,
+ "텡": 1974,
+ "텨": 1975,
+ "텼": 1976,
+ "토": 1977,
+ "톡": 1978,
+ "톤": 1979,
+ "톨": 1980,
+ "톰": 1981,
+ "톱": 1982,
+ "톳": 1983,
+ "통": 1984,
+ "퇘": 1985,
+ "퇴": 1986,
+ "투": 1987,
+ "툭": 1988,
+ "툰": 1989,
+ "툴": 1990,
+ "툼": 1991,
+ "툽": 1992,
+ "툿": 1993,
+ "퉁": 1994,
+ "퉈": 1995,
+ "퉜": 1996,
+ "퉤": 1997,
+ "튀": 1998,
+ "튁": 1999,
+ "튄": 2000,
+ "튈": 2001,
+ "튑": 2002,
+ "튕": 2003,
+ "튜": 2004,
+ "튠": 2005,
+ "튤": 2006,
+ "튬": 2007,
+ "튭": 2008,
+ "트": 2009,
+ "특": 2010,
+ "튼": 2011,
+ "튿": 2012,
+ "틀": 2013,
+ "틈": 2014,
+ "틉": 2015,
+ "틋": 2016,
+ "틔": 2017,
+ "티": 2018,
+ "틱": 2019,
+ "틴": 2020,
+ "틸": 2021,
+ "팀": 2022,
+ "팁": 2023,
+ "팅": 2024,
+ "파": 2025,
+ "팍": 2026,
+ "팎": 2027,
+ "판": 2028,
+ "팔": 2029,
+ "팜": 2030,
+ "팝": 2031,
+ "팟": 2032,
+ "팠": 2033,
+ "팡": 2034,
+ "팥": 2035,
+ "패": 2036,
+ "팩": 2037,
+ "팬": 2038,
+ "팰": 2039,
+ "팸": 2040,
+ "팹": 2041,
+ "팻": 2042,
+ "팼": 2043,
+ "팽": 2044,
+ "퍄": 2045,
+ "퍠": 2046,
+ "퍼": 2047,
+ "퍽": 2048,
+ "펀": 2049,
+ "펄": 2050,
+ "펌": 2051,
+ "펍": 2052,
+ "펏": 2053,
+ "펐": 2054,
+ "펑": 2055,
+ "페": 2056,
+ "펙": 2057,
+ "펜": 2058,
+ "펠": 2059,
+ "펩": 2060,
+ "펫": 2061,
+ "펭": 2062,
+ "펴": 2063,
+ "편": 2064,
+ "펼": 2065,
+ "폄": 2066,
+ "폇": 2067,
+ "폈": 2068,
+ "평": 2069,
+ "폐": 2070,
+ "폣": 2071,
+ "포": 2072,
+ "폭": 2073,
+ "폰": 2074,
+ "폴": 2075,
+ "폼": 2076,
+ "폿": 2077,
+ "퐁": 2078,
+ "퐈": 2079,
+ "퐉": 2080,
+ "퐐": 2081,
+ "퐝": 2082,
+ "푀": 2083,
+ "표": 2084,
+ "푠": 2085,
+ "푭": 2086,
+ "푯": 2087,
+ "푱": 2088,
+ "푸": 2089,
+ "푹": 2090,
+ "푼": 2091,
+ "풀": 2092,
+ "품": 2093,
+ "풉": 2094,
+ "풋": 2095,
+ "풍": 2096,
+ "퓀": 2097,
+ "퓌": 2098,
+ "퓔": 2099,
+ "퓨": 2100,
+ "퓩": 2101,
+ "퓸": 2102,
+ "프": 2103,
+ "픈": 2104,
+ "플": 2105,
+ "픔": 2106,
+ "픕": 2107,
+ "피": 2108,
+ "픽": 2109,
+ "핀": 2110,
+ "필": 2111,
+ "핌": 2112,
+ "핍": 2113,
+ "핏": 2114,
+ "핑": 2115,
+ "하": 2116,
+ "학": 2117,
+ "핚": 2118,
+ "한": 2119,
+ "할": 2120,
+ "핡": 2121,
+ "핥": 2122,
+ "핧": 2123,
+ "함": 2124,
+ "합": 2125,
+ "핫": 2126,
+ "핬": 2127,
+ "항": 2128,
+ "핰": 2129,
+ "해": 2130,
+ "핵": 2131,
+ "핸": 2132,
+ "핼": 2133,
+ "햄": 2134,
+ "햅": 2135,
+ "햇": 2136,
+ "했": 2137,
+ "행": 2138,
+ "햐": 2139,
+ "햟": 2140,
+ "햠": 2141,
+ "햡": 2142,
+ "향": 2143,
+ "헀": 2144,
+ "허": 2145,
+ "헉": 2146,
+ "헌": 2147,
+ "헐": 2148,
+ "험": 2149,
+ "헙": 2150,
+ "헛": 2151,
+ "헝": 2152,
+ "헤": 2153,
+ "헥": 2154,
+ "헨": 2155,
+ "헬": 2156,
+ "헴": 2157,
+ "헵": 2158,
+ "헷": 2159,
+ "헸": 2160,
+ "헹": 2161,
+ "혀": 2162,
+ "혁": 2163,
+ "현": 2164,
+ "혈": 2165,
+ "혐": 2166,
+ "협": 2167,
+ "혓": 2168,
+ "혔": 2169,
+ "형": 2170,
+ "혜": 2171,
+ "호": 2172,
+ "혹": 2173,
+ "혼": 2174,
+ "홀": 2175,
+ "홈": 2176,
+ "홉": 2177,
+ "홋": 2178,
+ "홍": 2179,
+ "홑": 2180,
+ "화": 2181,
+ "확": 2182,
+ "환": 2183,
+ "활": 2184,
+ "홥": 2185,
+ "홧": 2186,
+ "황": 2187,
+ "홱": 2188,
+ "횃": 2189,
+ "횅": 2190,
+ "회": 2191,
+ "획": 2192,
+ "횐": 2193,
+ "횝": 2194,
+ "횟": 2195,
+ "횡": 2196,
+ "효": 2197,
+ "횩": 2198,
+ "횽": 2199,
+ "후": 2200,
+ "훅": 2201,
+ "훈": 2202,
+ "훌": 2203,
+ "훑": 2204,
+ "훔": 2205,
+ "훕": 2206,
+ "훗": 2207,
+ "훙": 2208,
+ "훠": 2209,
+ "훤": 2210,
+ "훨": 2211,
+ "훼": 2212,
+ "휀": 2213,
+ "휑": 2214,
+ "휘": 2215,
+ "휙": 2216,
+ "휜": 2217,
+ "휠": 2218,
+ "휩": 2219,
+ "휭": 2220,
+ "휴": 2221,
+ "휸": 2222,
+ "휼": 2223,
+ "흄": 2224,
+ "흉": 2225,
+ "흐": 2226,
+ "흑": 2227,
+ "흔": 2228,
+ "흘": 2229,
+ "흙": 2230,
+ "흠": 2231,
+ "흡": 2232,
+ "흣": 2233,
+ "흥": 2234,
+ "흩": 2235,
+ "흫": 2236,
+ "희": 2237,
+ "흰": 2238,
+ "흴": 2239,
+ "히": 2240,
+ "힉": 2241,
+ "힌": 2242,
+ "힐": 2243,
+ "힘": 2244,
+ "힙": 2245,
+ "힛": 2246,
+ "힜": 2247,
+ "힝": 2248
+}
diff --git a/checkpoint-1164640/added_tokens.json b/checkpoint-1164640/added_tokens.json
new file mode 100644
index 0000000000000000000000000000000000000000..d392b99065410e4f6426fe9804e13955991f19e9
--- /dev/null
+++ b/checkpoint-1164640/added_tokens.json
@@ -0,0 +1,4 @@
+{
+ "": 2252,
+ "": 2251
+}
diff --git a/checkpoint-1164640/config.json b/checkpoint-1164640/config.json
new file mode 100644
index 0000000000000000000000000000000000000000..f0f9dff62c09f38f93a6b44b656ef396b4046dcb
--- /dev/null
+++ b/checkpoint-1164640/config.json
@@ -0,0 +1,117 @@
+{
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
+ "activation_dropout": 0.0,
+ "adapter_attn_dim": null,
+ "adapter_kernel_size": 3,
+ "adapter_stride": 2,
+ "add_adapter": false,
+ "apply_spec_augment": true,
+ "architectures": [
+ "Wav2Vec2ForCTC"
+ ],
+ "attention_dropout": 0.05,
+ "bos_token_id": 1,
+ "classifier_proj_size": 256,
+ "codevector_dim": 768,
+ "contrastive_logits_temperature": 0.1,
+ "conv_bias": true,
+ "conv_dim": [
+ 512,
+ 512,
+ 512,
+ 512,
+ 512,
+ 512,
+ 512
+ ],
+ "conv_kernel": [
+ 10,
+ 3,
+ 3,
+ 3,
+ 3,
+ 2,
+ 2
+ ],
+ "conv_stride": [
+ 5,
+ 2,
+ 2,
+ 2,
+ 2,
+ 2,
+ 2
+ ],
+ "ctc_loss_reduction": "mean",
+ "ctc_zero_infinity": true,
+ "diversity_loss_weight": 0.1,
+ "do_stable_layer_norm": true,
+ "eos_token_id": 2,
+ "feat_extract_activation": "gelu",
+ "feat_extract_dropout": 0.0,
+ "feat_extract_norm": "layer",
+ "feat_proj_dropout": 0.05,
+ "feat_quantizer_dropout": 0.0,
+ "final_dropout": 0.0,
+ "gradient_checkpointing": false,
+ "hidden_act": "gelu",
+ "hidden_dropout": 0.05,
+ "hidden_size": 1024,
+ "initializer_range": 0.02,
+ "intermediate_size": 4096,
+ "layer_norm_eps": 1e-05,
+ "layerdrop": 0.05,
+ "mask_channel_length": 10,
+ "mask_channel_min_space": 1,
+ "mask_channel_other": 0.0,
+ "mask_channel_prob": 0.0,
+ "mask_channel_selection": "static",
+ "mask_feature_length": 10,
+ "mask_feature_min_masks": 0,
+ "mask_feature_prob": 0.0,
+ "mask_time_length": 10,
+ "mask_time_min_masks": 2,
+ "mask_time_min_space": 1,
+ "mask_time_other": 0.0,
+ "mask_time_prob": 0.05,
+ "mask_time_selection": "static",
+ "model_type": "wav2vec2",
+ "num_adapter_layers": 3,
+ "num_attention_heads": 16,
+ "num_codevector_groups": 2,
+ "num_codevectors_per_group": 320,
+ "num_conv_pos_embedding_groups": 16,
+ "num_conv_pos_embeddings": 128,
+ "num_feat_extract_layers": 7,
+ "num_hidden_layers": 24,
+ "num_negatives": 100,
+ "output_hidden_size": 1024,
+ "pad_token_id": 2250,
+ "proj_codevector_dim": 768,
+ "tdnn_dilation": [
+ 1,
+ 2,
+ 3,
+ 1,
+ 1
+ ],
+ "tdnn_dim": [
+ 512,
+ 512,
+ 512,
+ 512,
+ 1500
+ ],
+ "tdnn_kernel": [
+ 5,
+ 3,
+ 3,
+ 1,
+ 1
+ ],
+ "torch_dtype": "float32",
+ "transformers_version": "4.35.2",
+ "use_weighted_layer_sum": false,
+ "vocab_size": 2253,
+ "xvector_output_dim": 512
+}
diff --git a/checkpoint-1164640/model.safetensors b/checkpoint-1164640/model.safetensors
new file mode 100644
index 0000000000000000000000000000000000000000..1dbef017d8a3ffe7c582c771a93c5e41fe6dcfa5
--- /dev/null
+++ b/checkpoint-1164640/model.safetensors
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:783a30d53f58eeea91f56e85c5e24c17dea22a320c6d26ee4c5eb51d5e2d6c48
+size 1271044804
diff --git a/checkpoint-1164640/optimizer.pt b/checkpoint-1164640/optimizer.pt
new file mode 100644
index 0000000000000000000000000000000000000000..8cb91e37aca8607fa90c15242359f0188720d892
--- /dev/null
+++ b/checkpoint-1164640/optimizer.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:023a85a67190c2b5866d237e6b025fd0443de8d543c84cf13006709313bd5fbb
+size 2508634294
diff --git a/checkpoint-1164640/preprocessor_config.json b/checkpoint-1164640/preprocessor_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..e7d53bd058c34639e2dec1357537a3d013bcda63
--- /dev/null
+++ b/checkpoint-1164640/preprocessor_config.json
@@ -0,0 +1,10 @@
+{
+ "do_normalize": true,
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
+ "feature_size": 1,
+ "padding_side": "right",
+ "padding_value": 0,
+ "processor_class": "Wav2Vec2Processor",
+ "return_attention_mask": true,
+ "sampling_rate": 16000
+}
diff --git a/checkpoint-1164640/rng_state_0.pth b/checkpoint-1164640/rng_state_0.pth
new file mode 100644
index 0000000000000000000000000000000000000000..9bbdc5e663b6169b3a8e9f7c208947d38287929f
--- /dev/null
+++ b/checkpoint-1164640/rng_state_0.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:34cf6fdcc7732534e8fc9b40a5345bada497100ca4b9a615114ffe3a320615a1
+size 15024
diff --git a/checkpoint-1164640/rng_state_1.pth b/checkpoint-1164640/rng_state_1.pth
new file mode 100644
index 0000000000000000000000000000000000000000..77b2bdf5f0107ec5b0e7692eb80f89f009f50142
--- /dev/null
+++ b/checkpoint-1164640/rng_state_1.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f844f81872d711f3f1cbf9f48075504cf90e409e6a24051048e6955a8d45132d
+size 15024
diff --git a/checkpoint-1164640/rng_state_2.pth b/checkpoint-1164640/rng_state_2.pth
new file mode 100644
index 0000000000000000000000000000000000000000..2a96fbf2e4c06dfd90d3358cf8ab227bfd463f38
--- /dev/null
+++ b/checkpoint-1164640/rng_state_2.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:10aab8c55b0793ab58d72f7283fde225759a28b5aec4730e906f03ffb7fc17bc
+size 15024
diff --git a/checkpoint-1164640/rng_state_3.pth b/checkpoint-1164640/rng_state_3.pth
new file mode 100644
index 0000000000000000000000000000000000000000..2f09598312389ff700eda49c2241a36b57701134
--- /dev/null
+++ b/checkpoint-1164640/rng_state_3.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:47412df068b896c9ef93a156475ff26acb416a580520b121a0e8b6470521c8ad
+size 14960
diff --git a/checkpoint-1164640/scheduler.pt b/checkpoint-1164640/scheduler.pt
new file mode 100644
index 0000000000000000000000000000000000000000..eb1ebab87dd6866c1a0d45e8f3d39af7679025a9
--- /dev/null
+++ b/checkpoint-1164640/scheduler.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4709473bc0829b6d0c42f5d24b88c4713e1cdac2f47765fa5cde66198f499f23
+size 1064
diff --git a/checkpoint-1164640/special_tokens_map.json b/checkpoint-1164640/special_tokens_map.json
new file mode 100644
index 0000000000000000000000000000000000000000..c7771b3470e665ede683e35dbcbbd3643ddb0c98
--- /dev/null
+++ b/checkpoint-1164640/special_tokens_map.json
@@ -0,0 +1,30 @@
+{
+ "bos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "eos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "pad_token": {
+ "content": "[PAD]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false
+ },
+ "unk_token": {
+ "content": "[UNK]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false
+ }
+}
diff --git a/checkpoint-1164640/tokenizer_config.json b/checkpoint-1164640/tokenizer_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..30b0a1991f27c208f900171c8af8c0a8670b10aa
--- /dev/null
+++ b/checkpoint-1164640/tokenizer_config.json
@@ -0,0 +1,51 @@
+{
+ "added_tokens_decoder": {
+ "2249": {
+ "content": "[UNK]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false,
+ "special": false
+ },
+ "2250": {
+ "content": "[PAD]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false,
+ "special": false
+ },
+ "2251": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "2252": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ }
+ },
+ "bos_token": "",
+ "clean_up_tokenization_spaces": true,
+ "config": null,
+ "do_lower_case": false,
+ "eos_token": "",
+ "model_max_length": 1000000000000000019884624838656,
+ "pad_token": "[PAD]",
+ "processor_class": "Wav2Vec2Processor",
+ "replace_word_delimiter_char": " ",
+ "target_lang": null,
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
+ "tokenizer_type": "wav2vec2",
+ "trust_remote_code": false,
+ "unk_token": "[UNK]",
+ "word_delimiter_token": "|"
+}
diff --git a/checkpoint-1164640/trainer_state.json b/checkpoint-1164640/trainer_state.json
new file mode 100644
index 0000000000000000000000000000000000000000..68bd06ed98f99b707251a3664ee14e5dbe708491
--- /dev/null
+++ b/checkpoint-1164640/trainer_state.json
@@ -0,0 +1,2347 @@
+{
+ "best_metric": null,
+ "best_model_checkpoint": null,
+ "epoch": 29.0,
+ "eval_steps": 500,
+ "global_step": 1164640,
+ "is_hyper_param_search": false,
+ "is_local_process_zero": true,
+ "is_world_process_zero": true,
+ "log_history": [
+ {
+ "epoch": 0.07,
+ "learning_rate": 7.47011952191235e-05,
+ "loss": 11.8613,
+ "step": 3000
+ },
+ {
+ "epoch": 0.15,
+ "learning_rate": 0.000149402390438247,
+ "loss": 1.9866,
+ "step": 6000
+ },
+ {
+ "epoch": 0.22,
+ "learning_rate": 0.0002241035856573705,
+ "loss": 1.4383,
+ "step": 9000
+ },
+ {
+ "epoch": 0.3,
+ "learning_rate": 0.000298804780876494,
+ "loss": 1.3467,
+ "step": 12000
+ },
+ {
+ "epoch": 0.37,
+ "learning_rate": 0.0002992575153929735,
+ "loss": 1.3175,
+ "step": 15000
+ },
+ {
+ "epoch": 0.45,
+ "learning_rate": 0.00029850295786550764,
+ "loss": 1.2551,
+ "step": 18000
+ },
+ {
+ "epoch": 0.52,
+ "learning_rate": 0.00029774840033804177,
+ "loss": 1.2058,
+ "step": 21000
+ },
+ {
+ "epoch": 0.6,
+ "learning_rate": 0.00029699384281057584,
+ "loss": 1.1759,
+ "step": 24000
+ },
+ {
+ "epoch": 0.67,
+ "learning_rate": 0.00029623928528310997,
+ "loss": 1.148,
+ "step": 27000
+ },
+ {
+ "epoch": 0.75,
+ "learning_rate": 0.0002954847277556441,
+ "loss": 1.116,
+ "step": 30000
+ },
+ {
+ "epoch": 0.82,
+ "learning_rate": 0.00029473017022817817,
+ "loss": 1.0933,
+ "step": 33000
+ },
+ {
+ "epoch": 0.9,
+ "learning_rate": 0.00029397561270071225,
+ "loss": 1.0788,
+ "step": 36000
+ },
+ {
+ "epoch": 0.97,
+ "learning_rate": 0.0002932210551732464,
+ "loss": 1.0578,
+ "step": 39000
+ },
+ {
+ "epoch": 1.05,
+ "learning_rate": 0.0002924664976457805,
+ "loss": 1.0363,
+ "step": 42000
+ },
+ {
+ "epoch": 1.12,
+ "learning_rate": 0.0002917119401183146,
+ "loss": 1.0198,
+ "step": 45000
+ },
+ {
+ "epoch": 1.2,
+ "learning_rate": 0.0002909573825908487,
+ "loss": 1.0132,
+ "step": 48000
+ },
+ {
+ "epoch": 1.27,
+ "learning_rate": 0.00029020282506338283,
+ "loss": 0.9995,
+ "step": 51000
+ },
+ {
+ "epoch": 1.34,
+ "learning_rate": 0.0002894482675359169,
+ "loss": 0.992,
+ "step": 54000
+ },
+ {
+ "epoch": 1.42,
+ "learning_rate": 0.000288693710008451,
+ "loss": 0.9821,
+ "step": 57000
+ },
+ {
+ "epoch": 1.49,
+ "learning_rate": 0.0002879391524809851,
+ "loss": 0.9878,
+ "step": 60000
+ },
+ {
+ "epoch": 1.57,
+ "learning_rate": 0.00028718459495351924,
+ "loss": 0.9952,
+ "step": 63000
+ },
+ {
+ "epoch": 1.64,
+ "learning_rate": 0.0002864300374260533,
+ "loss": 0.9804,
+ "step": 66000
+ },
+ {
+ "epoch": 1.72,
+ "learning_rate": 0.00028567547989858744,
+ "loss": 0.9736,
+ "step": 69000
+ },
+ {
+ "epoch": 1.79,
+ "learning_rate": 0.00028492092237112157,
+ "loss": 0.9681,
+ "step": 72000
+ },
+ {
+ "epoch": 1.87,
+ "learning_rate": 0.00028416636484365564,
+ "loss": 0.965,
+ "step": 75000
+ },
+ {
+ "epoch": 1.94,
+ "learning_rate": 0.00028341180731618977,
+ "loss": 0.9519,
+ "step": 78000
+ },
+ {
+ "epoch": 2.02,
+ "learning_rate": 0.00028265724978872385,
+ "loss": 0.9525,
+ "step": 81000
+ },
+ {
+ "epoch": 2.09,
+ "learning_rate": 0.000281902692261258,
+ "loss": 0.9175,
+ "step": 84000
+ },
+ {
+ "epoch": 2.17,
+ "learning_rate": 0.00028114813473379205,
+ "loss": 0.9129,
+ "step": 87000
+ },
+ {
+ "epoch": 2.24,
+ "learning_rate": 0.0002803935772063262,
+ "loss": 0.9167,
+ "step": 90000
+ },
+ {
+ "epoch": 2.32,
+ "learning_rate": 0.0002796390196788603,
+ "loss": 0.9037,
+ "step": 93000
+ },
+ {
+ "epoch": 2.39,
+ "learning_rate": 0.0002788844621513944,
+ "loss": 0.8967,
+ "step": 96000
+ },
+ {
+ "epoch": 2.47,
+ "learning_rate": 0.0002781299046239285,
+ "loss": 0.8896,
+ "step": 99000
+ },
+ {
+ "epoch": 2.54,
+ "learning_rate": 0.0002773753470964626,
+ "loss": 0.8848,
+ "step": 102000
+ },
+ {
+ "epoch": 2.61,
+ "learning_rate": 0.0002766207895689967,
+ "loss": 0.8864,
+ "step": 105000
+ },
+ {
+ "epoch": 2.69,
+ "learning_rate": 0.00027586623204153084,
+ "loss": 0.8793,
+ "step": 108000
+ },
+ {
+ "epoch": 2.76,
+ "learning_rate": 0.0002751116745140649,
+ "loss": 0.8727,
+ "step": 111000
+ },
+ {
+ "epoch": 2.84,
+ "learning_rate": 0.00027435711698659904,
+ "loss": 0.8605,
+ "step": 114000
+ },
+ {
+ "epoch": 2.91,
+ "learning_rate": 0.00027360255945913317,
+ "loss": 0.8614,
+ "step": 117000
+ },
+ {
+ "epoch": 2.99,
+ "learning_rate": 0.00027284800193166724,
+ "loss": 0.8584,
+ "step": 120000
+ },
+ {
+ "epoch": 3.06,
+ "learning_rate": 0.00027209344440420137,
+ "loss": 0.8322,
+ "step": 123000
+ },
+ {
+ "epoch": 3.14,
+ "learning_rate": 0.0002713388868767355,
+ "loss": 0.8182,
+ "step": 126000
+ },
+ {
+ "epoch": 3.21,
+ "learning_rate": 0.0002705843293492696,
+ "loss": 0.8203,
+ "step": 129000
+ },
+ {
+ "epoch": 3.29,
+ "learning_rate": 0.00026982977182180365,
+ "loss": 0.824,
+ "step": 132000
+ },
+ {
+ "epoch": 3.36,
+ "learning_rate": 0.0002690752142943378,
+ "loss": 0.819,
+ "step": 135000
+ },
+ {
+ "epoch": 3.44,
+ "learning_rate": 0.0002683206567668719,
+ "loss": 0.8144,
+ "step": 138000
+ },
+ {
+ "epoch": 3.51,
+ "learning_rate": 0.000267566099239406,
+ "loss": 0.8158,
+ "step": 141000
+ },
+ {
+ "epoch": 3.59,
+ "learning_rate": 0.0002668115417119401,
+ "loss": 0.8148,
+ "step": 144000
+ },
+ {
+ "epoch": 3.66,
+ "learning_rate": 0.00026605698418447424,
+ "loss": 0.8188,
+ "step": 147000
+ },
+ {
+ "epoch": 3.74,
+ "learning_rate": 0.0002653024266570083,
+ "loss": 0.8064,
+ "step": 150000
+ },
+ {
+ "epoch": 3.81,
+ "learning_rate": 0.0002645478691295424,
+ "loss": 0.8047,
+ "step": 153000
+ },
+ {
+ "epoch": 3.88,
+ "learning_rate": 0.0002637933116020765,
+ "loss": 0.8008,
+ "step": 156000
+ },
+ {
+ "epoch": 3.96,
+ "learning_rate": 0.00026303875407461064,
+ "loss": 0.799,
+ "step": 159000
+ },
+ {
+ "epoch": 4.03,
+ "learning_rate": 0.0002622841965471447,
+ "loss": 0.7822,
+ "step": 162000
+ },
+ {
+ "epoch": 4.11,
+ "learning_rate": 0.00026152963901967884,
+ "loss": 0.7657,
+ "step": 165000
+ },
+ {
+ "epoch": 4.18,
+ "learning_rate": 0.00026077508149221297,
+ "loss": 0.7627,
+ "step": 168000
+ },
+ {
+ "epoch": 4.26,
+ "learning_rate": 0.00026002052396474705,
+ "loss": 0.7603,
+ "step": 171000
+ },
+ {
+ "epoch": 4.33,
+ "learning_rate": 0.0002592659664372812,
+ "loss": 0.7608,
+ "step": 174000
+ },
+ {
+ "epoch": 4.41,
+ "learning_rate": 0.00025851140890981525,
+ "loss": 0.7642,
+ "step": 177000
+ },
+ {
+ "epoch": 4.48,
+ "learning_rate": 0.0002577568513823494,
+ "loss": 0.7607,
+ "step": 180000
+ },
+ {
+ "epoch": 4.56,
+ "learning_rate": 0.0002570022938548835,
+ "loss": 0.7546,
+ "step": 183000
+ },
+ {
+ "epoch": 4.63,
+ "learning_rate": 0.0002562477363274176,
+ "loss": 0.7531,
+ "step": 186000
+ },
+ {
+ "epoch": 4.71,
+ "learning_rate": 0.0002554931787999517,
+ "loss": 0.7572,
+ "step": 189000
+ },
+ {
+ "epoch": 4.78,
+ "learning_rate": 0.0002547386212724858,
+ "loss": 0.7578,
+ "step": 192000
+ },
+ {
+ "epoch": 4.86,
+ "learning_rate": 0.0002539840637450199,
+ "loss": 0.7558,
+ "step": 195000
+ },
+ {
+ "epoch": 4.93,
+ "learning_rate": 0.000253229506217554,
+ "loss": 0.7556,
+ "step": 198000
+ },
+ {
+ "epoch": 5.0,
+ "learning_rate": 0.0002524749486900881,
+ "loss": 0.7476,
+ "step": 201000
+ },
+ {
+ "epoch": 5.08,
+ "learning_rate": 0.00025172039116262224,
+ "loss": 0.721,
+ "step": 204000
+ },
+ {
+ "epoch": 5.15,
+ "learning_rate": 0.0002509658336351563,
+ "loss": 0.7241,
+ "step": 207000
+ },
+ {
+ "epoch": 5.23,
+ "learning_rate": 0.00025021127610769044,
+ "loss": 0.7183,
+ "step": 210000
+ },
+ {
+ "epoch": 5.3,
+ "learning_rate": 0.00024945671858022457,
+ "loss": 0.7163,
+ "step": 213000
+ },
+ {
+ "epoch": 5.38,
+ "learning_rate": 0.00024870216105275865,
+ "loss": 0.716,
+ "step": 216000
+ },
+ {
+ "epoch": 5.45,
+ "learning_rate": 0.0002479476035252927,
+ "loss": 0.7208,
+ "step": 219000
+ },
+ {
+ "epoch": 5.53,
+ "learning_rate": 0.00024719304599782685,
+ "loss": 0.7149,
+ "step": 222000
+ },
+ {
+ "epoch": 5.6,
+ "learning_rate": 0.000246438488470361,
+ "loss": 0.7168,
+ "step": 225000
+ },
+ {
+ "epoch": 5.68,
+ "learning_rate": 0.00024568393094289505,
+ "loss": 0.7131,
+ "step": 228000
+ },
+ {
+ "epoch": 5.75,
+ "learning_rate": 0.0002449293734154292,
+ "loss": 0.7134,
+ "step": 231000
+ },
+ {
+ "epoch": 5.83,
+ "learning_rate": 0.0002441748158879633,
+ "loss": 0.7088,
+ "step": 234000
+ },
+ {
+ "epoch": 5.9,
+ "learning_rate": 0.00024342025836049738,
+ "loss": 0.7101,
+ "step": 237000
+ },
+ {
+ "epoch": 5.98,
+ "learning_rate": 0.00024266570083303148,
+ "loss": 0.7106,
+ "step": 240000
+ },
+ {
+ "epoch": 6.05,
+ "learning_rate": 0.0002419111433055656,
+ "loss": 0.6846,
+ "step": 243000
+ },
+ {
+ "epoch": 6.13,
+ "learning_rate": 0.00024115658577809968,
+ "loss": 0.6761,
+ "step": 246000
+ },
+ {
+ "epoch": 6.2,
+ "learning_rate": 0.00024040202825063379,
+ "loss": 0.6783,
+ "step": 249000
+ },
+ {
+ "epoch": 6.27,
+ "learning_rate": 0.00023964747072316791,
+ "loss": 0.6815,
+ "step": 252000
+ },
+ {
+ "epoch": 6.35,
+ "learning_rate": 0.00023889291319570202,
+ "loss": 0.6864,
+ "step": 255000
+ },
+ {
+ "epoch": 6.42,
+ "learning_rate": 0.00023813835566823612,
+ "loss": 0.688,
+ "step": 258000
+ },
+ {
+ "epoch": 6.5,
+ "learning_rate": 0.00023738379814077025,
+ "loss": 0.6843,
+ "step": 261000
+ },
+ {
+ "epoch": 6.57,
+ "learning_rate": 0.00023662924061330435,
+ "loss": 0.6842,
+ "step": 264000
+ },
+ {
+ "epoch": 6.65,
+ "learning_rate": 0.00023587468308583842,
+ "loss": 0.6874,
+ "step": 267000
+ },
+ {
+ "epoch": 6.72,
+ "learning_rate": 0.00023512012555837258,
+ "loss": 0.6777,
+ "step": 270000
+ },
+ {
+ "epoch": 6.8,
+ "learning_rate": 0.00023436556803090665,
+ "loss": 0.6813,
+ "step": 273000
+ },
+ {
+ "epoch": 6.87,
+ "learning_rate": 0.00023361101050344075,
+ "loss": 0.6859,
+ "step": 276000
+ },
+ {
+ "epoch": 6.95,
+ "learning_rate": 0.00023285645297597488,
+ "loss": 0.6756,
+ "step": 279000
+ },
+ {
+ "epoch": 7.02,
+ "learning_rate": 0.00023210189544850898,
+ "loss": 0.6682,
+ "step": 282000
+ },
+ {
+ "epoch": 7.1,
+ "learning_rate": 0.00023134733792104308,
+ "loss": 0.6456,
+ "step": 285000
+ },
+ {
+ "epoch": 7.17,
+ "learning_rate": 0.00023059278039357716,
+ "loss": 0.6463,
+ "step": 288000
+ },
+ {
+ "epoch": 7.25,
+ "learning_rate": 0.0002298382228661113,
+ "loss": 0.6508,
+ "step": 291000
+ },
+ {
+ "epoch": 7.32,
+ "learning_rate": 0.00022908366533864539,
+ "loss": 0.6513,
+ "step": 294000
+ },
+ {
+ "epoch": 7.4,
+ "learning_rate": 0.0002283291078111795,
+ "loss": 0.6479,
+ "step": 297000
+ },
+ {
+ "epoch": 7.47,
+ "learning_rate": 0.00022757455028371362,
+ "loss": 0.6514,
+ "step": 300000
+ },
+ {
+ "epoch": 7.54,
+ "learning_rate": 0.00022681999275624772,
+ "loss": 0.648,
+ "step": 303000
+ },
+ {
+ "epoch": 7.62,
+ "learning_rate": 0.00022606543522878182,
+ "loss": 0.6467,
+ "step": 306000
+ },
+ {
+ "epoch": 7.69,
+ "learning_rate": 0.00022531087770131595,
+ "loss": 0.6476,
+ "step": 309000
+ },
+ {
+ "epoch": 7.77,
+ "learning_rate": 0.00022455632017385005,
+ "loss": 0.6485,
+ "step": 312000
+ },
+ {
+ "epoch": 7.84,
+ "learning_rate": 0.00022380176264638412,
+ "loss": 0.6464,
+ "step": 315000
+ },
+ {
+ "epoch": 7.92,
+ "learning_rate": 0.00022304720511891825,
+ "loss": 0.644,
+ "step": 318000
+ },
+ {
+ "epoch": 7.99,
+ "learning_rate": 0.00022229264759145235,
+ "loss": 0.6423,
+ "step": 321000
+ },
+ {
+ "epoch": 8.07,
+ "learning_rate": 0.00022153809006398645,
+ "loss": 0.6169,
+ "step": 324000
+ },
+ {
+ "epoch": 8.14,
+ "learning_rate": 0.00022078353253652058,
+ "loss": 0.6166,
+ "step": 327000
+ },
+ {
+ "epoch": 8.22,
+ "learning_rate": 0.00022002897500905468,
+ "loss": 0.6174,
+ "step": 330000
+ },
+ {
+ "epoch": 8.29,
+ "learning_rate": 0.00021927441748158878,
+ "loss": 0.62,
+ "step": 333000
+ },
+ {
+ "epoch": 8.37,
+ "learning_rate": 0.00021851985995412286,
+ "loss": 0.6217,
+ "step": 336000
+ },
+ {
+ "epoch": 8.44,
+ "learning_rate": 0.00021776530242665699,
+ "loss": 0.6187,
+ "step": 339000
+ },
+ {
+ "epoch": 8.52,
+ "learning_rate": 0.0002170107448991911,
+ "loss": 0.6221,
+ "step": 342000
+ },
+ {
+ "epoch": 8.59,
+ "learning_rate": 0.0002162561873717252,
+ "loss": 0.6202,
+ "step": 345000
+ },
+ {
+ "epoch": 8.67,
+ "learning_rate": 0.00021550162984425932,
+ "loss": 0.6198,
+ "step": 348000
+ },
+ {
+ "epoch": 8.74,
+ "learning_rate": 0.00021474707231679342,
+ "loss": 0.6159,
+ "step": 351000
+ },
+ {
+ "epoch": 8.81,
+ "learning_rate": 0.00021399251478932752,
+ "loss": 0.615,
+ "step": 354000
+ },
+ {
+ "epoch": 8.89,
+ "learning_rate": 0.00021323795726186165,
+ "loss": 0.6188,
+ "step": 357000
+ },
+ {
+ "epoch": 8.96,
+ "learning_rate": 0.00021248339973439572,
+ "loss": 0.6167,
+ "step": 360000
+ },
+ {
+ "epoch": 9.04,
+ "learning_rate": 0.00021172884220692982,
+ "loss": 0.6022,
+ "step": 363000
+ },
+ {
+ "epoch": 9.11,
+ "learning_rate": 0.00021097428467946395,
+ "loss": 0.5912,
+ "step": 366000
+ },
+ {
+ "epoch": 9.19,
+ "learning_rate": 0.00021021972715199805,
+ "loss": 0.5906,
+ "step": 369000
+ },
+ {
+ "epoch": 9.26,
+ "learning_rate": 0.00020946516962453215,
+ "loss": 0.5921,
+ "step": 372000
+ },
+ {
+ "epoch": 9.34,
+ "learning_rate": 0.00020871061209706628,
+ "loss": 0.584,
+ "step": 375000
+ },
+ {
+ "epoch": 9.41,
+ "learning_rate": 0.00020795605456960038,
+ "loss": 0.5884,
+ "step": 378000
+ },
+ {
+ "epoch": 9.49,
+ "learning_rate": 0.00020720149704213446,
+ "loss": 0.585,
+ "step": 381000
+ },
+ {
+ "epoch": 9.56,
+ "learning_rate": 0.00020644693951466859,
+ "loss": 0.5878,
+ "step": 384000
+ },
+ {
+ "epoch": 9.64,
+ "learning_rate": 0.0002056923819872027,
+ "loss": 0.5894,
+ "step": 387000
+ },
+ {
+ "epoch": 9.71,
+ "learning_rate": 0.0002049378244597368,
+ "loss": 0.5875,
+ "step": 390000
+ },
+ {
+ "epoch": 9.79,
+ "learning_rate": 0.0002041832669322709,
+ "loss": 0.5877,
+ "step": 393000
+ },
+ {
+ "epoch": 9.86,
+ "learning_rate": 0.00020342870940480502,
+ "loss": 0.5876,
+ "step": 396000
+ },
+ {
+ "epoch": 9.94,
+ "learning_rate": 0.00020267415187733912,
+ "loss": 0.5876,
+ "step": 399000
+ },
+ {
+ "epoch": 10.01,
+ "learning_rate": 0.0002019195943498732,
+ "loss": 0.5885,
+ "step": 402000
+ },
+ {
+ "epoch": 10.08,
+ "learning_rate": 0.00020116503682240732,
+ "loss": 0.5606,
+ "step": 405000
+ },
+ {
+ "epoch": 10.16,
+ "learning_rate": 0.00020041047929494142,
+ "loss": 0.5618,
+ "step": 408000
+ },
+ {
+ "epoch": 10.23,
+ "learning_rate": 0.00019965592176747552,
+ "loss": 0.5661,
+ "step": 411000
+ },
+ {
+ "epoch": 10.31,
+ "learning_rate": 0.00019890136424000965,
+ "loss": 0.5723,
+ "step": 414000
+ },
+ {
+ "epoch": 10.38,
+ "learning_rate": 0.00019814680671254375,
+ "loss": 0.5665,
+ "step": 417000
+ },
+ {
+ "epoch": 10.46,
+ "learning_rate": 0.00019739224918507786,
+ "loss": 0.5635,
+ "step": 420000
+ },
+ {
+ "epoch": 10.53,
+ "learning_rate": 0.00019663769165761198,
+ "loss": 0.5677,
+ "step": 423000
+ },
+ {
+ "epoch": 10.61,
+ "learning_rate": 0.00019588313413014606,
+ "loss": 0.5657,
+ "step": 426000
+ },
+ {
+ "epoch": 10.68,
+ "learning_rate": 0.00019512857660268016,
+ "loss": 0.5675,
+ "step": 429000
+ },
+ {
+ "epoch": 10.76,
+ "learning_rate": 0.0001943740190752143,
+ "loss": 0.5646,
+ "step": 432000
+ },
+ {
+ "epoch": 10.83,
+ "learning_rate": 0.0001936194615477484,
+ "loss": 0.5663,
+ "step": 435000
+ },
+ {
+ "epoch": 10.91,
+ "learning_rate": 0.0001928649040202825,
+ "loss": 0.5692,
+ "step": 438000
+ },
+ {
+ "epoch": 10.98,
+ "learning_rate": 0.0001921103464928166,
+ "loss": 0.5664,
+ "step": 441000
+ },
+ {
+ "epoch": 11.06,
+ "learning_rate": 0.00019135578896535072,
+ "loss": 0.5487,
+ "step": 444000
+ },
+ {
+ "epoch": 11.13,
+ "learning_rate": 0.0001906012314378848,
+ "loss": 0.5436,
+ "step": 447000
+ },
+ {
+ "epoch": 11.21,
+ "learning_rate": 0.0001898466739104189,
+ "loss": 0.5438,
+ "step": 450000
+ },
+ {
+ "epoch": 11.28,
+ "learning_rate": 0.00018909211638295302,
+ "loss": 0.5444,
+ "step": 453000
+ },
+ {
+ "epoch": 11.35,
+ "learning_rate": 0.00018833755885548712,
+ "loss": 0.5422,
+ "step": 456000
+ },
+ {
+ "epoch": 11.43,
+ "learning_rate": 0.00018758300132802123,
+ "loss": 0.5452,
+ "step": 459000
+ },
+ {
+ "epoch": 11.5,
+ "learning_rate": 0.00018682844380055535,
+ "loss": 0.545,
+ "step": 462000
+ },
+ {
+ "epoch": 11.58,
+ "learning_rate": 0.00018607388627308946,
+ "loss": 0.5418,
+ "step": 465000
+ },
+ {
+ "epoch": 11.65,
+ "learning_rate": 0.00018531932874562353,
+ "loss": 0.5457,
+ "step": 468000
+ },
+ {
+ "epoch": 11.73,
+ "learning_rate": 0.00018456477121815766,
+ "loss": 0.5425,
+ "step": 471000
+ },
+ {
+ "epoch": 11.8,
+ "learning_rate": 0.00018381021369069176,
+ "loss": 0.5435,
+ "step": 474000
+ },
+ {
+ "epoch": 11.88,
+ "learning_rate": 0.00018305565616322586,
+ "loss": 0.5489,
+ "step": 477000
+ },
+ {
+ "epoch": 11.95,
+ "learning_rate": 0.00018230109863576,
+ "loss": 0.5457,
+ "step": 480000
+ },
+ {
+ "epoch": 12.03,
+ "learning_rate": 0.0001815465411082941,
+ "loss": 0.5353,
+ "step": 483000
+ },
+ {
+ "epoch": 12.1,
+ "learning_rate": 0.0001807919835808282,
+ "loss": 0.5185,
+ "step": 486000
+ },
+ {
+ "epoch": 12.18,
+ "learning_rate": 0.00018003742605336227,
+ "loss": 0.5223,
+ "step": 489000
+ },
+ {
+ "epoch": 12.25,
+ "learning_rate": 0.0001792828685258964,
+ "loss": 0.5172,
+ "step": 492000
+ },
+ {
+ "epoch": 12.33,
+ "learning_rate": 0.0001785283109984305,
+ "loss": 0.5191,
+ "step": 495000
+ },
+ {
+ "epoch": 12.4,
+ "learning_rate": 0.0001777737534709646,
+ "loss": 0.5221,
+ "step": 498000
+ },
+ {
+ "epoch": 12.48,
+ "learning_rate": 0.00017701919594349872,
+ "loss": 0.522,
+ "step": 501000
+ },
+ {
+ "epoch": 12.55,
+ "learning_rate": 0.00017626463841603283,
+ "loss": 0.525,
+ "step": 504000
+ },
+ {
+ "epoch": 12.62,
+ "learning_rate": 0.00017551008088856693,
+ "loss": 0.5265,
+ "step": 507000
+ },
+ {
+ "epoch": 12.7,
+ "learning_rate": 0.00017475552336110106,
+ "loss": 0.526,
+ "step": 510000
+ },
+ {
+ "epoch": 12.77,
+ "learning_rate": 0.00017400096583363513,
+ "loss": 0.527,
+ "step": 513000
+ },
+ {
+ "epoch": 12.85,
+ "learning_rate": 0.00017324640830616923,
+ "loss": 0.5259,
+ "step": 516000
+ },
+ {
+ "epoch": 12.92,
+ "learning_rate": 0.00017249185077870336,
+ "loss": 0.5234,
+ "step": 519000
+ },
+ {
+ "epoch": 13.0,
+ "learning_rate": 0.00017173729325123746,
+ "loss": 0.5259,
+ "step": 522000
+ },
+ {
+ "epoch": 13.07,
+ "learning_rate": 0.00017098273572377156,
+ "loss": 0.5027,
+ "step": 525000
+ },
+ {
+ "epoch": 13.15,
+ "learning_rate": 0.0001702281781963057,
+ "loss": 0.5043,
+ "step": 528000
+ },
+ {
+ "epoch": 13.22,
+ "learning_rate": 0.0001694736206688398,
+ "loss": 0.5051,
+ "step": 531000
+ },
+ {
+ "epoch": 13.3,
+ "learning_rate": 0.00016871906314137387,
+ "loss": 0.5062,
+ "step": 534000
+ },
+ {
+ "epoch": 13.37,
+ "learning_rate": 0.00016796450561390797,
+ "loss": 0.5062,
+ "step": 537000
+ },
+ {
+ "epoch": 13.45,
+ "learning_rate": 0.0001672099480864421,
+ "loss": 0.508,
+ "step": 540000
+ },
+ {
+ "epoch": 13.52,
+ "learning_rate": 0.0001664553905589762,
+ "loss": 0.5086,
+ "step": 543000
+ },
+ {
+ "epoch": 13.6,
+ "learning_rate": 0.0001657008330315103,
+ "loss": 0.5072,
+ "step": 546000
+ },
+ {
+ "epoch": 13.67,
+ "learning_rate": 0.00016494627550404443,
+ "loss": 0.5,
+ "step": 549000
+ },
+ {
+ "epoch": 13.75,
+ "learning_rate": 0.00016419171797657853,
+ "loss": 0.5067,
+ "step": 552000
+ },
+ {
+ "epoch": 13.82,
+ "learning_rate": 0.0001634371604491126,
+ "loss": 0.5055,
+ "step": 555000
+ },
+ {
+ "epoch": 13.89,
+ "learning_rate": 0.00016268260292164673,
+ "loss": 0.501,
+ "step": 558000
+ },
+ {
+ "epoch": 13.97,
+ "learning_rate": 0.00016192804539418083,
+ "loss": 0.5068,
+ "step": 561000
+ },
+ {
+ "epoch": 14.04,
+ "learning_rate": 0.00016117348786671493,
+ "loss": 0.4915,
+ "step": 564000
+ },
+ {
+ "epoch": 14.12,
+ "learning_rate": 0.00016041893033924906,
+ "loss": 0.4865,
+ "step": 567000
+ },
+ {
+ "epoch": 14.19,
+ "learning_rate": 0.00015966437281178316,
+ "loss": 0.4881,
+ "step": 570000
+ },
+ {
+ "epoch": 14.27,
+ "learning_rate": 0.00015890981528431726,
+ "loss": 0.4842,
+ "step": 573000
+ },
+ {
+ "epoch": 14.34,
+ "learning_rate": 0.0001581552577568514,
+ "loss": 0.4873,
+ "step": 576000
+ },
+ {
+ "epoch": 14.42,
+ "learning_rate": 0.00015740070022938547,
+ "loss": 0.4861,
+ "step": 579000
+ },
+ {
+ "epoch": 14.49,
+ "learning_rate": 0.00015664614270191957,
+ "loss": 0.4867,
+ "step": 582000
+ },
+ {
+ "epoch": 14.57,
+ "learning_rate": 0.00015589158517445367,
+ "loss": 0.4902,
+ "step": 585000
+ },
+ {
+ "epoch": 14.64,
+ "learning_rate": 0.0001551370276469878,
+ "loss": 0.4927,
+ "step": 588000
+ },
+ {
+ "epoch": 14.72,
+ "learning_rate": 0.0001543824701195219,
+ "loss": 0.4904,
+ "step": 591000
+ },
+ {
+ "epoch": 14.79,
+ "learning_rate": 0.000153627912592056,
+ "loss": 0.4909,
+ "step": 594000
+ },
+ {
+ "epoch": 14.87,
+ "learning_rate": 0.00015287335506459013,
+ "loss": 0.4914,
+ "step": 597000
+ },
+ {
+ "epoch": 14.94,
+ "learning_rate": 0.00015211879753712423,
+ "loss": 0.4864,
+ "step": 600000
+ },
+ {
+ "epoch": 15.01,
+ "learning_rate": 0.0001513642400096583,
+ "loss": 0.4834,
+ "step": 603000
+ },
+ {
+ "epoch": 15.09,
+ "learning_rate": 0.00015060968248219243,
+ "loss": 0.4687,
+ "step": 606000
+ },
+ {
+ "epoch": 15.16,
+ "learning_rate": 0.00014985512495472653,
+ "loss": 0.4683,
+ "step": 609000
+ },
+ {
+ "epoch": 15.24,
+ "learning_rate": 0.00014910056742726066,
+ "loss": 0.4657,
+ "step": 612000
+ },
+ {
+ "epoch": 15.31,
+ "learning_rate": 0.00014834600989979473,
+ "loss": 0.4727,
+ "step": 615000
+ },
+ {
+ "epoch": 15.39,
+ "learning_rate": 0.00014759145237232886,
+ "loss": 0.4709,
+ "step": 618000
+ },
+ {
+ "epoch": 15.46,
+ "learning_rate": 0.00014683689484486296,
+ "loss": 0.4703,
+ "step": 621000
+ },
+ {
+ "epoch": 15.54,
+ "learning_rate": 0.00014608233731739707,
+ "loss": 0.4709,
+ "step": 624000
+ },
+ {
+ "epoch": 15.61,
+ "learning_rate": 0.00014532777978993117,
+ "loss": 0.4726,
+ "step": 627000
+ },
+ {
+ "epoch": 15.69,
+ "learning_rate": 0.00014457322226246527,
+ "loss": 0.4684,
+ "step": 630000
+ },
+ {
+ "epoch": 15.76,
+ "learning_rate": 0.0001438186647349994,
+ "loss": 0.4725,
+ "step": 633000
+ },
+ {
+ "epoch": 15.84,
+ "learning_rate": 0.0001430641072075335,
+ "loss": 0.4689,
+ "step": 636000
+ },
+ {
+ "epoch": 15.91,
+ "learning_rate": 0.0001423095496800676,
+ "loss": 0.468,
+ "step": 639000
+ },
+ {
+ "epoch": 15.99,
+ "learning_rate": 0.0001415549921526017,
+ "loss": 0.4749,
+ "step": 642000
+ },
+ {
+ "epoch": 16.06,
+ "learning_rate": 0.00014080043462513583,
+ "loss": 0.4551,
+ "step": 645000
+ },
+ {
+ "epoch": 16.14,
+ "learning_rate": 0.0001400458770976699,
+ "loss": 0.4536,
+ "step": 648000
+ },
+ {
+ "epoch": 16.21,
+ "learning_rate": 0.00013929131957020403,
+ "loss": 0.4548,
+ "step": 651000
+ },
+ {
+ "epoch": 16.28,
+ "learning_rate": 0.00013853676204273813,
+ "loss": 0.4541,
+ "step": 654000
+ },
+ {
+ "epoch": 16.36,
+ "learning_rate": 0.00013778220451527223,
+ "loss": 0.4573,
+ "step": 657000
+ },
+ {
+ "epoch": 16.43,
+ "learning_rate": 0.00013702764698780633,
+ "loss": 0.4521,
+ "step": 660000
+ },
+ {
+ "epoch": 16.51,
+ "learning_rate": 0.00013627308946034044,
+ "loss": 0.4564,
+ "step": 663000
+ },
+ {
+ "epoch": 16.58,
+ "learning_rate": 0.00013551853193287456,
+ "loss": 0.4563,
+ "step": 666000
+ },
+ {
+ "epoch": 16.66,
+ "learning_rate": 0.00013476397440540867,
+ "loss": 0.4582,
+ "step": 669000
+ },
+ {
+ "epoch": 16.73,
+ "learning_rate": 0.00013400941687794277,
+ "loss": 0.4556,
+ "step": 672000
+ },
+ {
+ "epoch": 16.81,
+ "learning_rate": 0.00013325485935047687,
+ "loss": 0.4527,
+ "step": 675000
+ },
+ {
+ "epoch": 16.88,
+ "learning_rate": 0.00013250030182301097,
+ "loss": 0.4535,
+ "step": 678000
+ },
+ {
+ "epoch": 16.96,
+ "learning_rate": 0.00013174574429554507,
+ "loss": 0.4578,
+ "step": 681000
+ },
+ {
+ "epoch": 17.03,
+ "learning_rate": 0.0001309911867680792,
+ "loss": 0.449,
+ "step": 684000
+ },
+ {
+ "epoch": 17.11,
+ "learning_rate": 0.0001302366292406133,
+ "loss": 0.4389,
+ "step": 687000
+ },
+ {
+ "epoch": 17.18,
+ "learning_rate": 0.0001294820717131474,
+ "loss": 0.438,
+ "step": 690000
+ },
+ {
+ "epoch": 17.26,
+ "learning_rate": 0.0001287275141856815,
+ "loss": 0.4396,
+ "step": 693000
+ },
+ {
+ "epoch": 17.33,
+ "learning_rate": 0.0001279729566582156,
+ "loss": 0.437,
+ "step": 696000
+ },
+ {
+ "epoch": 17.41,
+ "learning_rate": 0.00012721839913074973,
+ "loss": 0.443,
+ "step": 699000
+ },
+ {
+ "epoch": 17.48,
+ "learning_rate": 0.0001264638416032838,
+ "loss": 0.4428,
+ "step": 702000
+ },
+ {
+ "epoch": 17.55,
+ "learning_rate": 0.00012570928407581793,
+ "loss": 0.4384,
+ "step": 705000
+ },
+ {
+ "epoch": 17.63,
+ "learning_rate": 0.00012495472654835204,
+ "loss": 0.4387,
+ "step": 708000
+ },
+ {
+ "epoch": 17.7,
+ "learning_rate": 0.00012420016902088614,
+ "loss": 0.4416,
+ "step": 711000
+ },
+ {
+ "epoch": 17.78,
+ "learning_rate": 0.00012344561149342024,
+ "loss": 0.4398,
+ "step": 714000
+ },
+ {
+ "epoch": 17.85,
+ "learning_rate": 0.00012269105396595437,
+ "loss": 0.437,
+ "step": 717000
+ },
+ {
+ "epoch": 17.93,
+ "learning_rate": 0.00012193649643848845,
+ "loss": 0.4393,
+ "step": 720000
+ },
+ {
+ "epoch": 18.0,
+ "learning_rate": 0.00012118193891102257,
+ "loss": 0.4416,
+ "step": 723000
+ },
+ {
+ "epoch": 18.08,
+ "learning_rate": 0.00012042738138355667,
+ "loss": 0.4216,
+ "step": 726000
+ },
+ {
+ "epoch": 18.15,
+ "learning_rate": 0.00011967282385609077,
+ "loss": 0.4206,
+ "step": 729000
+ },
+ {
+ "epoch": 18.23,
+ "learning_rate": 0.00011891826632862489,
+ "loss": 0.4223,
+ "step": 732000
+ },
+ {
+ "epoch": 18.3,
+ "learning_rate": 0.00011816370880115899,
+ "loss": 0.4261,
+ "step": 735000
+ },
+ {
+ "epoch": 18.38,
+ "learning_rate": 0.0001174091512736931,
+ "loss": 0.4238,
+ "step": 738000
+ },
+ {
+ "epoch": 18.45,
+ "learning_rate": 0.0001166545937462272,
+ "loss": 0.4224,
+ "step": 741000
+ },
+ {
+ "epoch": 18.53,
+ "learning_rate": 0.0001159000362187613,
+ "loss": 0.4261,
+ "step": 744000
+ },
+ {
+ "epoch": 18.6,
+ "learning_rate": 0.00011514547869129542,
+ "loss": 0.4287,
+ "step": 747000
+ },
+ {
+ "epoch": 18.68,
+ "learning_rate": 0.00011439092116382951,
+ "loss": 0.4261,
+ "step": 750000
+ },
+ {
+ "epoch": 18.75,
+ "learning_rate": 0.00011363636363636362,
+ "loss": 0.4259,
+ "step": 753000
+ },
+ {
+ "epoch": 18.82,
+ "learning_rate": 0.00011288180610889774,
+ "loss": 0.4233,
+ "step": 756000
+ },
+ {
+ "epoch": 18.9,
+ "learning_rate": 0.00011212724858143184,
+ "loss": 0.427,
+ "step": 759000
+ },
+ {
+ "epoch": 18.97,
+ "learning_rate": 0.00011137269105396594,
+ "loss": 0.4302,
+ "step": 762000
+ },
+ {
+ "epoch": 19.05,
+ "learning_rate": 0.00011061813352650005,
+ "loss": 0.4109,
+ "step": 765000
+ },
+ {
+ "epoch": 19.12,
+ "learning_rate": 0.00010986357599903416,
+ "loss": 0.4088,
+ "step": 768000
+ },
+ {
+ "epoch": 19.2,
+ "learning_rate": 0.00010910901847156827,
+ "loss": 0.4078,
+ "step": 771000
+ },
+ {
+ "epoch": 19.27,
+ "learning_rate": 0.00010835446094410236,
+ "loss": 0.4094,
+ "step": 774000
+ },
+ {
+ "epoch": 19.35,
+ "learning_rate": 0.00010759990341663647,
+ "loss": 0.409,
+ "step": 777000
+ },
+ {
+ "epoch": 19.42,
+ "learning_rate": 0.00010684534588917059,
+ "loss": 0.4086,
+ "step": 780000
+ },
+ {
+ "epoch": 19.5,
+ "learning_rate": 0.00010609078836170468,
+ "loss": 0.406,
+ "step": 783000
+ },
+ {
+ "epoch": 19.57,
+ "learning_rate": 0.00010533623083423879,
+ "loss": 0.4102,
+ "step": 786000
+ },
+ {
+ "epoch": 19.65,
+ "learning_rate": 0.0001045816733067729,
+ "loss": 0.4089,
+ "step": 789000
+ },
+ {
+ "epoch": 19.72,
+ "learning_rate": 0.000103827115779307,
+ "loss": 0.4096,
+ "step": 792000
+ },
+ {
+ "epoch": 19.8,
+ "learning_rate": 0.00010307255825184111,
+ "loss": 0.4119,
+ "step": 795000
+ },
+ {
+ "epoch": 19.87,
+ "learning_rate": 0.00010231800072437521,
+ "loss": 0.4101,
+ "step": 798000
+ },
+ {
+ "epoch": 19.95,
+ "learning_rate": 0.00010156344319690932,
+ "loss": 0.4125,
+ "step": 801000
+ },
+ {
+ "epoch": 20.02,
+ "learning_rate": 0.00010080888566944344,
+ "loss": 0.4091,
+ "step": 804000
+ },
+ {
+ "epoch": 20.09,
+ "learning_rate": 0.00010005432814197753,
+ "loss": 0.3946,
+ "step": 807000
+ },
+ {
+ "epoch": 20.17,
+ "learning_rate": 9.929977061451164e-05,
+ "loss": 0.3959,
+ "step": 810000
+ },
+ {
+ "epoch": 20.24,
+ "learning_rate": 9.854521308704576e-05,
+ "loss": 0.3954,
+ "step": 813000
+ },
+ {
+ "epoch": 20.32,
+ "learning_rate": 9.779065555957984e-05,
+ "loss": 0.3974,
+ "step": 816000
+ },
+ {
+ "epoch": 20.39,
+ "learning_rate": 9.703609803211396e-05,
+ "loss": 0.3943,
+ "step": 819000
+ },
+ {
+ "epoch": 20.47,
+ "learning_rate": 9.628154050464806e-05,
+ "loss": 0.3984,
+ "step": 822000
+ },
+ {
+ "epoch": 20.54,
+ "learning_rate": 9.552698297718217e-05,
+ "loss": 0.3963,
+ "step": 825000
+ },
+ {
+ "epoch": 20.62,
+ "learning_rate": 9.477242544971629e-05,
+ "loss": 0.3927,
+ "step": 828000
+ },
+ {
+ "epoch": 20.69,
+ "learning_rate": 9.401786792225038e-05,
+ "loss": 0.3955,
+ "step": 831000
+ },
+ {
+ "epoch": 20.77,
+ "learning_rate": 9.326331039478449e-05,
+ "loss": 0.3982,
+ "step": 834000
+ },
+ {
+ "epoch": 20.84,
+ "learning_rate": 9.25087528673186e-05,
+ "loss": 0.3976,
+ "step": 837000
+ },
+ {
+ "epoch": 20.92,
+ "learning_rate": 9.17541953398527e-05,
+ "loss": 0.3957,
+ "step": 840000
+ },
+ {
+ "epoch": 20.99,
+ "learning_rate": 9.099963781238681e-05,
+ "loss": 0.3982,
+ "step": 843000
+ },
+ {
+ "epoch": 21.07,
+ "learning_rate": 9.024508028492091e-05,
+ "loss": 0.3806,
+ "step": 846000
+ },
+ {
+ "epoch": 21.14,
+ "learning_rate": 8.949052275745503e-05,
+ "loss": 0.3819,
+ "step": 849000
+ },
+ {
+ "epoch": 21.22,
+ "learning_rate": 8.873596522998913e-05,
+ "loss": 0.3847,
+ "step": 852000
+ },
+ {
+ "epoch": 21.29,
+ "learning_rate": 8.798140770252323e-05,
+ "loss": 0.3843,
+ "step": 855000
+ },
+ {
+ "epoch": 21.36,
+ "learning_rate": 8.722685017505734e-05,
+ "loss": 0.3859,
+ "step": 858000
+ },
+ {
+ "epoch": 21.44,
+ "learning_rate": 8.647229264759146e-05,
+ "loss": 0.3821,
+ "step": 861000
+ },
+ {
+ "epoch": 21.51,
+ "learning_rate": 8.571773512012555e-05,
+ "loss": 0.386,
+ "step": 864000
+ },
+ {
+ "epoch": 21.59,
+ "learning_rate": 8.496317759265966e-05,
+ "loss": 0.3853,
+ "step": 867000
+ },
+ {
+ "epoch": 21.66,
+ "learning_rate": 8.420862006519376e-05,
+ "loss": 0.3856,
+ "step": 870000
+ },
+ {
+ "epoch": 21.74,
+ "learning_rate": 8.345406253772786e-05,
+ "loss": 0.3843,
+ "step": 873000
+ },
+ {
+ "epoch": 21.81,
+ "learning_rate": 8.269950501026198e-05,
+ "loss": 0.3845,
+ "step": 876000
+ },
+ {
+ "epoch": 21.89,
+ "learning_rate": 8.194494748279608e-05,
+ "loss": 0.3809,
+ "step": 879000
+ },
+ {
+ "epoch": 21.96,
+ "learning_rate": 8.11903899553302e-05,
+ "loss": 0.3824,
+ "step": 882000
+ },
+ {
+ "epoch": 22.04,
+ "learning_rate": 8.04358324278643e-05,
+ "loss": 0.3801,
+ "step": 885000
+ },
+ {
+ "epoch": 22.11,
+ "learning_rate": 7.96812749003984e-05,
+ "loss": 0.3702,
+ "step": 888000
+ },
+ {
+ "epoch": 22.19,
+ "learning_rate": 7.892671737293251e-05,
+ "loss": 0.3713,
+ "step": 891000
+ },
+ {
+ "epoch": 22.26,
+ "learning_rate": 7.817215984546663e-05,
+ "loss": 0.3715,
+ "step": 894000
+ },
+ {
+ "epoch": 22.34,
+ "learning_rate": 7.741760231800071e-05,
+ "loss": 0.3681,
+ "step": 897000
+ },
+ {
+ "epoch": 22.41,
+ "learning_rate": 7.666304479053483e-05,
+ "loss": 0.3714,
+ "step": 900000
+ },
+ {
+ "epoch": 22.49,
+ "learning_rate": 7.590848726306893e-05,
+ "loss": 0.3725,
+ "step": 903000
+ },
+ {
+ "epoch": 22.56,
+ "learning_rate": 7.515392973560303e-05,
+ "loss": 0.3692,
+ "step": 906000
+ },
+ {
+ "epoch": 22.63,
+ "learning_rate": 7.439937220813715e-05,
+ "loss": 0.375,
+ "step": 909000
+ },
+ {
+ "epoch": 22.71,
+ "learning_rate": 7.364481468067125e-05,
+ "loss": 0.3721,
+ "step": 912000
+ },
+ {
+ "epoch": 22.78,
+ "learning_rate": 7.289025715320536e-05,
+ "loss": 0.3699,
+ "step": 915000
+ },
+ {
+ "epoch": 22.86,
+ "learning_rate": 7.213569962573946e-05,
+ "loss": 0.37,
+ "step": 918000
+ },
+ {
+ "epoch": 22.93,
+ "learning_rate": 7.138114209827356e-05,
+ "loss": 0.3702,
+ "step": 921000
+ },
+ {
+ "epoch": 23.01,
+ "learning_rate": 7.062658457080768e-05,
+ "loss": 0.3668,
+ "step": 924000
+ },
+ {
+ "epoch": 23.08,
+ "learning_rate": 6.987202704334178e-05,
+ "loss": 0.3602,
+ "step": 927000
+ },
+ {
+ "epoch": 23.16,
+ "learning_rate": 6.911746951587588e-05,
+ "loss": 0.3557,
+ "step": 930000
+ },
+ {
+ "epoch": 23.23,
+ "learning_rate": 6.836291198840998e-05,
+ "loss": 0.3607,
+ "step": 933000
+ },
+ {
+ "epoch": 23.31,
+ "learning_rate": 6.76083544609441e-05,
+ "loss": 0.3571,
+ "step": 936000
+ },
+ {
+ "epoch": 23.38,
+ "learning_rate": 6.68537969334782e-05,
+ "loss": 0.3589,
+ "step": 939000
+ },
+ {
+ "epoch": 23.46,
+ "learning_rate": 6.609923940601231e-05,
+ "loss": 0.361,
+ "step": 942000
+ },
+ {
+ "epoch": 23.53,
+ "learning_rate": 6.534468187854641e-05,
+ "loss": 0.3595,
+ "step": 945000
+ },
+ {
+ "epoch": 23.61,
+ "learning_rate": 6.459012435108053e-05,
+ "loss": 0.3554,
+ "step": 948000
+ },
+ {
+ "epoch": 23.68,
+ "learning_rate": 6.383556682361463e-05,
+ "loss": 0.3572,
+ "step": 951000
+ },
+ {
+ "epoch": 23.75,
+ "learning_rate": 6.308100929614873e-05,
+ "loss": 0.3604,
+ "step": 954000
+ },
+ {
+ "epoch": 23.83,
+ "learning_rate": 6.232645176868283e-05,
+ "loss": 0.3591,
+ "step": 957000
+ },
+ {
+ "epoch": 23.9,
+ "learning_rate": 6.157189424121695e-05,
+ "loss": 0.3582,
+ "step": 960000
+ },
+ {
+ "epoch": 23.98,
+ "learning_rate": 6.0817336713751056e-05,
+ "loss": 0.3568,
+ "step": 963000
+ },
+ {
+ "epoch": 24.05,
+ "learning_rate": 6.006277918628516e-05,
+ "loss": 0.3495,
+ "step": 966000
+ },
+ {
+ "epoch": 24.13,
+ "learning_rate": 5.930822165881926e-05,
+ "loss": 0.3484,
+ "step": 969000
+ },
+ {
+ "epoch": 24.2,
+ "learning_rate": 5.855366413135337e-05,
+ "loss": 0.3449,
+ "step": 972000
+ },
+ {
+ "epoch": 24.28,
+ "learning_rate": 5.7799106603887474e-05,
+ "loss": 0.3471,
+ "step": 975000
+ },
+ {
+ "epoch": 24.35,
+ "learning_rate": 5.704454907642158e-05,
+ "loss": 0.3495,
+ "step": 978000
+ },
+ {
+ "epoch": 24.43,
+ "learning_rate": 5.6289991548955684e-05,
+ "loss": 0.3489,
+ "step": 981000
+ },
+ {
+ "epoch": 24.5,
+ "learning_rate": 5.55354340214898e-05,
+ "loss": 0.3464,
+ "step": 984000
+ },
+ {
+ "epoch": 24.58,
+ "learning_rate": 5.47808764940239e-05,
+ "loss": 0.3485,
+ "step": 987000
+ },
+ {
+ "epoch": 24.65,
+ "learning_rate": 5.402631896655801e-05,
+ "loss": 0.3486,
+ "step": 990000
+ },
+ {
+ "epoch": 24.73,
+ "learning_rate": 5.327176143909211e-05,
+ "loss": 0.3476,
+ "step": 993000
+ },
+ {
+ "epoch": 24.8,
+ "learning_rate": 5.2517203911626224e-05,
+ "loss": 0.3502,
+ "step": 996000
+ },
+ {
+ "epoch": 24.88,
+ "learning_rate": 5.1762646384160325e-05,
+ "loss": 0.3492,
+ "step": 999000
+ },
+ {
+ "epoch": 24.95,
+ "learning_rate": 5.1008088856694426e-05,
+ "loss": 0.347,
+ "step": 1002000
+ },
+ {
+ "epoch": 25.02,
+ "learning_rate": 5.0253531329228534e-05,
+ "loss": 0.343,
+ "step": 1005000
+ },
+ {
+ "epoch": 25.1,
+ "learning_rate": 4.949897380176264e-05,
+ "loss": 0.3366,
+ "step": 1008000
+ },
+ {
+ "epoch": 25.17,
+ "learning_rate": 4.874441627429675e-05,
+ "loss": 0.3348,
+ "step": 1011000
+ },
+ {
+ "epoch": 25.25,
+ "learning_rate": 4.798985874683085e-05,
+ "loss": 0.3344,
+ "step": 1014000
+ },
+ {
+ "epoch": 25.32,
+ "learning_rate": 4.723530121936496e-05,
+ "loss": 0.3406,
+ "step": 1017000
+ },
+ {
+ "epoch": 25.4,
+ "learning_rate": 4.648074369189907e-05,
+ "loss": 0.3366,
+ "step": 1020000
+ },
+ {
+ "epoch": 25.47,
+ "learning_rate": 4.5726186164433176e-05,
+ "loss": 0.3392,
+ "step": 1023000
+ },
+ {
+ "epoch": 25.55,
+ "learning_rate": 4.497162863696728e-05,
+ "loss": 0.3379,
+ "step": 1026000
+ },
+ {
+ "epoch": 25.62,
+ "learning_rate": 4.421707110950138e-05,
+ "loss": 0.3388,
+ "step": 1029000
+ },
+ {
+ "epoch": 25.7,
+ "learning_rate": 4.346251358203549e-05,
+ "loss": 0.3383,
+ "step": 1032000
+ },
+ {
+ "epoch": 25.77,
+ "learning_rate": 4.27079560545696e-05,
+ "loss": 0.3372,
+ "step": 1035000
+ },
+ {
+ "epoch": 25.85,
+ "learning_rate": 4.19533985271037e-05,
+ "loss": 0.3358,
+ "step": 1038000
+ },
+ {
+ "epoch": 25.92,
+ "learning_rate": 4.1198840999637803e-05,
+ "loss": 0.3353,
+ "step": 1041000
+ },
+ {
+ "epoch": 26.0,
+ "learning_rate": 4.044428347217192e-05,
+ "loss": 0.34,
+ "step": 1044000
+ },
+ {
+ "epoch": 26.07,
+ "learning_rate": 3.968972594470602e-05,
+ "loss": 0.3282,
+ "step": 1047000
+ },
+ {
+ "epoch": 26.15,
+ "learning_rate": 3.893516841724013e-05,
+ "loss": 0.3267,
+ "step": 1050000
+ },
+ {
+ "epoch": 26.22,
+ "learning_rate": 3.818061088977423e-05,
+ "loss": 0.3268,
+ "step": 1053000
+ },
+ {
+ "epoch": 26.29,
+ "learning_rate": 3.742605336230834e-05,
+ "loss": 0.3248,
+ "step": 1056000
+ },
+ {
+ "epoch": 26.37,
+ "learning_rate": 3.6671495834842445e-05,
+ "loss": 0.3268,
+ "step": 1059000
+ },
+ {
+ "epoch": 26.44,
+ "learning_rate": 3.591693830737655e-05,
+ "loss": 0.324,
+ "step": 1062000
+ },
+ {
+ "epoch": 26.52,
+ "learning_rate": 3.516238077991066e-05,
+ "loss": 0.3298,
+ "step": 1065000
+ },
+ {
+ "epoch": 26.59,
+ "learning_rate": 3.440782325244476e-05,
+ "loss": 0.3296,
+ "step": 1068000
+ },
+ {
+ "epoch": 26.67,
+ "learning_rate": 3.365326572497887e-05,
+ "loss": 0.3261,
+ "step": 1071000
+ },
+ {
+ "epoch": 26.74,
+ "learning_rate": 3.289870819751297e-05,
+ "loss": 0.3284,
+ "step": 1074000
+ },
+ {
+ "epoch": 26.82,
+ "learning_rate": 3.214415067004708e-05,
+ "loss": 0.3279,
+ "step": 1077000
+ },
+ {
+ "epoch": 26.89,
+ "learning_rate": 3.138959314258119e-05,
+ "loss": 0.3273,
+ "step": 1080000
+ },
+ {
+ "epoch": 26.97,
+ "learning_rate": 3.0635035615115295e-05,
+ "loss": 0.3275,
+ "step": 1083000
+ },
+ {
+ "epoch": 27.04,
+ "learning_rate": 2.9880478087649397e-05,
+ "loss": 0.323,
+ "step": 1086000
+ },
+ {
+ "epoch": 27.12,
+ "learning_rate": 2.9125920560183505e-05,
+ "loss": 0.3182,
+ "step": 1089000
+ },
+ {
+ "epoch": 27.19,
+ "learning_rate": 2.837136303271761e-05,
+ "loss": 0.3209,
+ "step": 1092000
+ },
+ {
+ "epoch": 27.27,
+ "learning_rate": 2.7616805505251717e-05,
+ "loss": 0.3185,
+ "step": 1095000
+ },
+ {
+ "epoch": 27.34,
+ "learning_rate": 2.6862247977785822e-05,
+ "loss": 0.3214,
+ "step": 1098000
+ },
+ {
+ "epoch": 27.42,
+ "learning_rate": 2.610769045031993e-05,
+ "loss": 0.3164,
+ "step": 1101000
+ },
+ {
+ "epoch": 27.49,
+ "learning_rate": 2.5353132922854035e-05,
+ "loss": 0.3206,
+ "step": 1104000
+ },
+ {
+ "epoch": 27.56,
+ "learning_rate": 2.4598575395388143e-05,
+ "loss": 0.3175,
+ "step": 1107000
+ },
+ {
+ "epoch": 27.64,
+ "learning_rate": 2.3844017867922247e-05,
+ "loss": 0.3185,
+ "step": 1110000
+ },
+ {
+ "epoch": 27.71,
+ "learning_rate": 2.3089460340456355e-05,
+ "loss": 0.3199,
+ "step": 1113000
+ },
+ {
+ "epoch": 27.79,
+ "learning_rate": 2.233490281299046e-05,
+ "loss": 0.318,
+ "step": 1116000
+ },
+ {
+ "epoch": 27.86,
+ "learning_rate": 2.1580345285524568e-05,
+ "loss": 0.319,
+ "step": 1119000
+ },
+ {
+ "epoch": 27.94,
+ "learning_rate": 2.082578775805867e-05,
+ "loss": 0.3152,
+ "step": 1122000
+ },
+ {
+ "epoch": 28.01,
+ "learning_rate": 2.0071230230592777e-05,
+ "loss": 0.3161,
+ "step": 1125000
+ },
+ {
+ "epoch": 28.09,
+ "learning_rate": 1.9316672703126882e-05,
+ "loss": 0.3142,
+ "step": 1128000
+ },
+ {
+ "epoch": 28.16,
+ "learning_rate": 1.856211517566099e-05,
+ "loss": 0.3129,
+ "step": 1131000
+ },
+ {
+ "epoch": 28.24,
+ "learning_rate": 1.7807557648195098e-05,
+ "loss": 0.3123,
+ "step": 1134000
+ },
+ {
+ "epoch": 28.31,
+ "learning_rate": 1.7053000120729203e-05,
+ "loss": 0.314,
+ "step": 1137000
+ },
+ {
+ "epoch": 28.39,
+ "learning_rate": 1.629844259326331e-05,
+ "loss": 0.3137,
+ "step": 1140000
+ },
+ {
+ "epoch": 28.46,
+ "learning_rate": 1.5543885065797415e-05,
+ "loss": 0.3093,
+ "step": 1143000
+ },
+ {
+ "epoch": 28.54,
+ "learning_rate": 1.4789327538331522e-05,
+ "loss": 0.3128,
+ "step": 1146000
+ },
+ {
+ "epoch": 28.61,
+ "learning_rate": 1.4034770010865628e-05,
+ "loss": 0.3127,
+ "step": 1149000
+ },
+ {
+ "epoch": 28.69,
+ "learning_rate": 1.3280212483399733e-05,
+ "loss": 0.3116,
+ "step": 1152000
+ },
+ {
+ "epoch": 28.76,
+ "learning_rate": 1.2525654955933839e-05,
+ "loss": 0.3117,
+ "step": 1155000
+ },
+ {
+ "epoch": 28.83,
+ "learning_rate": 1.1771097428467945e-05,
+ "loss": 0.3083,
+ "step": 1158000
+ },
+ {
+ "epoch": 28.91,
+ "learning_rate": 1.1016539901002052e-05,
+ "loss": 0.3099,
+ "step": 1161000
+ },
+ {
+ "epoch": 28.98,
+ "learning_rate": 1.0261982373536158e-05,
+ "loss": 0.3064,
+ "step": 1164000
+ }
+ ],
+ "logging_steps": 3000,
+ "max_steps": 1204800,
+ "num_train_epochs": 30,
+ "save_steps": 500,
+ "total_flos": 2.313507002079911e+21,
+ "trial_name": null,
+ "trial_params": null
+}
diff --git a/checkpoint-1164640/training_args.bin b/checkpoint-1164640/training_args.bin
new file mode 100644
index 0000000000000000000000000000000000000000..fd8dc3cd49483d3920a9ebf868118e8673b4a989
--- /dev/null
+++ b/checkpoint-1164640/training_args.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3ba804e9f40dd8d142a57ab99d24265056b11e547908881dba51c1cd9148def3
+size 4600
diff --git a/checkpoint-1164640/vocab.json b/checkpoint-1164640/vocab.json
new file mode 100644
index 0000000000000000000000000000000000000000..8b9102f390f8bc2f807efc9dac5ec470f0fe2f38
--- /dev/null
+++ b/checkpoint-1164640/vocab.json
@@ -0,0 +1,2253 @@
+{
+ "\b": 0,
+ "\"": 2,
+ "#": 3,
+ ";": 4,
+ "=": 5,
+ ">": 6,
+ "[PAD]": 2250,
+ "[UNK]": 2249,
+ "_": 7,
+ "`": 8,
+ "|": 1,
+ "}": 9,
+ "°": 10,
+ "è": 11,
+ "฿": 12,
+ "ᆫ": 13,
+ "ᆯ": 14,
+ "ᆷ": 15,
+ "ᇂ": 16,
+ "": 17,
+ "℃": 18,
+ "ℓ": 19,
+ "ㄱ": 20,
+ "ㄴ": 21,
+ "ㄸ": 22,
+ "ㄹ": 23,
+ "ㅁ": 24,
+ "ㅂ": 25,
+ "ㅅ": 26,
+ "ㅇ": 27,
+ "ㅋ": 28,
+ "ㅌ": 29,
+ "ㅍ": 30,
+ "ㅏ": 31,
+ "ㅔ": 32,
+ "ㅠ": 33,
+ "ㅡ": 34,
+ "無": 35,
+ "가": 36,
+ "각": 37,
+ "간": 38,
+ "갇": 39,
+ "갈": 40,
+ "갉": 41,
+ "감": 42,
+ "갑": 43,
+ "값": 44,
+ "갓": 45,
+ "갔": 46,
+ "강": 47,
+ "갖": 48,
+ "갗": 49,
+ "같": 50,
+ "갚": 51,
+ "갛": 52,
+ "개": 53,
+ "객": 54,
+ "갠": 55,
+ "갤": 56,
+ "갬": 57,
+ "갭": 58,
+ "갯": 59,
+ "갰": 60,
+ "갱": 61,
+ "갸": 62,
+ "갼": 63,
+ "걀": 64,
+ "걈": 65,
+ "걉": 66,
+ "걍": 67,
+ "걎": 68,
+ "걔": 69,
+ "걘": 70,
+ "거": 71,
+ "걱": 72,
+ "건": 73,
+ "걷": 74,
+ "걸": 75,
+ "검": 76,
+ "겁": 77,
+ "것": 78,
+ "겄": 79,
+ "겅": 80,
+ "겉": 81,
+ "겋": 82,
+ "게": 83,
+ "겐": 84,
+ "겔": 85,
+ "겜": 86,
+ "겝": 87,
+ "겟": 88,
+ "겠": 89,
+ "겡": 90,
+ "겨": 91,
+ "격": 92,
+ "겪": 93,
+ "견": 94,
+ "결": 95,
+ "겸": 96,
+ "겹": 97,
+ "겼": 98,
+ "경": 99,
+ "곁": 100,
+ "곃": 101,
+ "계": 102,
+ "곈": 103,
+ "곘": 104,
+ "고": 105,
+ "곡": 106,
+ "곤": 107,
+ "곧": 108,
+ "골": 109,
+ "곪": 110,
+ "곯": 111,
+ "곰": 112,
+ "곱": 113,
+ "곳": 114,
+ "공": 115,
+ "곶": 116,
+ "과": 117,
+ "곽": 118,
+ "관": 119,
+ "괄": 120,
+ "괌": 121,
+ "괍": 122,
+ "광": 123,
+ "괘": 124,
+ "괜": 125,
+ "괭": 126,
+ "괴": 127,
+ "괸": 128,
+ "괼": 129,
+ "굉": 130,
+ "교": 131,
+ "굑": 132,
+ "굔": 133,
+ "굣": 134,
+ "굥": 135,
+ "구": 136,
+ "국": 137,
+ "군": 138,
+ "굳": 139,
+ "굴": 140,
+ "굵": 141,
+ "굶": 142,
+ "굼": 143,
+ "굽": 144,
+ "굿": 145,
+ "궁": 146,
+ "궂": 147,
+ "궄": 148,
+ "궈": 149,
+ "권": 150,
+ "궐": 151,
+ "궜": 152,
+ "궤": 153,
+ "귀": 154,
+ "귄": 155,
+ "귈": 156,
+ "귓": 157,
+ "규": 158,
+ "귝": 159,
+ "균": 160,
+ "귤": 161,
+ "그": 162,
+ "극": 163,
+ "근": 164,
+ "귿": 165,
+ "글": 166,
+ "긁": 167,
+ "금": 168,
+ "급": 169,
+ "긋": 170,
+ "긍": 171,
+ "긑": 172,
+ "긔": 173,
+ "기": 174,
+ "긱": 175,
+ "긴": 176,
+ "길": 177,
+ "김": 178,
+ "깁": 179,
+ "깃": 180,
+ "깄": 181,
+ "깅": 182,
+ "깆": 183,
+ "깉": 184,
+ "깊": 185,
+ "까": 186,
+ "깍": 187,
+ "깎": 188,
+ "깐": 189,
+ "깔": 190,
+ "깜": 191,
+ "깝": 192,
+ "깟": 193,
+ "깠": 194,
+ "깡": 195,
+ "깥": 196,
+ "깨": 197,
+ "깩": 198,
+ "깬": 199,
+ "깰": 200,
+ "깸": 201,
+ "깹": 202,
+ "깻": 203,
+ "깼": 204,
+ "깽": 205,
+ "꺄": 206,
+ "꺅": 207,
+ "꺠": 208,
+ "꺤": 209,
+ "꺨": 210,
+ "꺴": 211,
+ "꺼": 212,
+ "꺽": 213,
+ "꺾": 214,
+ "껀": 215,
+ "껄": 216,
+ "껌": 217,
+ "껍": 218,
+ "껏": 219,
+ "껐": 220,
+ "껑": 221,
+ "껗": 222,
+ "께": 223,
+ "껜": 224,
+ "껨": 225,
+ "껫": 226,
+ "껭": 227,
+ "껴": 228,
+ "꼈": 229,
+ "꼉": 230,
+ "꼐": 231,
+ "꼬": 232,
+ "꼭": 233,
+ "꼰": 234,
+ "꼴": 235,
+ "꼼": 236,
+ "꼽": 237,
+ "꼿": 238,
+ "꽁": 239,
+ "꽂": 240,
+ "꽃": 241,
+ "꽅": 242,
+ "꽈": 243,
+ "꽉": 244,
+ "꽌": 245,
+ "꽐": 246,
+ "꽝": 247,
+ "꽤": 248,
+ "꽥": 249,
+ "꾀": 250,
+ "꾜": 251,
+ "꾸": 252,
+ "꾹": 253,
+ "꾼": 254,
+ "꿀": 255,
+ "꿇": 256,
+ "꿈": 257,
+ "꿉": 258,
+ "꿋": 259,
+ "꿍": 260,
+ "꿎": 261,
+ "꿔": 262,
+ "꿘": 263,
+ "꿧": 264,
+ "꿨": 265,
+ "꿩": 266,
+ "꿰": 267,
+ "뀌": 268,
+ "뀐": 269,
+ "뀔": 270,
+ "뀜": 271,
+ "뀝": 272,
+ "뀠": 273,
+ "뀨": 274,
+ "뀽": 275,
+ "끄": 276,
+ "끈": 277,
+ "끊": 278,
+ "끋": 279,
+ "끌": 280,
+ "끓": 281,
+ "끔": 282,
+ "끕": 283,
+ "끗": 284,
+ "끙": 285,
+ "끝": 286,
+ "끼": 287,
+ "끽": 288,
+ "낀": 289,
+ "낄": 290,
+ "낌": 291,
+ "낍": 292,
+ "낏": 293,
+ "낑": 294,
+ "나": 295,
+ "낙": 296,
+ "낚": 297,
+ "난": 298,
+ "날": 299,
+ "낡": 300,
+ "남": 301,
+ "납": 302,
+ "낫": 303,
+ "났": 304,
+ "낭": 305,
+ "낮": 306,
+ "낯": 307,
+ "낱": 308,
+ "낳": 309,
+ "내": 310,
+ "낵": 311,
+ "낸": 312,
+ "낼": 313,
+ "냄": 314,
+ "냅": 315,
+ "냇": 316,
+ "냈": 317,
+ "냉": 318,
+ "냐": 319,
+ "냑": 320,
+ "냔": 321,
+ "냘": 322,
+ "냠": 323,
+ "냥": 324,
+ "냬": 325,
+ "너": 326,
+ "넉": 327,
+ "넋": 328,
+ "넌": 329,
+ "널": 330,
+ "넒": 331,
+ "넓": 332,
+ "넘": 333,
+ "넙": 334,
+ "넛": 335,
+ "넜": 336,
+ "넝": 337,
+ "넢": 338,
+ "넣": 339,
+ "네": 340,
+ "넥": 341,
+ "넨": 342,
+ "넫": 343,
+ "넬": 344,
+ "넴": 345,
+ "넵": 346,
+ "넷": 347,
+ "넸": 348,
+ "넹": 349,
+ "녀": 350,
+ "녁": 351,
+ "년": 352,
+ "념": 353,
+ "녑": 354,
+ "녔": 355,
+ "녕": 356,
+ "녘": 357,
+ "녜": 358,
+ "노": 359,
+ "녹": 360,
+ "논": 361,
+ "놀": 362,
+ "놇": 363,
+ "놈": 364,
+ "놉": 365,
+ "놋": 366,
+ "농": 367,
+ "높": 368,
+ "놓": 369,
+ "놔": 370,
+ "놧": 371,
+ "놨": 372,
+ "놯": 373,
+ "뇌": 374,
+ "뇨": 375,
+ "뇰": 376,
+ "뇸": 377,
+ "뇽": 378,
+ "누": 379,
+ "눅": 380,
+ "눈": 381,
+ "눌": 382,
+ "눔": 383,
+ "눕": 384,
+ "눗": 385,
+ "눙": 386,
+ "눞": 387,
+ "눠": 388,
+ "눴": 389,
+ "뉘": 390,
+ "뉜": 391,
+ "뉠": 392,
+ "뉩": 393,
+ "뉴": 394,
+ "늄": 395,
+ "늉": 396,
+ "느": 397,
+ "늑": 398,
+ "는": 399,
+ "늗": 400,
+ "늘": 401,
+ "늙": 402,
+ "늠": 403,
+ "늡": 404,
+ "능": 405,
+ "늦": 406,
+ "늪": 407,
+ "늫": 408,
+ "늬": 409,
+ "니": 410,
+ "닉": 411,
+ "닌": 412,
+ "닐": 413,
+ "님": 414,
+ "닙": 415,
+ "닛": 416,
+ "닝": 417,
+ "다": 418,
+ "닥": 419,
+ "닦": 420,
+ "단": 421,
+ "닫": 422,
+ "달": 423,
+ "닭": 424,
+ "닮": 425,
+ "닯": 426,
+ "닳": 427,
+ "담": 428,
+ "답": 429,
+ "닷": 430,
+ "닸": 431,
+ "당": 432,
+ "닺": 433,
+ "닿": 434,
+ "대": 435,
+ "댁": 436,
+ "댄": 437,
+ "댈": 438,
+ "댐": 439,
+ "댑": 440,
+ "댓": 441,
+ "댔": 442,
+ "댕": 443,
+ "댗": 444,
+ "댜": 445,
+ "더": 446,
+ "덕": 447,
+ "던": 448,
+ "덜": 449,
+ "덞": 450,
+ "덟": 451,
+ "덤": 452,
+ "덥": 453,
+ "덧": 454,
+ "덩": 455,
+ "덪": 456,
+ "덫": 457,
+ "덮": 458,
+ "데": 459,
+ "덱": 460,
+ "덴": 461,
+ "델": 462,
+ "뎀": 463,
+ "뎁": 464,
+ "뎃": 465,
+ "뎅": 466,
+ "뎊": 467,
+ "뎌": 468,
+ "뎠": 469,
+ "뎡": 470,
+ "도": 471,
+ "독": 472,
+ "돈": 473,
+ "돋": 474,
+ "돌": 475,
+ "돔": 476,
+ "돕": 477,
+ "돗": 478,
+ "동": 479,
+ "돚": 480,
+ "돠": 481,
+ "돨": 482,
+ "돼": 483,
+ "됀": 484,
+ "됌": 485,
+ "됍": 486,
+ "됐": 487,
+ "됑": 488,
+ "되": 489,
+ "된": 490,
+ "될": 491,
+ "됨": 492,
+ "됩": 493,
+ "됬": 494,
+ "됴": 495,
+ "두": 496,
+ "둑": 497,
+ "둔": 498,
+ "둘": 499,
+ "둠": 500,
+ "둡": 501,
+ "둣": 502,
+ "둥": 503,
+ "둬": 504,
+ "뒀": 505,
+ "뒈": 506,
+ "뒤": 507,
+ "뒨": 508,
+ "뒷": 509,
+ "뒹": 510,
+ "듀": 511,
+ "듄": 512,
+ "듈": 513,
+ "듐": 514,
+ "드": 515,
+ "득": 516,
+ "든": 517,
+ "듣": 518,
+ "들": 519,
+ "듦": 520,
+ "듬": 521,
+ "듭": 522,
+ "듯": 523,
+ "등": 524,
+ "디": 525,
+ "딕": 526,
+ "딘": 527,
+ "딛": 528,
+ "딜": 529,
+ "딣": 530,
+ "딤": 531,
+ "딥": 532,
+ "딧": 533,
+ "딨": 534,
+ "딩": 535,
+ "딪": 536,
+ "딫": 537,
+ "따": 538,
+ "딱": 539,
+ "딲": 540,
+ "딴": 541,
+ "딸": 542,
+ "땀": 543,
+ "땁": 544,
+ "땃": 545,
+ "땄": 546,
+ "땅": 547,
+ "땋": 548,
+ "때": 549,
+ "땍": 550,
+ "땐": 551,
+ "땔": 552,
+ "땜": 553,
+ "땝": 554,
+ "땟": 555,
+ "땠": 556,
+ "땡": 557,
+ "떄": 558,
+ "떈": 559,
+ "떌": 560,
+ "떘": 561,
+ "떙": 562,
+ "떠": 563,
+ "떡": 564,
+ "떢": 565,
+ "떤": 566,
+ "떨": 567,
+ "떫": 568,
+ "떰": 569,
+ "떱": 570,
+ "떳": 571,
+ "떴": 572,
+ "떵": 573,
+ "떻": 574,
+ "떼": 575,
+ "떽": 576,
+ "뗀": 577,
+ "뗄": 578,
+ "뗌": 579,
+ "뗍": 580,
+ "뗏": 581,
+ "뗐": 582,
+ "뗘": 583,
+ "뗴": 584,
+ "뗸": 585,
+ "또": 586,
+ "똑": 587,
+ "똔": 588,
+ "똘": 589,
+ "똟": 590,
+ "똠": 591,
+ "똣": 592,
+ "똥": 593,
+ "똬": 594,
+ "뙈": 595,
+ "뙤": 596,
+ "뚜": 597,
+ "뚝": 598,
+ "뚠": 599,
+ "뚤": 600,
+ "뚫": 601,
+ "뚱": 602,
+ "뚷": 603,
+ "뛰": 604,
+ "뛴": 605,
+ "뛸": 606,
+ "뜀": 607,
+ "뜁": 608,
+ "뜨": 609,
+ "뜩": 610,
+ "뜬": 611,
+ "뜯": 612,
+ "뜰": 613,
+ "뜷": 614,
+ "뜸": 615,
+ "뜹": 616,
+ "뜻": 617,
+ "뜽": 618,
+ "띁": 619,
+ "띄": 620,
+ "띈": 621,
+ "띌": 622,
+ "띕": 623,
+ "띠": 624,
+ "띡": 625,
+ "띤": 626,
+ "띨": 627,
+ "띰": 628,
+ "띱": 629,
+ "띵": 630,
+ "라": 631,
+ "락": 632,
+ "란": 633,
+ "랄": 634,
+ "람": 635,
+ "랍": 636,
+ "랏": 637,
+ "랐": 638,
+ "랑": 639,
+ "랖": 640,
+ "랗": 641,
+ "래": 642,
+ "랙": 643,
+ "랜": 644,
+ "랠": 645,
+ "램": 646,
+ "랩": 647,
+ "랫": 648,
+ "랬": 649,
+ "랭": 650,
+ "랴": 651,
+ "략": 652,
+ "량": 653,
+ "럤": 654,
+ "러": 655,
+ "럭": 656,
+ "런": 657,
+ "럴": 658,
+ "럼": 659,
+ "럽": 660,
+ "럿": 661,
+ "렀": 662,
+ "렁": 663,
+ "렇": 664,
+ "레": 665,
+ "렉": 666,
+ "렌": 667,
+ "렐": 668,
+ "렘": 669,
+ "렙": 670,
+ "렛": 671,
+ "렜": 672,
+ "렝": 673,
+ "렣": 674,
+ "려": 675,
+ "력": 676,
+ "련": 677,
+ "렬": 678,
+ "렴": 679,
+ "렵": 680,
+ "렷": 681,
+ "렸": 682,
+ "령": 683,
+ "렿": 684,
+ "례": 685,
+ "롄": 686,
+ "로": 687,
+ "록": 688,
+ "론": 689,
+ "롤": 690,
+ "롬": 691,
+ "롭": 692,
+ "롯": 693,
+ "롱": 694,
+ "롷": 695,
+ "롸": 696,
+ "뢋": 697,
+ "뢍": 698,
+ "뢰": 699,
+ "룃": 700,
+ "료": 701,
+ "룐": 702,
+ "룡": 703,
+ "루": 704,
+ "룩": 705,
+ "룬": 706,
+ "룰": 707,
+ "룸": 708,
+ "룹": 709,
+ "룻": 710,
+ "룽": 711,
+ "뤄": 712,
+ "뤘": 713,
+ "뤙": 714,
+ "뤼": 715,
+ "륑": 716,
+ "류": 717,
+ "륙": 718,
+ "륜": 719,
+ "률": 720,
+ "륨": 721,
+ "륭": 722,
+ "르": 723,
+ "륵": 724,
+ "른": 725,
+ "륻": 726,
+ "를": 727,
+ "름": 728,
+ "릅": 729,
+ "릇": 730,
+ "릈": 731,
+ "릉": 732,
+ "릎": 733,
+ "릏": 734,
+ "리": 735,
+ "릭": 736,
+ "린": 737,
+ "릴": 738,
+ "림": 739,
+ "립": 740,
+ "릿": 741,
+ "맀": 742,
+ "링": 743,
+ "마": 744,
+ "막": 745,
+ "만": 746,
+ "맍": 747,
+ "많": 748,
+ "맏": 749,
+ "말": 750,
+ "맑": 751,
+ "맗": 752,
+ "맘": 753,
+ "맙": 754,
+ "맛": 755,
+ "맜": 756,
+ "망": 757,
+ "맞": 758,
+ "맡": 759,
+ "맣": 760,
+ "매": 761,
+ "맥": 762,
+ "맨": 763,
+ "맫": 764,
+ "맬": 765,
+ "맴": 766,
+ "맵": 767,
+ "맷": 768,
+ "맸": 769,
+ "맹": 770,
+ "맺": 771,
+ "맻": 772,
+ "맽": 773,
+ "먀": 774,
+ "먕": 775,
+ "먖": 776,
+ "머": 777,
+ "먹": 778,
+ "먼": 779,
+ "멀": 780,
+ "멈": 781,
+ "멉": 782,
+ "멋": 783,
+ "멌": 784,
+ "멍": 785,
+ "멎": 786,
+ "멏": 787,
+ "멓": 788,
+ "메": 789,
+ "멕": 790,
+ "멘": 791,
+ "멜": 792,
+ "멤": 793,
+ "멥": 794,
+ "멧": 795,
+ "멨": 796,
+ "멩": 797,
+ "멫": 798,
+ "며": 799,
+ "멱": 800,
+ "면": 801,
+ "멸": 802,
+ "몀": 803,
+ "몄": 804,
+ "명": 805,
+ "몇": 806,
+ "몊": 807,
+ "몌": 808,
+ "모": 809,
+ "목": 810,
+ "몫": 811,
+ "몬": 812,
+ "몰": 813,
+ "몸": 814,
+ "몹": 815,
+ "못": 816,
+ "몽": 817,
+ "뫼": 818,
+ "묘": 819,
+ "묜": 820,
+ "묭": 821,
+ "무": 822,
+ "묵": 823,
+ "묶": 824,
+ "문": 825,
+ "묻": 826,
+ "물": 827,
+ "묽": 828,
+ "뭄": 829,
+ "뭅": 830,
+ "뭇": 831,
+ "뭉": 832,
+ "뭍": 833,
+ "뭐": 834,
+ "뭔": 835,
+ "뭘": 836,
+ "뭡": 837,
+ "뭣": 838,
+ "뭥": 839,
+ "뭬": 840,
+ "뭰": 841,
+ "뮈": 842,
+ "뮌": 843,
+ "뮐": 844,
+ "뮤": 845,
+ "뮨": 846,
+ "뮬": 847,
+ "므": 848,
+ "믄": 849,
+ "믈": 850,
+ "믐": 851,
+ "믕": 852,
+ "미": 853,
+ "믹": 854,
+ "민": 855,
+ "믾": 856,
+ "믿": 857,
+ "밀": 858,
+ "밈": 859,
+ "밉": 860,
+ "밋": 861,
+ "밌": 862,
+ "밍": 863,
+ "밎": 864,
+ "및": 865,
+ "밐": 866,
+ "밑": 867,
+ "바": 868,
+ "박": 869,
+ "밖": 870,
+ "반": 871,
+ "받": 872,
+ "발": 873,
+ "밝": 874,
+ "밟": 875,
+ "밤": 876,
+ "밥": 877,
+ "밧": 878,
+ "밨": 879,
+ "방": 880,
+ "밭": 881,
+ "배": 882,
+ "백": 883,
+ "밴": 884,
+ "밸": 885,
+ "뱀": 886,
+ "뱁": 887,
+ "뱃": 888,
+ "뱄": 889,
+ "뱅": 890,
+ "뱉": 891,
+ "뱌": 892,
+ "뱐": 893,
+ "버": 894,
+ "벅": 895,
+ "번": 896,
+ "벌": 897,
+ "범": 898,
+ "법": 899,
+ "벗": 900,
+ "벘": 901,
+ "벙": 902,
+ "벚": 903,
+ "벛": 904,
+ "벞": 905,
+ "베": 906,
+ "벡": 907,
+ "벤": 908,
+ "벨": 909,
+ "벳": 910,
+ "벴": 911,
+ "벵": 912,
+ "벼": 913,
+ "벽": 914,
+ "변": 915,
+ "별": 916,
+ "볌": 917,
+ "볍": 918,
+ "볏": 919,
+ "볐": 920,
+ "병": 921,
+ "볓": 922,
+ "볕": 923,
+ "보": 924,
+ "복": 925,
+ "볶": 926,
+ "본": 927,
+ "볼": 928,
+ "봄": 929,
+ "봅": 930,
+ "봇": 931,
+ "봉": 932,
+ "봐": 933,
+ "봔": 934,
+ "봘": 935,
+ "봣": 936,
+ "봤": 937,
+ "봥": 938,
+ "봬": 939,
+ "봽": 940,
+ "뵀": 941,
+ "뵈": 942,
+ "뵌": 943,
+ "뵐": 944,
+ "뵙": 945,
+ "뵜": 946,
+ "뵤": 947,
+ "뵬": 948,
+ "뵹": 949,
+ "부": 950,
+ "북": 951,
+ "분": 952,
+ "붇": 953,
+ "불": 954,
+ "붉": 955,
+ "붐": 956,
+ "붑": 957,
+ "붓": 958,
+ "붔": 959,
+ "붕": 960,
+ "붙": 961,
+ "붚": 962,
+ "붰": 963,
+ "뷔": 964,
+ "뷜": 965,
+ "뷰": 966,
+ "뷸": 967,
+ "븁": 968,
+ "븅": 969,
+ "브": 970,
+ "븍": 971,
+ "븐": 972,
+ "블": 973,
+ "븕": 974,
+ "븜": 975,
+ "븝": 976,
+ "븟": 977,
+ "비": 978,
+ "빅": 979,
+ "빈": 980,
+ "빋": 981,
+ "빌": 982,
+ "빔": 983,
+ "빕": 984,
+ "빗": 985,
+ "빘": 986,
+ "빙": 987,
+ "빚": 988,
+ "빛": 989,
+ "빝": 990,
+ "빠": 991,
+ "빡": 992,
+ "빤": 993,
+ "빨": 994,
+ "빰": 995,
+ "빳": 996,
+ "빴": 997,
+ "빵": 998,
+ "빻": 999,
+ "빼": 1000,
+ "빽": 1001,
+ "뺀": 1002,
+ "뺄": 1003,
+ "뺌": 1004,
+ "뺍": 1005,
+ "뺏": 1006,
+ "뺐": 1007,
+ "뺑": 1008,
+ "뺘": 1009,
+ "뺙": 1010,
+ "뺨": 1011,
+ "뺴": 1012,
+ "뺵": 1013,
+ "뺼": 1014,
+ "뻇": 1015,
+ "뻈": 1016,
+ "뻉": 1017,
+ "뻐": 1018,
+ "뻑": 1019,
+ "뻔": 1020,
+ "뻗": 1021,
+ "뻘": 1022,
+ "뻠": 1023,
+ "뻣": 1024,
+ "뻤": 1025,
+ "뻥": 1026,
+ "뻬": 1027,
+ "뻰": 1028,
+ "뻴": 1029,
+ "뼀": 1030,
+ "뼁": 1031,
+ "뼈": 1032,
+ "뼉": 1033,
+ "뼐": 1034,
+ "뼘": 1035,
+ "뼛": 1036,
+ "뼝": 1037,
+ "뼨": 1038,
+ "뽀": 1039,
+ "뽁": 1040,
+ "뽂": 1041,
+ "뽄": 1042,
+ "뽈": 1043,
+ "뽐": 1044,
+ "뽑": 1045,
+ "뽓": 1046,
+ "뽕": 1047,
+ "뽝": 1048,
+ "뾰": 1049,
+ "뾱": 1050,
+ "뿅": 1051,
+ "뿌": 1052,
+ "뿍": 1053,
+ "뿐": 1054,
+ "뿓": 1055,
+ "뿔": 1056,
+ "뿜": 1057,
+ "뿝": 1058,
+ "뿟": 1059,
+ "뿠": 1060,
+ "뿡": 1061,
+ "쀼": 1062,
+ "쁘": 1063,
+ "쁜": 1064,
+ "쁠": 1065,
+ "쁨": 1066,
+ "쁩": 1067,
+ "삐": 1068,
+ "삑": 1069,
+ "삔": 1070,
+ "삘": 1071,
+ "삣": 1072,
+ "삥": 1073,
+ "삫": 1074,
+ "사": 1075,
+ "삭": 1076,
+ "산": 1077,
+ "살": 1078,
+ "삶": 1079,
+ "삼": 1080,
+ "삽": 1081,
+ "삿": 1082,
+ "샀": 1083,
+ "상": 1084,
+ "샅": 1085,
+ "새": 1086,
+ "색": 1087,
+ "샌": 1088,
+ "샐": 1089,
+ "샘": 1090,
+ "샙": 1091,
+ "샛": 1092,
+ "샜": 1093,
+ "생": 1094,
+ "샤": 1095,
+ "샥": 1096,
+ "샨": 1097,
+ "샬": 1098,
+ "샴": 1099,
+ "샵": 1100,
+ "샷": 1101,
+ "샸": 1102,
+ "샹": 1103,
+ "샾": 1104,
+ "섀": 1105,
+ "서": 1106,
+ "석": 1107,
+ "섞": 1108,
+ "선": 1109,
+ "섣": 1110,
+ "설": 1111,
+ "섬": 1112,
+ "섭": 1113,
+ "섯": 1114,
+ "섰": 1115,
+ "성": 1116,
+ "세": 1117,
+ "섹": 1118,
+ "센": 1119,
+ "셀": 1120,
+ "셈": 1121,
+ "셉": 1122,
+ "셋": 1123,
+ "셌": 1124,
+ "셍": 1125,
+ "셔": 1126,
+ "션": 1127,
+ "셜": 1128,
+ "셤": 1129,
+ "셥": 1130,
+ "셧": 1131,
+ "셨": 1132,
+ "셩": 1133,
+ "셰": 1134,
+ "셱": 1135,
+ "셴": 1136,
+ "셸": 1137,
+ "솁": 1138,
+ "소": 1139,
+ "속": 1140,
+ "솎": 1141,
+ "손": 1142,
+ "솓": 1143,
+ "솔": 1144,
+ "솜": 1145,
+ "솝": 1146,
+ "솟": 1147,
+ "송": 1148,
+ "솥": 1149,
+ "솧": 1150,
+ "솨": 1151,
+ "솩": 1152,
+ "쇄": 1153,
+ "쇠": 1154,
+ "쇳": 1155,
+ "쇼": 1156,
+ "쇽": 1157,
+ "숀": 1158,
+ "숄": 1159,
+ "숍": 1160,
+ "숏": 1161,
+ "숑": 1162,
+ "수": 1163,
+ "숙": 1164,
+ "순": 1165,
+ "숟": 1166,
+ "술": 1167,
+ "숨": 1168,
+ "숩": 1169,
+ "숫": 1170,
+ "숬": 1171,
+ "숭": 1172,
+ "숮": 1173,
+ "숯": 1174,
+ "숱": 1175,
+ "숲": 1176,
+ "숴": 1177,
+ "쉈": 1178,
+ "쉐": 1179,
+ "쉑": 1180,
+ "쉔": 1181,
+ "쉘": 1182,
+ "쉣": 1183,
+ "쉤": 1184,
+ "쉥": 1185,
+ "쉬": 1186,
+ "쉭": 1187,
+ "쉰": 1188,
+ "쉴": 1189,
+ "쉼": 1190,
+ "쉽": 1191,
+ "쉿": 1192,
+ "슈": 1193,
+ "슉": 1194,
+ "슌": 1195,
+ "슐": 1196,
+ "슘": 1197,
+ "슛": 1198,
+ "슝": 1199,
+ "스": 1200,
+ "슥": 1201,
+ "슨": 1202,
+ "슬": 1203,
+ "슭": 1204,
+ "슴": 1205,
+ "습": 1206,
+ "슷": 1207,
+ "승": 1208,
+ "슾": 1209,
+ "싀": 1210,
+ "싁": 1211,
+ "싑": 1212,
+ "시": 1213,
+ "식": 1214,
+ "신": 1215,
+ "싣": 1216,
+ "실": 1217,
+ "싫": 1218,
+ "심": 1219,
+ "십": 1220,
+ "싯": 1221,
+ "싰": 1222,
+ "싱": 1223,
+ "싵": 1224,
+ "싶": 1225,
+ "싸": 1226,
+ "싹": 1227,
+ "싼": 1228,
+ "쌀": 1229,
+ "쌈": 1230,
+ "쌉": 1231,
+ "쌋": 1232,
+ "쌌": 1233,
+ "쌍": 1234,
+ "쌓": 1235,
+ "쌔": 1236,
+ "쌕": 1237,
+ "쌘": 1238,
+ "쌜": 1239,
+ "쌤": 1240,
+ "쌥": 1241,
+ "쌨": 1242,
+ "쌩": 1243,
+ "쌰": 1244,
+ "썅": 1245,
+ "썜": 1246,
+ "썝": 1247,
+ "썡": 1248,
+ "써": 1249,
+ "썩": 1250,
+ "썪": 1251,
+ "썬": 1252,
+ "썰": 1253,
+ "썸": 1254,
+ "썹": 1255,
+ "썻": 1256,
+ "썼": 1257,
+ "썽": 1258,
+ "쎄": 1259,
+ "쎅": 1260,
+ "쎈": 1261,
+ "쎌": 1262,
+ "쎔": 1263,
+ "쎕": 1264,
+ "쎗": 1265,
+ "쎘": 1266,
+ "쎱": 1267,
+ "쎼": 1268,
+ "쎽": 1269,
+ "쏀": 1270,
+ "쏄": 1271,
+ "쏍": 1272,
+ "쏘": 1273,
+ "쏙": 1274,
+ "쏜": 1275,
+ "쏟": 1276,
+ "쏠": 1277,
+ "쏨": 1278,
+ "쏩": 1279,
+ "쏭": 1280,
+ "쏴": 1281,
+ "쏵": 1282,
+ "쐇": 1283,
+ "쐈": 1284,
+ "쐐": 1285,
+ "쐤": 1286,
+ "쐬": 1287,
+ "쐰": 1288,
+ "쐴": 1289,
+ "쐿": 1290,
+ "쑈": 1291,
+ "쑝": 1292,
+ "쑤": 1293,
+ "쑥": 1294,
+ "쑨": 1295,
+ "쑬": 1296,
+ "쒀": 1297,
+ "쒔": 1298,
+ "쒜": 1299,
+ "쒝": 1300,
+ "쒯": 1301,
+ "쒸": 1302,
+ "쒹": 1303,
+ "쓉": 1304,
+ "쓔": 1305,
+ "쓕": 1306,
+ "쓩": 1307,
+ "쓰": 1308,
+ "쓱": 1309,
+ "쓴": 1310,
+ "쓸": 1311,
+ "씀": 1312,
+ "씁": 1313,
+ "씅": 1314,
+ "씌": 1315,
+ "씨": 1316,
+ "씩": 1317,
+ "씬": 1318,
+ "씰": 1319,
+ "씸": 1320,
+ "씹": 1321,
+ "씻": 1322,
+ "씽": 1323,
+ "아": 1324,
+ "악": 1325,
+ "앆": 1326,
+ "안": 1327,
+ "앉": 1328,
+ "않": 1329,
+ "알": 1330,
+ "앎": 1331,
+ "앓": 1332,
+ "암": 1333,
+ "압": 1334,
+ "앗": 1335,
+ "았": 1336,
+ "앙": 1337,
+ "앚": 1338,
+ "앞": 1339,
+ "애": 1340,
+ "액": 1341,
+ "앤": 1342,
+ "앧": 1343,
+ "앨": 1344,
+ "앰": 1345,
+ "앱": 1346,
+ "앳": 1347,
+ "앴": 1348,
+ "앵": 1349,
+ "야": 1350,
+ "약": 1351,
+ "얀": 1352,
+ "얄": 1353,
+ "얇": 1354,
+ "얌": 1355,
+ "얍": 1356,
+ "얏": 1357,
+ "얐": 1358,
+ "양": 1359,
+ "얕": 1360,
+ "얗": 1361,
+ "얘": 1362,
+ "얜": 1363,
+ "얠": 1364,
+ "얫": 1365,
+ "얬": 1366,
+ "어": 1367,
+ "억": 1368,
+ "언": 1369,
+ "얹": 1370,
+ "얻": 1371,
+ "얼": 1372,
+ "얽": 1373,
+ "엄": 1374,
+ "업": 1375,
+ "없": 1376,
+ "엇": 1377,
+ "었": 1378,
+ "엉": 1379,
+ "엊": 1380,
+ "엌": 1381,
+ "엎": 1382,
+ "에": 1383,
+ "엑": 1384,
+ "엔": 1385,
+ "엘": 1386,
+ "엠": 1387,
+ "엡": 1388,
+ "엣": 1389,
+ "엤": 1390,
+ "엥": 1391,
+ "여": 1392,
+ "역": 1393,
+ "엮": 1394,
+ "연": 1395,
+ "열": 1396,
+ "엷": 1397,
+ "염": 1398,
+ "엽": 1399,
+ "엿": 1400,
+ "였": 1401,
+ "영": 1402,
+ "옅": 1403,
+ "옆": 1404,
+ "옇": 1405,
+ "예": 1406,
+ "옌": 1407,
+ "옐": 1408,
+ "옘": 1409,
+ "옙": 1410,
+ "옛": 1411,
+ "옜": 1412,
+ "오": 1413,
+ "옥": 1414,
+ "온": 1415,
+ "올": 1416,
+ "옭": 1417,
+ "옮": 1418,
+ "옳": 1419,
+ "옴": 1420,
+ "옵": 1421,
+ "옷": 1422,
+ "옹": 1423,
+ "옻": 1424,
+ "옾": 1425,
+ "와": 1426,
+ "왁": 1427,
+ "완": 1428,
+ "왈": 1429,
+ "왐": 1430,
+ "왑": 1431,
+ "왓": 1432,
+ "왔": 1433,
+ "왕": 1434,
+ "왜": 1435,
+ "왠": 1436,
+ "왤": 1437,
+ "왯": 1438,
+ "왱": 1439,
+ "외": 1440,
+ "왼": 1441,
+ "욉": 1442,
+ "요": 1443,
+ "욕": 1444,
+ "욘": 1445,
+ "욜": 1446,
+ "욤": 1447,
+ "욥": 1448,
+ "욧": 1449,
+ "용": 1450,
+ "우": 1451,
+ "욱": 1452,
+ "운": 1453,
+ "욷": 1454,
+ "울": 1455,
+ "움": 1456,
+ "웁": 1457,
+ "웃": 1458,
+ "웅": 1459,
+ "워": 1460,
+ "웍": 1461,
+ "원": 1462,
+ "월": 1463,
+ "웜": 1464,
+ "웝": 1465,
+ "웠": 1466,
+ "웡": 1467,
+ "웨": 1468,
+ "웩": 1469,
+ "웬": 1470,
+ "웰": 1471,
+ "웸": 1472,
+ "웹": 1473,
+ "웻": 1474,
+ "웽": 1475,
+ "위": 1476,
+ "윅": 1477,
+ "윈": 1478,
+ "윌": 1479,
+ "윔": 1480,
+ "윕": 1481,
+ "윗": 1482,
+ "윙": 1483,
+ "유": 1484,
+ "육": 1485,
+ "윤": 1486,
+ "율": 1487,
+ "윰": 1488,
+ "윱": 1489,
+ "윳": 1490,
+ "융": 1491,
+ "윷": 1492,
+ "으": 1493,
+ "윽": 1494,
+ "은": 1495,
+ "읃": 1496,
+ "을": 1497,
+ "읊": 1498,
+ "음": 1499,
+ "읍": 1500,
+ "읎": 1501,
+ "읏": 1502,
+ "응": 1503,
+ "읒": 1504,
+ "읔": 1505,
+ "읕": 1506,
+ "읖": 1507,
+ "읗": 1508,
+ "의": 1509,
+ "읭": 1510,
+ "이": 1511,
+ "익": 1512,
+ "인": 1513,
+ "읺": 1514,
+ "일": 1515,
+ "읽": 1516,
+ "잃": 1517,
+ "임": 1518,
+ "입": 1519,
+ "잇": 1520,
+ "있": 1521,
+ "잉": 1522,
+ "잊": 1523,
+ "잌": 1524,
+ "잍": 1525,
+ "잎": 1526,
+ "자": 1527,
+ "작": 1528,
+ "잔": 1529,
+ "잖": 1530,
+ "잘": 1531,
+ "잠": 1532,
+ "잡": 1533,
+ "잣": 1534,
+ "잤": 1535,
+ "장": 1536,
+ "잦": 1537,
+ "재": 1538,
+ "잭": 1539,
+ "잰": 1540,
+ "잴": 1541,
+ "잼": 1542,
+ "잽": 1543,
+ "잿": 1544,
+ "쟀": 1545,
+ "쟁": 1546,
+ "쟈": 1547,
+ "쟌": 1548,
+ "쟎": 1549,
+ "쟐": 1550,
+ "쟤": 1551,
+ "쟨": 1552,
+ "쟬": 1553,
+ "저": 1554,
+ "적": 1555,
+ "전": 1556,
+ "절": 1557,
+ "젊": 1558,
+ "점": 1559,
+ "접": 1560,
+ "젓": 1561,
+ "젔": 1562,
+ "정": 1563,
+ "젖": 1564,
+ "제": 1565,
+ "젝": 1566,
+ "젠": 1567,
+ "젤": 1568,
+ "젬": 1569,
+ "젭": 1570,
+ "젯": 1571,
+ "젱": 1572,
+ "져": 1573,
+ "젼": 1574,
+ "졌": 1575,
+ "졍": 1576,
+ "졔": 1577,
+ "조": 1578,
+ "족": 1579,
+ "존": 1580,
+ "졸": 1581,
+ "좀": 1582,
+ "좁": 1583,
+ "좃": 1584,
+ "종": 1585,
+ "좆": 1586,
+ "좇": 1587,
+ "좋": 1588,
+ "좌": 1589,
+ "좍": 1590,
+ "좔": 1591,
+ "좟": 1592,
+ "죄": 1593,
+ "죌": 1594,
+ "죔": 1595,
+ "죙": 1596,
+ "죠": 1597,
+ "죵": 1598,
+ "주": 1599,
+ "죽": 1600,
+ "준": 1601,
+ "줄": 1602,
+ "줌": 1603,
+ "줍": 1604,
+ "줏": 1605,
+ "중": 1606,
+ "줒": 1607,
+ "줘": 1608,
+ "줜": 1609,
+ "줬": 1610,
+ "줴": 1611,
+ "줸": 1612,
+ "쥐": 1613,
+ "쥑": 1614,
+ "쥔": 1615,
+ "쥘": 1616,
+ "쥡": 1617,
+ "쥤": 1618,
+ "쥬": 1619,
+ "쥰": 1620,
+ "쥴": 1621,
+ "쥼": 1622,
+ "즈": 1623,
+ "즉": 1624,
+ "즌": 1625,
+ "즐": 1626,
+ "즘": 1627,
+ "즙": 1628,
+ "즛": 1629,
+ "증": 1630,
+ "즞": 1631,
+ "지": 1632,
+ "직": 1633,
+ "진": 1634,
+ "짆": 1635,
+ "질": 1636,
+ "짊": 1637,
+ "짐": 1638,
+ "집": 1639,
+ "짓": 1640,
+ "징": 1641,
+ "짖": 1642,
+ "짙": 1643,
+ "짚": 1644,
+ "짜": 1645,
+ "짝": 1646,
+ "짠": 1647,
+ "짢": 1648,
+ "짤": 1649,
+ "짧": 1650,
+ "짫": 1651,
+ "짬": 1652,
+ "짭": 1653,
+ "짰": 1654,
+ "짱": 1655,
+ "째": 1656,
+ "짹": 1657,
+ "짼": 1658,
+ "쨀": 1659,
+ "쨈": 1660,
+ "쨉": 1661,
+ "쨋": 1662,
+ "쨌": 1663,
+ "쨍": 1664,
+ "쨔": 1665,
+ "쨘": 1666,
+ "쨥": 1667,
+ "쨩": 1668,
+ "쨰": 1669,
+ "쨱": 1670,
+ "쨴": 1671,
+ "쩃": 1672,
+ "쩄": 1673,
+ "쩅": 1674,
+ "쩌": 1675,
+ "쩍": 1676,
+ "쩐": 1677,
+ "쩔": 1678,
+ "쩜": 1679,
+ "쩝": 1680,
+ "쩠": 1681,
+ "쩡": 1682,
+ "쩨": 1683,
+ "쩰": 1684,
+ "쩻": 1685,
+ "쪄": 1686,
+ "쪅": 1687,
+ "쪘": 1688,
+ "쪙": 1689,
+ "쪨": 1690,
+ "쪼": 1691,
+ "쪽": 1692,
+ "쫀": 1693,
+ "쫄": 1694,
+ "쫌": 1695,
+ "쫍": 1696,
+ "쫑": 1697,
+ "쫒": 1698,
+ "쫓": 1699,
+ "쫘": 1700,
+ "쫙": 1701,
+ "쫜": 1702,
+ "쫠": 1703,
+ "쬐": 1704,
+ "쬔": 1705,
+ "쭀": 1706,
+ "쭈": 1707,
+ "쭉": 1708,
+ "쭌": 1709,
+ "쭐": 1710,
+ "쭘": 1711,
+ "쭙": 1712,
+ "쭝": 1713,
+ "쭤": 1714,
+ "쭸": 1715,
+ "쮸": 1716,
+ "쮹": 1717,
+ "쯔": 1718,
+ "쯘": 1719,
+ "쯜": 1720,
+ "쯤": 1721,
+ "쯥": 1722,
+ "쯧": 1723,
+ "쯩": 1724,
+ "찌": 1725,
+ "찍": 1726,
+ "찐": 1727,
+ "찔": 1728,
+ "찜": 1729,
+ "찝": 1730,
+ "찟": 1731,
+ "찡": 1732,
+ "찢": 1733,
+ "찧": 1734,
+ "차": 1735,
+ "착": 1736,
+ "찬": 1737,
+ "찮": 1738,
+ "찰": 1739,
+ "참": 1740,
+ "찹": 1741,
+ "찻": 1742,
+ "찼": 1743,
+ "창": 1744,
+ "찾": 1745,
+ "찿": 1746,
+ "챁": 1747,
+ "채": 1748,
+ "책": 1749,
+ "챈": 1750,
+ "챌": 1751,
+ "챔": 1752,
+ "챕": 1753,
+ "챗": 1754,
+ "챘": 1755,
+ "챙": 1756,
+ "챝": 1757,
+ "챠": 1758,
+ "챦": 1759,
+ "챱": 1760,
+ "챴": 1761,
+ "처": 1762,
+ "척": 1763,
+ "천": 1764,
+ "철": 1765,
+ "첨": 1766,
+ "첩": 1767,
+ "첫": 1768,
+ "청": 1769,
+ "체": 1770,
+ "첵": 1771,
+ "첸": 1772,
+ "첼": 1773,
+ "쳄": 1774,
+ "쳅": 1775,
+ "쳇": 1776,
+ "쳌": 1777,
+ "쳐": 1778,
+ "쳘": 1779,
+ "쳡": 1780,
+ "쳣": 1781,
+ "쳤": 1782,
+ "쳥": 1783,
+ "초": 1784,
+ "촉": 1785,
+ "촌": 1786,
+ "촐": 1787,
+ "촘": 1788,
+ "촙": 1789,
+ "촛": 1790,
+ "총": 1791,
+ "촤": 1792,
+ "촥": 1793,
+ "촨": 1794,
+ "촬": 1795,
+ "최": 1796,
+ "쵸": 1797,
+ "추": 1798,
+ "축": 1799,
+ "춘": 1800,
+ "출": 1801,
+ "춤": 1802,
+ "춥": 1803,
+ "춧": 1804,
+ "충": 1805,
+ "춰": 1806,
+ "췄": 1807,
+ "췌": 1808,
+ "취": 1809,
+ "츄": 1810,
+ "츈": 1811,
+ "츌": 1812,
+ "츠": 1813,
+ "측": 1814,
+ "츤": 1815,
+ "츨": 1816,
+ "츰": 1817,
+ "츱": 1818,
+ "층": 1819,
+ "츼": 1820,
+ "치": 1821,
+ "칙": 1822,
+ "친": 1823,
+ "칠": 1824,
+ "칡": 1825,
+ "침": 1826,
+ "칩": 1827,
+ "칫": 1828,
+ "칬": 1829,
+ "칭": 1830,
+ "칲": 1831,
+ "카": 1832,
+ "칵": 1833,
+ "칸": 1834,
+ "칼": 1835,
+ "캄": 1836,
+ "캅": 1837,
+ "캇": 1838,
+ "캉": 1839,
+ "캌": 1840,
+ "캍": 1841,
+ "캐": 1842,
+ "캑": 1843,
+ "캔": 1844,
+ "캘": 1845,
+ "캠": 1846,
+ "캡": 1847,
+ "캣": 1848,
+ "캤": 1849,
+ "캥": 1850,
+ "캬": 1851,
+ "커": 1852,
+ "컥": 1853,
+ "컨": 1854,
+ "컫": 1855,
+ "컬": 1856,
+ "컴": 1857,
+ "컵": 1858,
+ "컷": 1859,
+ "컸": 1860,
+ "컹": 1861,
+ "컾": 1862,
+ "케": 1863,
+ "켁": 1864,
+ "켄": 1865,
+ "켈": 1866,
+ "켐": 1867,
+ "켓": 1868,
+ "켔": 1869,
+ "켕": 1870,
+ "켜": 1871,
+ "켠": 1872,
+ "켤": 1873,
+ "켬": 1874,
+ "켭": 1875,
+ "켰": 1876,
+ "켱": 1877,
+ "코": 1878,
+ "콕": 1879,
+ "콘": 1880,
+ "콜": 1881,
+ "콤": 1882,
+ "콥": 1883,
+ "콧": 1884,
+ "콩": 1885,
+ "콬": 1886,
+ "콰": 1887,
+ "콱": 1888,
+ "콸": 1889,
+ "쾅": 1890,
+ "쾌": 1891,
+ "쾡": 1892,
+ "쾬": 1893,
+ "쾰": 1894,
+ "쿄": 1895,
+ "쿠": 1896,
+ "쿡": 1897,
+ "쿤": 1898,
+ "쿨": 1899,
+ "쿰": 1900,
+ "쿱": 1901,
+ "쿵": 1902,
+ "쿼": 1903,
+ "퀀": 1904,
+ "퀄": 1905,
+ "퀉": 1906,
+ "퀘": 1907,
+ "퀭": 1908,
+ "퀴": 1909,
+ "퀵": 1910,
+ "퀸": 1911,
+ "퀼": 1912,
+ "큄": 1913,
+ "큉": 1914,
+ "큐": 1915,
+ "큔": 1916,
+ "큘": 1917,
+ "큠": 1918,
+ "큥": 1919,
+ "크": 1920,
+ "큭": 1921,
+ "큰": 1922,
+ "클": 1923,
+ "큼": 1924,
+ "큽": 1925,
+ "큿": 1926,
+ "킁": 1927,
+ "키": 1928,
+ "킥": 1929,
+ "킨": 1930,
+ "킬": 1931,
+ "킴": 1932,
+ "킵": 1933,
+ "킷": 1934,
+ "킹": 1935,
+ "킾": 1936,
+ "킿": 1937,
+ "타": 1938,
+ "탁": 1939,
+ "탄": 1940,
+ "탈": 1941,
+ "탉": 1942,
+ "탐": 1943,
+ "탑": 1944,
+ "탓": 1945,
+ "탔": 1946,
+ "탕": 1947,
+ "태": 1948,
+ "택": 1949,
+ "탠": 1950,
+ "탤": 1951,
+ "탬": 1952,
+ "탭": 1953,
+ "탯": 1954,
+ "탰": 1955,
+ "탱": 1956,
+ "탶": 1957,
+ "터": 1958,
+ "턱": 1959,
+ "턴": 1960,
+ "털": 1961,
+ "텀": 1962,
+ "텁": 1963,
+ "텃": 1964,
+ "텄": 1965,
+ "텅": 1966,
+ "테": 1967,
+ "텍": 1968,
+ "텐": 1969,
+ "텔": 1970,
+ "템": 1971,
+ "텝": 1972,
+ "텟": 1973,
+ "텡": 1974,
+ "텨": 1975,
+ "텼": 1976,
+ "토": 1977,
+ "톡": 1978,
+ "톤": 1979,
+ "톨": 1980,
+ "톰": 1981,
+ "톱": 1982,
+ "톳": 1983,
+ "통": 1984,
+ "퇘": 1985,
+ "퇴": 1986,
+ "투": 1987,
+ "툭": 1988,
+ "툰": 1989,
+ "툴": 1990,
+ "툼": 1991,
+ "툽": 1992,
+ "툿": 1993,
+ "퉁": 1994,
+ "퉈": 1995,
+ "퉜": 1996,
+ "퉤": 1997,
+ "튀": 1998,
+ "튁": 1999,
+ "튄": 2000,
+ "튈": 2001,
+ "튑": 2002,
+ "튕": 2003,
+ "튜": 2004,
+ "튠": 2005,
+ "튤": 2006,
+ "튬": 2007,
+ "튭": 2008,
+ "트": 2009,
+ "특": 2010,
+ "튼": 2011,
+ "튿": 2012,
+ "틀": 2013,
+ "틈": 2014,
+ "틉": 2015,
+ "틋": 2016,
+ "틔": 2017,
+ "티": 2018,
+ "틱": 2019,
+ "틴": 2020,
+ "틸": 2021,
+ "팀": 2022,
+ "팁": 2023,
+ "팅": 2024,
+ "파": 2025,
+ "팍": 2026,
+ "팎": 2027,
+ "판": 2028,
+ "팔": 2029,
+ "팜": 2030,
+ "팝": 2031,
+ "팟": 2032,
+ "팠": 2033,
+ "팡": 2034,
+ "팥": 2035,
+ "패": 2036,
+ "팩": 2037,
+ "팬": 2038,
+ "팰": 2039,
+ "팸": 2040,
+ "팹": 2041,
+ "팻": 2042,
+ "팼": 2043,
+ "팽": 2044,
+ "퍄": 2045,
+ "퍠": 2046,
+ "퍼": 2047,
+ "퍽": 2048,
+ "펀": 2049,
+ "펄": 2050,
+ "펌": 2051,
+ "펍": 2052,
+ "펏": 2053,
+ "펐": 2054,
+ "펑": 2055,
+ "페": 2056,
+ "펙": 2057,
+ "펜": 2058,
+ "펠": 2059,
+ "펩": 2060,
+ "펫": 2061,
+ "펭": 2062,
+ "펴": 2063,
+ "편": 2064,
+ "펼": 2065,
+ "폄": 2066,
+ "폇": 2067,
+ "폈": 2068,
+ "평": 2069,
+ "폐": 2070,
+ "폣": 2071,
+ "포": 2072,
+ "폭": 2073,
+ "폰": 2074,
+ "폴": 2075,
+ "폼": 2076,
+ "폿": 2077,
+ "퐁": 2078,
+ "퐈": 2079,
+ "퐉": 2080,
+ "퐐": 2081,
+ "퐝": 2082,
+ "푀": 2083,
+ "표": 2084,
+ "푠": 2085,
+ "푭": 2086,
+ "푯": 2087,
+ "푱": 2088,
+ "푸": 2089,
+ "푹": 2090,
+ "푼": 2091,
+ "풀": 2092,
+ "품": 2093,
+ "풉": 2094,
+ "풋": 2095,
+ "풍": 2096,
+ "퓀": 2097,
+ "퓌": 2098,
+ "퓔": 2099,
+ "퓨": 2100,
+ "퓩": 2101,
+ "퓸": 2102,
+ "프": 2103,
+ "픈": 2104,
+ "플": 2105,
+ "픔": 2106,
+ "픕": 2107,
+ "피": 2108,
+ "픽": 2109,
+ "핀": 2110,
+ "필": 2111,
+ "핌": 2112,
+ "핍": 2113,
+ "핏": 2114,
+ "핑": 2115,
+ "하": 2116,
+ "학": 2117,
+ "핚": 2118,
+ "한": 2119,
+ "할": 2120,
+ "핡": 2121,
+ "핥": 2122,
+ "핧": 2123,
+ "함": 2124,
+ "합": 2125,
+ "핫": 2126,
+ "핬": 2127,
+ "항": 2128,
+ "핰": 2129,
+ "해": 2130,
+ "핵": 2131,
+ "핸": 2132,
+ "핼": 2133,
+ "햄": 2134,
+ "햅": 2135,
+ "햇": 2136,
+ "했": 2137,
+ "행": 2138,
+ "햐": 2139,
+ "햟": 2140,
+ "햠": 2141,
+ "햡": 2142,
+ "향": 2143,
+ "헀": 2144,
+ "허": 2145,
+ "헉": 2146,
+ "헌": 2147,
+ "헐": 2148,
+ "험": 2149,
+ "헙": 2150,
+ "헛": 2151,
+ "헝": 2152,
+ "헤": 2153,
+ "헥": 2154,
+ "헨": 2155,
+ "헬": 2156,
+ "헴": 2157,
+ "헵": 2158,
+ "헷": 2159,
+ "헸": 2160,
+ "헹": 2161,
+ "혀": 2162,
+ "혁": 2163,
+ "현": 2164,
+ "혈": 2165,
+ "혐": 2166,
+ "협": 2167,
+ "혓": 2168,
+ "혔": 2169,
+ "형": 2170,
+ "혜": 2171,
+ "호": 2172,
+ "혹": 2173,
+ "혼": 2174,
+ "홀": 2175,
+ "홈": 2176,
+ "홉": 2177,
+ "홋": 2178,
+ "홍": 2179,
+ "홑": 2180,
+ "화": 2181,
+ "확": 2182,
+ "환": 2183,
+ "활": 2184,
+ "홥": 2185,
+ "홧": 2186,
+ "황": 2187,
+ "홱": 2188,
+ "횃": 2189,
+ "횅": 2190,
+ "회": 2191,
+ "획": 2192,
+ "횐": 2193,
+ "횝": 2194,
+ "횟": 2195,
+ "횡": 2196,
+ "효": 2197,
+ "횩": 2198,
+ "횽": 2199,
+ "후": 2200,
+ "훅": 2201,
+ "훈": 2202,
+ "훌": 2203,
+ "훑": 2204,
+ "훔": 2205,
+ "훕": 2206,
+ "훗": 2207,
+ "훙": 2208,
+ "훠": 2209,
+ "훤": 2210,
+ "훨": 2211,
+ "훼": 2212,
+ "휀": 2213,
+ "휑": 2214,
+ "휘": 2215,
+ "휙": 2216,
+ "휜": 2217,
+ "휠": 2218,
+ "휩": 2219,
+ "휭": 2220,
+ "휴": 2221,
+ "휸": 2222,
+ "휼": 2223,
+ "흄": 2224,
+ "흉": 2225,
+ "흐": 2226,
+ "흑": 2227,
+ "흔": 2228,
+ "흘": 2229,
+ "흙": 2230,
+ "흠": 2231,
+ "흡": 2232,
+ "흣": 2233,
+ "흥": 2234,
+ "흩": 2235,
+ "흫": 2236,
+ "희": 2237,
+ "흰": 2238,
+ "흴": 2239,
+ "히": 2240,
+ "힉": 2241,
+ "힌": 2242,
+ "힐": 2243,
+ "힘": 2244,
+ "힙": 2245,
+ "힛": 2246,
+ "힜": 2247,
+ "힝": 2248
+}
diff --git a/checkpoint-1204800/added_tokens.json b/checkpoint-1204800/added_tokens.json
new file mode 100644
index 0000000000000000000000000000000000000000..d392b99065410e4f6426fe9804e13955991f19e9
--- /dev/null
+++ b/checkpoint-1204800/added_tokens.json
@@ -0,0 +1,4 @@
+{
+ "": 2252,
+ "": 2251
+}
diff --git a/checkpoint-1204800/config.json b/checkpoint-1204800/config.json
new file mode 100644
index 0000000000000000000000000000000000000000..f0f9dff62c09f38f93a6b44b656ef396b4046dcb
--- /dev/null
+++ b/checkpoint-1204800/config.json
@@ -0,0 +1,117 @@
+{
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
+ "activation_dropout": 0.0,
+ "adapter_attn_dim": null,
+ "adapter_kernel_size": 3,
+ "adapter_stride": 2,
+ "add_adapter": false,
+ "apply_spec_augment": true,
+ "architectures": [
+ "Wav2Vec2ForCTC"
+ ],
+ "attention_dropout": 0.05,
+ "bos_token_id": 1,
+ "classifier_proj_size": 256,
+ "codevector_dim": 768,
+ "contrastive_logits_temperature": 0.1,
+ "conv_bias": true,
+ "conv_dim": [
+ 512,
+ 512,
+ 512,
+ 512,
+ 512,
+ 512,
+ 512
+ ],
+ "conv_kernel": [
+ 10,
+ 3,
+ 3,
+ 3,
+ 3,
+ 2,
+ 2
+ ],
+ "conv_stride": [
+ 5,
+ 2,
+ 2,
+ 2,
+ 2,
+ 2,
+ 2
+ ],
+ "ctc_loss_reduction": "mean",
+ "ctc_zero_infinity": true,
+ "diversity_loss_weight": 0.1,
+ "do_stable_layer_norm": true,
+ "eos_token_id": 2,
+ "feat_extract_activation": "gelu",
+ "feat_extract_dropout": 0.0,
+ "feat_extract_norm": "layer",
+ "feat_proj_dropout": 0.05,
+ "feat_quantizer_dropout": 0.0,
+ "final_dropout": 0.0,
+ "gradient_checkpointing": false,
+ "hidden_act": "gelu",
+ "hidden_dropout": 0.05,
+ "hidden_size": 1024,
+ "initializer_range": 0.02,
+ "intermediate_size": 4096,
+ "layer_norm_eps": 1e-05,
+ "layerdrop": 0.05,
+ "mask_channel_length": 10,
+ "mask_channel_min_space": 1,
+ "mask_channel_other": 0.0,
+ "mask_channel_prob": 0.0,
+ "mask_channel_selection": "static",
+ "mask_feature_length": 10,
+ "mask_feature_min_masks": 0,
+ "mask_feature_prob": 0.0,
+ "mask_time_length": 10,
+ "mask_time_min_masks": 2,
+ "mask_time_min_space": 1,
+ "mask_time_other": 0.0,
+ "mask_time_prob": 0.05,
+ "mask_time_selection": "static",
+ "model_type": "wav2vec2",
+ "num_adapter_layers": 3,
+ "num_attention_heads": 16,
+ "num_codevector_groups": 2,
+ "num_codevectors_per_group": 320,
+ "num_conv_pos_embedding_groups": 16,
+ "num_conv_pos_embeddings": 128,
+ "num_feat_extract_layers": 7,
+ "num_hidden_layers": 24,
+ "num_negatives": 100,
+ "output_hidden_size": 1024,
+ "pad_token_id": 2250,
+ "proj_codevector_dim": 768,
+ "tdnn_dilation": [
+ 1,
+ 2,
+ 3,
+ 1,
+ 1
+ ],
+ "tdnn_dim": [
+ 512,
+ 512,
+ 512,
+ 512,
+ 1500
+ ],
+ "tdnn_kernel": [
+ 5,
+ 3,
+ 3,
+ 1,
+ 1
+ ],
+ "torch_dtype": "float32",
+ "transformers_version": "4.35.2",
+ "use_weighted_layer_sum": false,
+ "vocab_size": 2253,
+ "xvector_output_dim": 512
+}
diff --git a/checkpoint-1204800/model.safetensors b/checkpoint-1204800/model.safetensors
new file mode 100644
index 0000000000000000000000000000000000000000..f3c40630ff826afe95b480dd09b6860724aa1d74
--- /dev/null
+++ b/checkpoint-1204800/model.safetensors
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:779d6440fb37938766991c4e6018fd16b50ff11c3d6999bf52af0e10f824d67a
+size 1271044804
diff --git a/checkpoint-1204800/optimizer.pt b/checkpoint-1204800/optimizer.pt
new file mode 100644
index 0000000000000000000000000000000000000000..45665e20612a49d3a137f7d5af83d67b95c560f0
--- /dev/null
+++ b/checkpoint-1204800/optimizer.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:183258ba4ef67a35f959d820ef9adcf12cac6f637800c722b4b0a74033213bce
+size 2508634294
diff --git a/checkpoint-1204800/preprocessor_config.json b/checkpoint-1204800/preprocessor_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..e7d53bd058c34639e2dec1357537a3d013bcda63
--- /dev/null
+++ b/checkpoint-1204800/preprocessor_config.json
@@ -0,0 +1,10 @@
+{
+ "do_normalize": true,
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
+ "feature_size": 1,
+ "padding_side": "right",
+ "padding_value": 0,
+ "processor_class": "Wav2Vec2Processor",
+ "return_attention_mask": true,
+ "sampling_rate": 16000
+}
diff --git a/checkpoint-1204800/rng_state_0.pth b/checkpoint-1204800/rng_state_0.pth
new file mode 100644
index 0000000000000000000000000000000000000000..cad31b7d51f5aa8eba7bf7b9a778204d88b77705
--- /dev/null
+++ b/checkpoint-1204800/rng_state_0.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ec21a8b09d13c7a18c2f3c2182703c8e12cd7d61f4bd9278f1fb5deec44f143a
+size 15024
diff --git a/checkpoint-1204800/rng_state_1.pth b/checkpoint-1204800/rng_state_1.pth
new file mode 100644
index 0000000000000000000000000000000000000000..c9badaa45f9d20d61840cf27a8d1463ccb3fac40
--- /dev/null
+++ b/checkpoint-1204800/rng_state_1.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b2683882436c53a84e842597b9226c764c549df4a62f4ad088600fd9901d21b0
+size 15024
diff --git a/checkpoint-1204800/rng_state_2.pth b/checkpoint-1204800/rng_state_2.pth
new file mode 100644
index 0000000000000000000000000000000000000000..13a4c02455d42a766c0d0709ebd4f845c3b65066
--- /dev/null
+++ b/checkpoint-1204800/rng_state_2.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:446fe76d0f0eb3385c879781bddc3173e042d69fb6d97eb53b2a98cf242c7220
+size 15088
diff --git a/checkpoint-1204800/rng_state_3.pth b/checkpoint-1204800/rng_state_3.pth
new file mode 100644
index 0000000000000000000000000000000000000000..4c0d0b1915488a58374479b2dd6f9eb03169f799
--- /dev/null
+++ b/checkpoint-1204800/rng_state_3.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:934a3c45bbb28c3ec7d621f019c612279c0bacabac32c240cd27d324a995332c
+size 15024
diff --git a/checkpoint-1204800/scheduler.pt b/checkpoint-1204800/scheduler.pt
new file mode 100644
index 0000000000000000000000000000000000000000..4879e033af68d9d5ee0a3adc3acdb5b07cc27415
--- /dev/null
+++ b/checkpoint-1204800/scheduler.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:156ef09591a3ec723f860779b52c46dabc465a8cdb4249847847065796ade575
+size 1064
diff --git a/checkpoint-1204800/special_tokens_map.json b/checkpoint-1204800/special_tokens_map.json
new file mode 100644
index 0000000000000000000000000000000000000000..c7771b3470e665ede683e35dbcbbd3643ddb0c98
--- /dev/null
+++ b/checkpoint-1204800/special_tokens_map.json
@@ -0,0 +1,30 @@
+{
+ "bos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "eos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "pad_token": {
+ "content": "[PAD]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false
+ },
+ "unk_token": {
+ "content": "[UNK]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false
+ }
+}
diff --git a/checkpoint-1204800/tokenizer_config.json b/checkpoint-1204800/tokenizer_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..30b0a1991f27c208f900171c8af8c0a8670b10aa
--- /dev/null
+++ b/checkpoint-1204800/tokenizer_config.json
@@ -0,0 +1,51 @@
+{
+ "added_tokens_decoder": {
+ "2249": {
+ "content": "[UNK]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false,
+ "special": false
+ },
+ "2250": {
+ "content": "[PAD]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false,
+ "special": false
+ },
+ "2251": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "2252": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ }
+ },
+ "bos_token": "",
+ "clean_up_tokenization_spaces": true,
+ "config": null,
+ "do_lower_case": false,
+ "eos_token": "",
+ "model_max_length": 1000000000000000019884624838656,
+ "pad_token": "[PAD]",
+ "processor_class": "Wav2Vec2Processor",
+ "replace_word_delimiter_char": " ",
+ "target_lang": null,
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
+ "tokenizer_type": "wav2vec2",
+ "trust_remote_code": false,
+ "unk_token": "[UNK]",
+ "word_delimiter_token": "|"
+}
diff --git a/checkpoint-1204800/trainer_state.json b/checkpoint-1204800/trainer_state.json
new file mode 100644
index 0000000000000000000000000000000000000000..16f761f79674a8d5e566f4fdd0a035e1ed0995d1
--- /dev/null
+++ b/checkpoint-1204800/trainer_state.json
@@ -0,0 +1,2425 @@
+{
+ "best_metric": null,
+ "best_model_checkpoint": null,
+ "epoch": 30.0,
+ "eval_steps": 500,
+ "global_step": 1204800,
+ "is_hyper_param_search": false,
+ "is_local_process_zero": true,
+ "is_world_process_zero": true,
+ "log_history": [
+ {
+ "epoch": 0.07,
+ "learning_rate": 7.47011952191235e-05,
+ "loss": 11.8613,
+ "step": 3000
+ },
+ {
+ "epoch": 0.15,
+ "learning_rate": 0.000149402390438247,
+ "loss": 1.9866,
+ "step": 6000
+ },
+ {
+ "epoch": 0.22,
+ "learning_rate": 0.0002241035856573705,
+ "loss": 1.4383,
+ "step": 9000
+ },
+ {
+ "epoch": 0.3,
+ "learning_rate": 0.000298804780876494,
+ "loss": 1.3467,
+ "step": 12000
+ },
+ {
+ "epoch": 0.37,
+ "learning_rate": 0.0002992575153929735,
+ "loss": 1.3175,
+ "step": 15000
+ },
+ {
+ "epoch": 0.45,
+ "learning_rate": 0.00029850295786550764,
+ "loss": 1.2551,
+ "step": 18000
+ },
+ {
+ "epoch": 0.52,
+ "learning_rate": 0.00029774840033804177,
+ "loss": 1.2058,
+ "step": 21000
+ },
+ {
+ "epoch": 0.6,
+ "learning_rate": 0.00029699384281057584,
+ "loss": 1.1759,
+ "step": 24000
+ },
+ {
+ "epoch": 0.67,
+ "learning_rate": 0.00029623928528310997,
+ "loss": 1.148,
+ "step": 27000
+ },
+ {
+ "epoch": 0.75,
+ "learning_rate": 0.0002954847277556441,
+ "loss": 1.116,
+ "step": 30000
+ },
+ {
+ "epoch": 0.82,
+ "learning_rate": 0.00029473017022817817,
+ "loss": 1.0933,
+ "step": 33000
+ },
+ {
+ "epoch": 0.9,
+ "learning_rate": 0.00029397561270071225,
+ "loss": 1.0788,
+ "step": 36000
+ },
+ {
+ "epoch": 0.97,
+ "learning_rate": 0.0002932210551732464,
+ "loss": 1.0578,
+ "step": 39000
+ },
+ {
+ "epoch": 1.05,
+ "learning_rate": 0.0002924664976457805,
+ "loss": 1.0363,
+ "step": 42000
+ },
+ {
+ "epoch": 1.12,
+ "learning_rate": 0.0002917119401183146,
+ "loss": 1.0198,
+ "step": 45000
+ },
+ {
+ "epoch": 1.2,
+ "learning_rate": 0.0002909573825908487,
+ "loss": 1.0132,
+ "step": 48000
+ },
+ {
+ "epoch": 1.27,
+ "learning_rate": 0.00029020282506338283,
+ "loss": 0.9995,
+ "step": 51000
+ },
+ {
+ "epoch": 1.34,
+ "learning_rate": 0.0002894482675359169,
+ "loss": 0.992,
+ "step": 54000
+ },
+ {
+ "epoch": 1.42,
+ "learning_rate": 0.000288693710008451,
+ "loss": 0.9821,
+ "step": 57000
+ },
+ {
+ "epoch": 1.49,
+ "learning_rate": 0.0002879391524809851,
+ "loss": 0.9878,
+ "step": 60000
+ },
+ {
+ "epoch": 1.57,
+ "learning_rate": 0.00028718459495351924,
+ "loss": 0.9952,
+ "step": 63000
+ },
+ {
+ "epoch": 1.64,
+ "learning_rate": 0.0002864300374260533,
+ "loss": 0.9804,
+ "step": 66000
+ },
+ {
+ "epoch": 1.72,
+ "learning_rate": 0.00028567547989858744,
+ "loss": 0.9736,
+ "step": 69000
+ },
+ {
+ "epoch": 1.79,
+ "learning_rate": 0.00028492092237112157,
+ "loss": 0.9681,
+ "step": 72000
+ },
+ {
+ "epoch": 1.87,
+ "learning_rate": 0.00028416636484365564,
+ "loss": 0.965,
+ "step": 75000
+ },
+ {
+ "epoch": 1.94,
+ "learning_rate": 0.00028341180731618977,
+ "loss": 0.9519,
+ "step": 78000
+ },
+ {
+ "epoch": 2.02,
+ "learning_rate": 0.00028265724978872385,
+ "loss": 0.9525,
+ "step": 81000
+ },
+ {
+ "epoch": 2.09,
+ "learning_rate": 0.000281902692261258,
+ "loss": 0.9175,
+ "step": 84000
+ },
+ {
+ "epoch": 2.17,
+ "learning_rate": 0.00028114813473379205,
+ "loss": 0.9129,
+ "step": 87000
+ },
+ {
+ "epoch": 2.24,
+ "learning_rate": 0.0002803935772063262,
+ "loss": 0.9167,
+ "step": 90000
+ },
+ {
+ "epoch": 2.32,
+ "learning_rate": 0.0002796390196788603,
+ "loss": 0.9037,
+ "step": 93000
+ },
+ {
+ "epoch": 2.39,
+ "learning_rate": 0.0002788844621513944,
+ "loss": 0.8967,
+ "step": 96000
+ },
+ {
+ "epoch": 2.47,
+ "learning_rate": 0.0002781299046239285,
+ "loss": 0.8896,
+ "step": 99000
+ },
+ {
+ "epoch": 2.54,
+ "learning_rate": 0.0002773753470964626,
+ "loss": 0.8848,
+ "step": 102000
+ },
+ {
+ "epoch": 2.61,
+ "learning_rate": 0.0002766207895689967,
+ "loss": 0.8864,
+ "step": 105000
+ },
+ {
+ "epoch": 2.69,
+ "learning_rate": 0.00027586623204153084,
+ "loss": 0.8793,
+ "step": 108000
+ },
+ {
+ "epoch": 2.76,
+ "learning_rate": 0.0002751116745140649,
+ "loss": 0.8727,
+ "step": 111000
+ },
+ {
+ "epoch": 2.84,
+ "learning_rate": 0.00027435711698659904,
+ "loss": 0.8605,
+ "step": 114000
+ },
+ {
+ "epoch": 2.91,
+ "learning_rate": 0.00027360255945913317,
+ "loss": 0.8614,
+ "step": 117000
+ },
+ {
+ "epoch": 2.99,
+ "learning_rate": 0.00027284800193166724,
+ "loss": 0.8584,
+ "step": 120000
+ },
+ {
+ "epoch": 3.06,
+ "learning_rate": 0.00027209344440420137,
+ "loss": 0.8322,
+ "step": 123000
+ },
+ {
+ "epoch": 3.14,
+ "learning_rate": 0.0002713388868767355,
+ "loss": 0.8182,
+ "step": 126000
+ },
+ {
+ "epoch": 3.21,
+ "learning_rate": 0.0002705843293492696,
+ "loss": 0.8203,
+ "step": 129000
+ },
+ {
+ "epoch": 3.29,
+ "learning_rate": 0.00026982977182180365,
+ "loss": 0.824,
+ "step": 132000
+ },
+ {
+ "epoch": 3.36,
+ "learning_rate": 0.0002690752142943378,
+ "loss": 0.819,
+ "step": 135000
+ },
+ {
+ "epoch": 3.44,
+ "learning_rate": 0.0002683206567668719,
+ "loss": 0.8144,
+ "step": 138000
+ },
+ {
+ "epoch": 3.51,
+ "learning_rate": 0.000267566099239406,
+ "loss": 0.8158,
+ "step": 141000
+ },
+ {
+ "epoch": 3.59,
+ "learning_rate": 0.0002668115417119401,
+ "loss": 0.8148,
+ "step": 144000
+ },
+ {
+ "epoch": 3.66,
+ "learning_rate": 0.00026605698418447424,
+ "loss": 0.8188,
+ "step": 147000
+ },
+ {
+ "epoch": 3.74,
+ "learning_rate": 0.0002653024266570083,
+ "loss": 0.8064,
+ "step": 150000
+ },
+ {
+ "epoch": 3.81,
+ "learning_rate": 0.0002645478691295424,
+ "loss": 0.8047,
+ "step": 153000
+ },
+ {
+ "epoch": 3.88,
+ "learning_rate": 0.0002637933116020765,
+ "loss": 0.8008,
+ "step": 156000
+ },
+ {
+ "epoch": 3.96,
+ "learning_rate": 0.00026303875407461064,
+ "loss": 0.799,
+ "step": 159000
+ },
+ {
+ "epoch": 4.03,
+ "learning_rate": 0.0002622841965471447,
+ "loss": 0.7822,
+ "step": 162000
+ },
+ {
+ "epoch": 4.11,
+ "learning_rate": 0.00026152963901967884,
+ "loss": 0.7657,
+ "step": 165000
+ },
+ {
+ "epoch": 4.18,
+ "learning_rate": 0.00026077508149221297,
+ "loss": 0.7627,
+ "step": 168000
+ },
+ {
+ "epoch": 4.26,
+ "learning_rate": 0.00026002052396474705,
+ "loss": 0.7603,
+ "step": 171000
+ },
+ {
+ "epoch": 4.33,
+ "learning_rate": 0.0002592659664372812,
+ "loss": 0.7608,
+ "step": 174000
+ },
+ {
+ "epoch": 4.41,
+ "learning_rate": 0.00025851140890981525,
+ "loss": 0.7642,
+ "step": 177000
+ },
+ {
+ "epoch": 4.48,
+ "learning_rate": 0.0002577568513823494,
+ "loss": 0.7607,
+ "step": 180000
+ },
+ {
+ "epoch": 4.56,
+ "learning_rate": 0.0002570022938548835,
+ "loss": 0.7546,
+ "step": 183000
+ },
+ {
+ "epoch": 4.63,
+ "learning_rate": 0.0002562477363274176,
+ "loss": 0.7531,
+ "step": 186000
+ },
+ {
+ "epoch": 4.71,
+ "learning_rate": 0.0002554931787999517,
+ "loss": 0.7572,
+ "step": 189000
+ },
+ {
+ "epoch": 4.78,
+ "learning_rate": 0.0002547386212724858,
+ "loss": 0.7578,
+ "step": 192000
+ },
+ {
+ "epoch": 4.86,
+ "learning_rate": 0.0002539840637450199,
+ "loss": 0.7558,
+ "step": 195000
+ },
+ {
+ "epoch": 4.93,
+ "learning_rate": 0.000253229506217554,
+ "loss": 0.7556,
+ "step": 198000
+ },
+ {
+ "epoch": 5.0,
+ "learning_rate": 0.0002524749486900881,
+ "loss": 0.7476,
+ "step": 201000
+ },
+ {
+ "epoch": 5.08,
+ "learning_rate": 0.00025172039116262224,
+ "loss": 0.721,
+ "step": 204000
+ },
+ {
+ "epoch": 5.15,
+ "learning_rate": 0.0002509658336351563,
+ "loss": 0.7241,
+ "step": 207000
+ },
+ {
+ "epoch": 5.23,
+ "learning_rate": 0.00025021127610769044,
+ "loss": 0.7183,
+ "step": 210000
+ },
+ {
+ "epoch": 5.3,
+ "learning_rate": 0.00024945671858022457,
+ "loss": 0.7163,
+ "step": 213000
+ },
+ {
+ "epoch": 5.38,
+ "learning_rate": 0.00024870216105275865,
+ "loss": 0.716,
+ "step": 216000
+ },
+ {
+ "epoch": 5.45,
+ "learning_rate": 0.0002479476035252927,
+ "loss": 0.7208,
+ "step": 219000
+ },
+ {
+ "epoch": 5.53,
+ "learning_rate": 0.00024719304599782685,
+ "loss": 0.7149,
+ "step": 222000
+ },
+ {
+ "epoch": 5.6,
+ "learning_rate": 0.000246438488470361,
+ "loss": 0.7168,
+ "step": 225000
+ },
+ {
+ "epoch": 5.68,
+ "learning_rate": 0.00024568393094289505,
+ "loss": 0.7131,
+ "step": 228000
+ },
+ {
+ "epoch": 5.75,
+ "learning_rate": 0.0002449293734154292,
+ "loss": 0.7134,
+ "step": 231000
+ },
+ {
+ "epoch": 5.83,
+ "learning_rate": 0.0002441748158879633,
+ "loss": 0.7088,
+ "step": 234000
+ },
+ {
+ "epoch": 5.9,
+ "learning_rate": 0.00024342025836049738,
+ "loss": 0.7101,
+ "step": 237000
+ },
+ {
+ "epoch": 5.98,
+ "learning_rate": 0.00024266570083303148,
+ "loss": 0.7106,
+ "step": 240000
+ },
+ {
+ "epoch": 6.05,
+ "learning_rate": 0.0002419111433055656,
+ "loss": 0.6846,
+ "step": 243000
+ },
+ {
+ "epoch": 6.13,
+ "learning_rate": 0.00024115658577809968,
+ "loss": 0.6761,
+ "step": 246000
+ },
+ {
+ "epoch": 6.2,
+ "learning_rate": 0.00024040202825063379,
+ "loss": 0.6783,
+ "step": 249000
+ },
+ {
+ "epoch": 6.27,
+ "learning_rate": 0.00023964747072316791,
+ "loss": 0.6815,
+ "step": 252000
+ },
+ {
+ "epoch": 6.35,
+ "learning_rate": 0.00023889291319570202,
+ "loss": 0.6864,
+ "step": 255000
+ },
+ {
+ "epoch": 6.42,
+ "learning_rate": 0.00023813835566823612,
+ "loss": 0.688,
+ "step": 258000
+ },
+ {
+ "epoch": 6.5,
+ "learning_rate": 0.00023738379814077025,
+ "loss": 0.6843,
+ "step": 261000
+ },
+ {
+ "epoch": 6.57,
+ "learning_rate": 0.00023662924061330435,
+ "loss": 0.6842,
+ "step": 264000
+ },
+ {
+ "epoch": 6.65,
+ "learning_rate": 0.00023587468308583842,
+ "loss": 0.6874,
+ "step": 267000
+ },
+ {
+ "epoch": 6.72,
+ "learning_rate": 0.00023512012555837258,
+ "loss": 0.6777,
+ "step": 270000
+ },
+ {
+ "epoch": 6.8,
+ "learning_rate": 0.00023436556803090665,
+ "loss": 0.6813,
+ "step": 273000
+ },
+ {
+ "epoch": 6.87,
+ "learning_rate": 0.00023361101050344075,
+ "loss": 0.6859,
+ "step": 276000
+ },
+ {
+ "epoch": 6.95,
+ "learning_rate": 0.00023285645297597488,
+ "loss": 0.6756,
+ "step": 279000
+ },
+ {
+ "epoch": 7.02,
+ "learning_rate": 0.00023210189544850898,
+ "loss": 0.6682,
+ "step": 282000
+ },
+ {
+ "epoch": 7.1,
+ "learning_rate": 0.00023134733792104308,
+ "loss": 0.6456,
+ "step": 285000
+ },
+ {
+ "epoch": 7.17,
+ "learning_rate": 0.00023059278039357716,
+ "loss": 0.6463,
+ "step": 288000
+ },
+ {
+ "epoch": 7.25,
+ "learning_rate": 0.0002298382228661113,
+ "loss": 0.6508,
+ "step": 291000
+ },
+ {
+ "epoch": 7.32,
+ "learning_rate": 0.00022908366533864539,
+ "loss": 0.6513,
+ "step": 294000
+ },
+ {
+ "epoch": 7.4,
+ "learning_rate": 0.0002283291078111795,
+ "loss": 0.6479,
+ "step": 297000
+ },
+ {
+ "epoch": 7.47,
+ "learning_rate": 0.00022757455028371362,
+ "loss": 0.6514,
+ "step": 300000
+ },
+ {
+ "epoch": 7.54,
+ "learning_rate": 0.00022681999275624772,
+ "loss": 0.648,
+ "step": 303000
+ },
+ {
+ "epoch": 7.62,
+ "learning_rate": 0.00022606543522878182,
+ "loss": 0.6467,
+ "step": 306000
+ },
+ {
+ "epoch": 7.69,
+ "learning_rate": 0.00022531087770131595,
+ "loss": 0.6476,
+ "step": 309000
+ },
+ {
+ "epoch": 7.77,
+ "learning_rate": 0.00022455632017385005,
+ "loss": 0.6485,
+ "step": 312000
+ },
+ {
+ "epoch": 7.84,
+ "learning_rate": 0.00022380176264638412,
+ "loss": 0.6464,
+ "step": 315000
+ },
+ {
+ "epoch": 7.92,
+ "learning_rate": 0.00022304720511891825,
+ "loss": 0.644,
+ "step": 318000
+ },
+ {
+ "epoch": 7.99,
+ "learning_rate": 0.00022229264759145235,
+ "loss": 0.6423,
+ "step": 321000
+ },
+ {
+ "epoch": 8.07,
+ "learning_rate": 0.00022153809006398645,
+ "loss": 0.6169,
+ "step": 324000
+ },
+ {
+ "epoch": 8.14,
+ "learning_rate": 0.00022078353253652058,
+ "loss": 0.6166,
+ "step": 327000
+ },
+ {
+ "epoch": 8.22,
+ "learning_rate": 0.00022002897500905468,
+ "loss": 0.6174,
+ "step": 330000
+ },
+ {
+ "epoch": 8.29,
+ "learning_rate": 0.00021927441748158878,
+ "loss": 0.62,
+ "step": 333000
+ },
+ {
+ "epoch": 8.37,
+ "learning_rate": 0.00021851985995412286,
+ "loss": 0.6217,
+ "step": 336000
+ },
+ {
+ "epoch": 8.44,
+ "learning_rate": 0.00021776530242665699,
+ "loss": 0.6187,
+ "step": 339000
+ },
+ {
+ "epoch": 8.52,
+ "learning_rate": 0.0002170107448991911,
+ "loss": 0.6221,
+ "step": 342000
+ },
+ {
+ "epoch": 8.59,
+ "learning_rate": 0.0002162561873717252,
+ "loss": 0.6202,
+ "step": 345000
+ },
+ {
+ "epoch": 8.67,
+ "learning_rate": 0.00021550162984425932,
+ "loss": 0.6198,
+ "step": 348000
+ },
+ {
+ "epoch": 8.74,
+ "learning_rate": 0.00021474707231679342,
+ "loss": 0.6159,
+ "step": 351000
+ },
+ {
+ "epoch": 8.81,
+ "learning_rate": 0.00021399251478932752,
+ "loss": 0.615,
+ "step": 354000
+ },
+ {
+ "epoch": 8.89,
+ "learning_rate": 0.00021323795726186165,
+ "loss": 0.6188,
+ "step": 357000
+ },
+ {
+ "epoch": 8.96,
+ "learning_rate": 0.00021248339973439572,
+ "loss": 0.6167,
+ "step": 360000
+ },
+ {
+ "epoch": 9.04,
+ "learning_rate": 0.00021172884220692982,
+ "loss": 0.6022,
+ "step": 363000
+ },
+ {
+ "epoch": 9.11,
+ "learning_rate": 0.00021097428467946395,
+ "loss": 0.5912,
+ "step": 366000
+ },
+ {
+ "epoch": 9.19,
+ "learning_rate": 0.00021021972715199805,
+ "loss": 0.5906,
+ "step": 369000
+ },
+ {
+ "epoch": 9.26,
+ "learning_rate": 0.00020946516962453215,
+ "loss": 0.5921,
+ "step": 372000
+ },
+ {
+ "epoch": 9.34,
+ "learning_rate": 0.00020871061209706628,
+ "loss": 0.584,
+ "step": 375000
+ },
+ {
+ "epoch": 9.41,
+ "learning_rate": 0.00020795605456960038,
+ "loss": 0.5884,
+ "step": 378000
+ },
+ {
+ "epoch": 9.49,
+ "learning_rate": 0.00020720149704213446,
+ "loss": 0.585,
+ "step": 381000
+ },
+ {
+ "epoch": 9.56,
+ "learning_rate": 0.00020644693951466859,
+ "loss": 0.5878,
+ "step": 384000
+ },
+ {
+ "epoch": 9.64,
+ "learning_rate": 0.0002056923819872027,
+ "loss": 0.5894,
+ "step": 387000
+ },
+ {
+ "epoch": 9.71,
+ "learning_rate": 0.0002049378244597368,
+ "loss": 0.5875,
+ "step": 390000
+ },
+ {
+ "epoch": 9.79,
+ "learning_rate": 0.0002041832669322709,
+ "loss": 0.5877,
+ "step": 393000
+ },
+ {
+ "epoch": 9.86,
+ "learning_rate": 0.00020342870940480502,
+ "loss": 0.5876,
+ "step": 396000
+ },
+ {
+ "epoch": 9.94,
+ "learning_rate": 0.00020267415187733912,
+ "loss": 0.5876,
+ "step": 399000
+ },
+ {
+ "epoch": 10.01,
+ "learning_rate": 0.0002019195943498732,
+ "loss": 0.5885,
+ "step": 402000
+ },
+ {
+ "epoch": 10.08,
+ "learning_rate": 0.00020116503682240732,
+ "loss": 0.5606,
+ "step": 405000
+ },
+ {
+ "epoch": 10.16,
+ "learning_rate": 0.00020041047929494142,
+ "loss": 0.5618,
+ "step": 408000
+ },
+ {
+ "epoch": 10.23,
+ "learning_rate": 0.00019965592176747552,
+ "loss": 0.5661,
+ "step": 411000
+ },
+ {
+ "epoch": 10.31,
+ "learning_rate": 0.00019890136424000965,
+ "loss": 0.5723,
+ "step": 414000
+ },
+ {
+ "epoch": 10.38,
+ "learning_rate": 0.00019814680671254375,
+ "loss": 0.5665,
+ "step": 417000
+ },
+ {
+ "epoch": 10.46,
+ "learning_rate": 0.00019739224918507786,
+ "loss": 0.5635,
+ "step": 420000
+ },
+ {
+ "epoch": 10.53,
+ "learning_rate": 0.00019663769165761198,
+ "loss": 0.5677,
+ "step": 423000
+ },
+ {
+ "epoch": 10.61,
+ "learning_rate": 0.00019588313413014606,
+ "loss": 0.5657,
+ "step": 426000
+ },
+ {
+ "epoch": 10.68,
+ "learning_rate": 0.00019512857660268016,
+ "loss": 0.5675,
+ "step": 429000
+ },
+ {
+ "epoch": 10.76,
+ "learning_rate": 0.0001943740190752143,
+ "loss": 0.5646,
+ "step": 432000
+ },
+ {
+ "epoch": 10.83,
+ "learning_rate": 0.0001936194615477484,
+ "loss": 0.5663,
+ "step": 435000
+ },
+ {
+ "epoch": 10.91,
+ "learning_rate": 0.0001928649040202825,
+ "loss": 0.5692,
+ "step": 438000
+ },
+ {
+ "epoch": 10.98,
+ "learning_rate": 0.0001921103464928166,
+ "loss": 0.5664,
+ "step": 441000
+ },
+ {
+ "epoch": 11.06,
+ "learning_rate": 0.00019135578896535072,
+ "loss": 0.5487,
+ "step": 444000
+ },
+ {
+ "epoch": 11.13,
+ "learning_rate": 0.0001906012314378848,
+ "loss": 0.5436,
+ "step": 447000
+ },
+ {
+ "epoch": 11.21,
+ "learning_rate": 0.0001898466739104189,
+ "loss": 0.5438,
+ "step": 450000
+ },
+ {
+ "epoch": 11.28,
+ "learning_rate": 0.00018909211638295302,
+ "loss": 0.5444,
+ "step": 453000
+ },
+ {
+ "epoch": 11.35,
+ "learning_rate": 0.00018833755885548712,
+ "loss": 0.5422,
+ "step": 456000
+ },
+ {
+ "epoch": 11.43,
+ "learning_rate": 0.00018758300132802123,
+ "loss": 0.5452,
+ "step": 459000
+ },
+ {
+ "epoch": 11.5,
+ "learning_rate": 0.00018682844380055535,
+ "loss": 0.545,
+ "step": 462000
+ },
+ {
+ "epoch": 11.58,
+ "learning_rate": 0.00018607388627308946,
+ "loss": 0.5418,
+ "step": 465000
+ },
+ {
+ "epoch": 11.65,
+ "learning_rate": 0.00018531932874562353,
+ "loss": 0.5457,
+ "step": 468000
+ },
+ {
+ "epoch": 11.73,
+ "learning_rate": 0.00018456477121815766,
+ "loss": 0.5425,
+ "step": 471000
+ },
+ {
+ "epoch": 11.8,
+ "learning_rate": 0.00018381021369069176,
+ "loss": 0.5435,
+ "step": 474000
+ },
+ {
+ "epoch": 11.88,
+ "learning_rate": 0.00018305565616322586,
+ "loss": 0.5489,
+ "step": 477000
+ },
+ {
+ "epoch": 11.95,
+ "learning_rate": 0.00018230109863576,
+ "loss": 0.5457,
+ "step": 480000
+ },
+ {
+ "epoch": 12.03,
+ "learning_rate": 0.0001815465411082941,
+ "loss": 0.5353,
+ "step": 483000
+ },
+ {
+ "epoch": 12.1,
+ "learning_rate": 0.0001807919835808282,
+ "loss": 0.5185,
+ "step": 486000
+ },
+ {
+ "epoch": 12.18,
+ "learning_rate": 0.00018003742605336227,
+ "loss": 0.5223,
+ "step": 489000
+ },
+ {
+ "epoch": 12.25,
+ "learning_rate": 0.0001792828685258964,
+ "loss": 0.5172,
+ "step": 492000
+ },
+ {
+ "epoch": 12.33,
+ "learning_rate": 0.0001785283109984305,
+ "loss": 0.5191,
+ "step": 495000
+ },
+ {
+ "epoch": 12.4,
+ "learning_rate": 0.0001777737534709646,
+ "loss": 0.5221,
+ "step": 498000
+ },
+ {
+ "epoch": 12.48,
+ "learning_rate": 0.00017701919594349872,
+ "loss": 0.522,
+ "step": 501000
+ },
+ {
+ "epoch": 12.55,
+ "learning_rate": 0.00017626463841603283,
+ "loss": 0.525,
+ "step": 504000
+ },
+ {
+ "epoch": 12.62,
+ "learning_rate": 0.00017551008088856693,
+ "loss": 0.5265,
+ "step": 507000
+ },
+ {
+ "epoch": 12.7,
+ "learning_rate": 0.00017475552336110106,
+ "loss": 0.526,
+ "step": 510000
+ },
+ {
+ "epoch": 12.77,
+ "learning_rate": 0.00017400096583363513,
+ "loss": 0.527,
+ "step": 513000
+ },
+ {
+ "epoch": 12.85,
+ "learning_rate": 0.00017324640830616923,
+ "loss": 0.5259,
+ "step": 516000
+ },
+ {
+ "epoch": 12.92,
+ "learning_rate": 0.00017249185077870336,
+ "loss": 0.5234,
+ "step": 519000
+ },
+ {
+ "epoch": 13.0,
+ "learning_rate": 0.00017173729325123746,
+ "loss": 0.5259,
+ "step": 522000
+ },
+ {
+ "epoch": 13.07,
+ "learning_rate": 0.00017098273572377156,
+ "loss": 0.5027,
+ "step": 525000
+ },
+ {
+ "epoch": 13.15,
+ "learning_rate": 0.0001702281781963057,
+ "loss": 0.5043,
+ "step": 528000
+ },
+ {
+ "epoch": 13.22,
+ "learning_rate": 0.0001694736206688398,
+ "loss": 0.5051,
+ "step": 531000
+ },
+ {
+ "epoch": 13.3,
+ "learning_rate": 0.00016871906314137387,
+ "loss": 0.5062,
+ "step": 534000
+ },
+ {
+ "epoch": 13.37,
+ "learning_rate": 0.00016796450561390797,
+ "loss": 0.5062,
+ "step": 537000
+ },
+ {
+ "epoch": 13.45,
+ "learning_rate": 0.0001672099480864421,
+ "loss": 0.508,
+ "step": 540000
+ },
+ {
+ "epoch": 13.52,
+ "learning_rate": 0.0001664553905589762,
+ "loss": 0.5086,
+ "step": 543000
+ },
+ {
+ "epoch": 13.6,
+ "learning_rate": 0.0001657008330315103,
+ "loss": 0.5072,
+ "step": 546000
+ },
+ {
+ "epoch": 13.67,
+ "learning_rate": 0.00016494627550404443,
+ "loss": 0.5,
+ "step": 549000
+ },
+ {
+ "epoch": 13.75,
+ "learning_rate": 0.00016419171797657853,
+ "loss": 0.5067,
+ "step": 552000
+ },
+ {
+ "epoch": 13.82,
+ "learning_rate": 0.0001634371604491126,
+ "loss": 0.5055,
+ "step": 555000
+ },
+ {
+ "epoch": 13.89,
+ "learning_rate": 0.00016268260292164673,
+ "loss": 0.501,
+ "step": 558000
+ },
+ {
+ "epoch": 13.97,
+ "learning_rate": 0.00016192804539418083,
+ "loss": 0.5068,
+ "step": 561000
+ },
+ {
+ "epoch": 14.04,
+ "learning_rate": 0.00016117348786671493,
+ "loss": 0.4915,
+ "step": 564000
+ },
+ {
+ "epoch": 14.12,
+ "learning_rate": 0.00016041893033924906,
+ "loss": 0.4865,
+ "step": 567000
+ },
+ {
+ "epoch": 14.19,
+ "learning_rate": 0.00015966437281178316,
+ "loss": 0.4881,
+ "step": 570000
+ },
+ {
+ "epoch": 14.27,
+ "learning_rate": 0.00015890981528431726,
+ "loss": 0.4842,
+ "step": 573000
+ },
+ {
+ "epoch": 14.34,
+ "learning_rate": 0.0001581552577568514,
+ "loss": 0.4873,
+ "step": 576000
+ },
+ {
+ "epoch": 14.42,
+ "learning_rate": 0.00015740070022938547,
+ "loss": 0.4861,
+ "step": 579000
+ },
+ {
+ "epoch": 14.49,
+ "learning_rate": 0.00015664614270191957,
+ "loss": 0.4867,
+ "step": 582000
+ },
+ {
+ "epoch": 14.57,
+ "learning_rate": 0.00015589158517445367,
+ "loss": 0.4902,
+ "step": 585000
+ },
+ {
+ "epoch": 14.64,
+ "learning_rate": 0.0001551370276469878,
+ "loss": 0.4927,
+ "step": 588000
+ },
+ {
+ "epoch": 14.72,
+ "learning_rate": 0.0001543824701195219,
+ "loss": 0.4904,
+ "step": 591000
+ },
+ {
+ "epoch": 14.79,
+ "learning_rate": 0.000153627912592056,
+ "loss": 0.4909,
+ "step": 594000
+ },
+ {
+ "epoch": 14.87,
+ "learning_rate": 0.00015287335506459013,
+ "loss": 0.4914,
+ "step": 597000
+ },
+ {
+ "epoch": 14.94,
+ "learning_rate": 0.00015211879753712423,
+ "loss": 0.4864,
+ "step": 600000
+ },
+ {
+ "epoch": 15.01,
+ "learning_rate": 0.0001513642400096583,
+ "loss": 0.4834,
+ "step": 603000
+ },
+ {
+ "epoch": 15.09,
+ "learning_rate": 0.00015060968248219243,
+ "loss": 0.4687,
+ "step": 606000
+ },
+ {
+ "epoch": 15.16,
+ "learning_rate": 0.00014985512495472653,
+ "loss": 0.4683,
+ "step": 609000
+ },
+ {
+ "epoch": 15.24,
+ "learning_rate": 0.00014910056742726066,
+ "loss": 0.4657,
+ "step": 612000
+ },
+ {
+ "epoch": 15.31,
+ "learning_rate": 0.00014834600989979473,
+ "loss": 0.4727,
+ "step": 615000
+ },
+ {
+ "epoch": 15.39,
+ "learning_rate": 0.00014759145237232886,
+ "loss": 0.4709,
+ "step": 618000
+ },
+ {
+ "epoch": 15.46,
+ "learning_rate": 0.00014683689484486296,
+ "loss": 0.4703,
+ "step": 621000
+ },
+ {
+ "epoch": 15.54,
+ "learning_rate": 0.00014608233731739707,
+ "loss": 0.4709,
+ "step": 624000
+ },
+ {
+ "epoch": 15.61,
+ "learning_rate": 0.00014532777978993117,
+ "loss": 0.4726,
+ "step": 627000
+ },
+ {
+ "epoch": 15.69,
+ "learning_rate": 0.00014457322226246527,
+ "loss": 0.4684,
+ "step": 630000
+ },
+ {
+ "epoch": 15.76,
+ "learning_rate": 0.0001438186647349994,
+ "loss": 0.4725,
+ "step": 633000
+ },
+ {
+ "epoch": 15.84,
+ "learning_rate": 0.0001430641072075335,
+ "loss": 0.4689,
+ "step": 636000
+ },
+ {
+ "epoch": 15.91,
+ "learning_rate": 0.0001423095496800676,
+ "loss": 0.468,
+ "step": 639000
+ },
+ {
+ "epoch": 15.99,
+ "learning_rate": 0.0001415549921526017,
+ "loss": 0.4749,
+ "step": 642000
+ },
+ {
+ "epoch": 16.06,
+ "learning_rate": 0.00014080043462513583,
+ "loss": 0.4551,
+ "step": 645000
+ },
+ {
+ "epoch": 16.14,
+ "learning_rate": 0.0001400458770976699,
+ "loss": 0.4536,
+ "step": 648000
+ },
+ {
+ "epoch": 16.21,
+ "learning_rate": 0.00013929131957020403,
+ "loss": 0.4548,
+ "step": 651000
+ },
+ {
+ "epoch": 16.28,
+ "learning_rate": 0.00013853676204273813,
+ "loss": 0.4541,
+ "step": 654000
+ },
+ {
+ "epoch": 16.36,
+ "learning_rate": 0.00013778220451527223,
+ "loss": 0.4573,
+ "step": 657000
+ },
+ {
+ "epoch": 16.43,
+ "learning_rate": 0.00013702764698780633,
+ "loss": 0.4521,
+ "step": 660000
+ },
+ {
+ "epoch": 16.51,
+ "learning_rate": 0.00013627308946034044,
+ "loss": 0.4564,
+ "step": 663000
+ },
+ {
+ "epoch": 16.58,
+ "learning_rate": 0.00013551853193287456,
+ "loss": 0.4563,
+ "step": 666000
+ },
+ {
+ "epoch": 16.66,
+ "learning_rate": 0.00013476397440540867,
+ "loss": 0.4582,
+ "step": 669000
+ },
+ {
+ "epoch": 16.73,
+ "learning_rate": 0.00013400941687794277,
+ "loss": 0.4556,
+ "step": 672000
+ },
+ {
+ "epoch": 16.81,
+ "learning_rate": 0.00013325485935047687,
+ "loss": 0.4527,
+ "step": 675000
+ },
+ {
+ "epoch": 16.88,
+ "learning_rate": 0.00013250030182301097,
+ "loss": 0.4535,
+ "step": 678000
+ },
+ {
+ "epoch": 16.96,
+ "learning_rate": 0.00013174574429554507,
+ "loss": 0.4578,
+ "step": 681000
+ },
+ {
+ "epoch": 17.03,
+ "learning_rate": 0.0001309911867680792,
+ "loss": 0.449,
+ "step": 684000
+ },
+ {
+ "epoch": 17.11,
+ "learning_rate": 0.0001302366292406133,
+ "loss": 0.4389,
+ "step": 687000
+ },
+ {
+ "epoch": 17.18,
+ "learning_rate": 0.0001294820717131474,
+ "loss": 0.438,
+ "step": 690000
+ },
+ {
+ "epoch": 17.26,
+ "learning_rate": 0.0001287275141856815,
+ "loss": 0.4396,
+ "step": 693000
+ },
+ {
+ "epoch": 17.33,
+ "learning_rate": 0.0001279729566582156,
+ "loss": 0.437,
+ "step": 696000
+ },
+ {
+ "epoch": 17.41,
+ "learning_rate": 0.00012721839913074973,
+ "loss": 0.443,
+ "step": 699000
+ },
+ {
+ "epoch": 17.48,
+ "learning_rate": 0.0001264638416032838,
+ "loss": 0.4428,
+ "step": 702000
+ },
+ {
+ "epoch": 17.55,
+ "learning_rate": 0.00012570928407581793,
+ "loss": 0.4384,
+ "step": 705000
+ },
+ {
+ "epoch": 17.63,
+ "learning_rate": 0.00012495472654835204,
+ "loss": 0.4387,
+ "step": 708000
+ },
+ {
+ "epoch": 17.7,
+ "learning_rate": 0.00012420016902088614,
+ "loss": 0.4416,
+ "step": 711000
+ },
+ {
+ "epoch": 17.78,
+ "learning_rate": 0.00012344561149342024,
+ "loss": 0.4398,
+ "step": 714000
+ },
+ {
+ "epoch": 17.85,
+ "learning_rate": 0.00012269105396595437,
+ "loss": 0.437,
+ "step": 717000
+ },
+ {
+ "epoch": 17.93,
+ "learning_rate": 0.00012193649643848845,
+ "loss": 0.4393,
+ "step": 720000
+ },
+ {
+ "epoch": 18.0,
+ "learning_rate": 0.00012118193891102257,
+ "loss": 0.4416,
+ "step": 723000
+ },
+ {
+ "epoch": 18.08,
+ "learning_rate": 0.00012042738138355667,
+ "loss": 0.4216,
+ "step": 726000
+ },
+ {
+ "epoch": 18.15,
+ "learning_rate": 0.00011967282385609077,
+ "loss": 0.4206,
+ "step": 729000
+ },
+ {
+ "epoch": 18.23,
+ "learning_rate": 0.00011891826632862489,
+ "loss": 0.4223,
+ "step": 732000
+ },
+ {
+ "epoch": 18.3,
+ "learning_rate": 0.00011816370880115899,
+ "loss": 0.4261,
+ "step": 735000
+ },
+ {
+ "epoch": 18.38,
+ "learning_rate": 0.0001174091512736931,
+ "loss": 0.4238,
+ "step": 738000
+ },
+ {
+ "epoch": 18.45,
+ "learning_rate": 0.0001166545937462272,
+ "loss": 0.4224,
+ "step": 741000
+ },
+ {
+ "epoch": 18.53,
+ "learning_rate": 0.0001159000362187613,
+ "loss": 0.4261,
+ "step": 744000
+ },
+ {
+ "epoch": 18.6,
+ "learning_rate": 0.00011514547869129542,
+ "loss": 0.4287,
+ "step": 747000
+ },
+ {
+ "epoch": 18.68,
+ "learning_rate": 0.00011439092116382951,
+ "loss": 0.4261,
+ "step": 750000
+ },
+ {
+ "epoch": 18.75,
+ "learning_rate": 0.00011363636363636362,
+ "loss": 0.4259,
+ "step": 753000
+ },
+ {
+ "epoch": 18.82,
+ "learning_rate": 0.00011288180610889774,
+ "loss": 0.4233,
+ "step": 756000
+ },
+ {
+ "epoch": 18.9,
+ "learning_rate": 0.00011212724858143184,
+ "loss": 0.427,
+ "step": 759000
+ },
+ {
+ "epoch": 18.97,
+ "learning_rate": 0.00011137269105396594,
+ "loss": 0.4302,
+ "step": 762000
+ },
+ {
+ "epoch": 19.05,
+ "learning_rate": 0.00011061813352650005,
+ "loss": 0.4109,
+ "step": 765000
+ },
+ {
+ "epoch": 19.12,
+ "learning_rate": 0.00010986357599903416,
+ "loss": 0.4088,
+ "step": 768000
+ },
+ {
+ "epoch": 19.2,
+ "learning_rate": 0.00010910901847156827,
+ "loss": 0.4078,
+ "step": 771000
+ },
+ {
+ "epoch": 19.27,
+ "learning_rate": 0.00010835446094410236,
+ "loss": 0.4094,
+ "step": 774000
+ },
+ {
+ "epoch": 19.35,
+ "learning_rate": 0.00010759990341663647,
+ "loss": 0.409,
+ "step": 777000
+ },
+ {
+ "epoch": 19.42,
+ "learning_rate": 0.00010684534588917059,
+ "loss": 0.4086,
+ "step": 780000
+ },
+ {
+ "epoch": 19.5,
+ "learning_rate": 0.00010609078836170468,
+ "loss": 0.406,
+ "step": 783000
+ },
+ {
+ "epoch": 19.57,
+ "learning_rate": 0.00010533623083423879,
+ "loss": 0.4102,
+ "step": 786000
+ },
+ {
+ "epoch": 19.65,
+ "learning_rate": 0.0001045816733067729,
+ "loss": 0.4089,
+ "step": 789000
+ },
+ {
+ "epoch": 19.72,
+ "learning_rate": 0.000103827115779307,
+ "loss": 0.4096,
+ "step": 792000
+ },
+ {
+ "epoch": 19.8,
+ "learning_rate": 0.00010307255825184111,
+ "loss": 0.4119,
+ "step": 795000
+ },
+ {
+ "epoch": 19.87,
+ "learning_rate": 0.00010231800072437521,
+ "loss": 0.4101,
+ "step": 798000
+ },
+ {
+ "epoch": 19.95,
+ "learning_rate": 0.00010156344319690932,
+ "loss": 0.4125,
+ "step": 801000
+ },
+ {
+ "epoch": 20.02,
+ "learning_rate": 0.00010080888566944344,
+ "loss": 0.4091,
+ "step": 804000
+ },
+ {
+ "epoch": 20.09,
+ "learning_rate": 0.00010005432814197753,
+ "loss": 0.3946,
+ "step": 807000
+ },
+ {
+ "epoch": 20.17,
+ "learning_rate": 9.929977061451164e-05,
+ "loss": 0.3959,
+ "step": 810000
+ },
+ {
+ "epoch": 20.24,
+ "learning_rate": 9.854521308704576e-05,
+ "loss": 0.3954,
+ "step": 813000
+ },
+ {
+ "epoch": 20.32,
+ "learning_rate": 9.779065555957984e-05,
+ "loss": 0.3974,
+ "step": 816000
+ },
+ {
+ "epoch": 20.39,
+ "learning_rate": 9.703609803211396e-05,
+ "loss": 0.3943,
+ "step": 819000
+ },
+ {
+ "epoch": 20.47,
+ "learning_rate": 9.628154050464806e-05,
+ "loss": 0.3984,
+ "step": 822000
+ },
+ {
+ "epoch": 20.54,
+ "learning_rate": 9.552698297718217e-05,
+ "loss": 0.3963,
+ "step": 825000
+ },
+ {
+ "epoch": 20.62,
+ "learning_rate": 9.477242544971629e-05,
+ "loss": 0.3927,
+ "step": 828000
+ },
+ {
+ "epoch": 20.69,
+ "learning_rate": 9.401786792225038e-05,
+ "loss": 0.3955,
+ "step": 831000
+ },
+ {
+ "epoch": 20.77,
+ "learning_rate": 9.326331039478449e-05,
+ "loss": 0.3982,
+ "step": 834000
+ },
+ {
+ "epoch": 20.84,
+ "learning_rate": 9.25087528673186e-05,
+ "loss": 0.3976,
+ "step": 837000
+ },
+ {
+ "epoch": 20.92,
+ "learning_rate": 9.17541953398527e-05,
+ "loss": 0.3957,
+ "step": 840000
+ },
+ {
+ "epoch": 20.99,
+ "learning_rate": 9.099963781238681e-05,
+ "loss": 0.3982,
+ "step": 843000
+ },
+ {
+ "epoch": 21.07,
+ "learning_rate": 9.024508028492091e-05,
+ "loss": 0.3806,
+ "step": 846000
+ },
+ {
+ "epoch": 21.14,
+ "learning_rate": 8.949052275745503e-05,
+ "loss": 0.3819,
+ "step": 849000
+ },
+ {
+ "epoch": 21.22,
+ "learning_rate": 8.873596522998913e-05,
+ "loss": 0.3847,
+ "step": 852000
+ },
+ {
+ "epoch": 21.29,
+ "learning_rate": 8.798140770252323e-05,
+ "loss": 0.3843,
+ "step": 855000
+ },
+ {
+ "epoch": 21.36,
+ "learning_rate": 8.722685017505734e-05,
+ "loss": 0.3859,
+ "step": 858000
+ },
+ {
+ "epoch": 21.44,
+ "learning_rate": 8.647229264759146e-05,
+ "loss": 0.3821,
+ "step": 861000
+ },
+ {
+ "epoch": 21.51,
+ "learning_rate": 8.571773512012555e-05,
+ "loss": 0.386,
+ "step": 864000
+ },
+ {
+ "epoch": 21.59,
+ "learning_rate": 8.496317759265966e-05,
+ "loss": 0.3853,
+ "step": 867000
+ },
+ {
+ "epoch": 21.66,
+ "learning_rate": 8.420862006519376e-05,
+ "loss": 0.3856,
+ "step": 870000
+ },
+ {
+ "epoch": 21.74,
+ "learning_rate": 8.345406253772786e-05,
+ "loss": 0.3843,
+ "step": 873000
+ },
+ {
+ "epoch": 21.81,
+ "learning_rate": 8.269950501026198e-05,
+ "loss": 0.3845,
+ "step": 876000
+ },
+ {
+ "epoch": 21.89,
+ "learning_rate": 8.194494748279608e-05,
+ "loss": 0.3809,
+ "step": 879000
+ },
+ {
+ "epoch": 21.96,
+ "learning_rate": 8.11903899553302e-05,
+ "loss": 0.3824,
+ "step": 882000
+ },
+ {
+ "epoch": 22.04,
+ "learning_rate": 8.04358324278643e-05,
+ "loss": 0.3801,
+ "step": 885000
+ },
+ {
+ "epoch": 22.11,
+ "learning_rate": 7.96812749003984e-05,
+ "loss": 0.3702,
+ "step": 888000
+ },
+ {
+ "epoch": 22.19,
+ "learning_rate": 7.892671737293251e-05,
+ "loss": 0.3713,
+ "step": 891000
+ },
+ {
+ "epoch": 22.26,
+ "learning_rate": 7.817215984546663e-05,
+ "loss": 0.3715,
+ "step": 894000
+ },
+ {
+ "epoch": 22.34,
+ "learning_rate": 7.741760231800071e-05,
+ "loss": 0.3681,
+ "step": 897000
+ },
+ {
+ "epoch": 22.41,
+ "learning_rate": 7.666304479053483e-05,
+ "loss": 0.3714,
+ "step": 900000
+ },
+ {
+ "epoch": 22.49,
+ "learning_rate": 7.590848726306893e-05,
+ "loss": 0.3725,
+ "step": 903000
+ },
+ {
+ "epoch": 22.56,
+ "learning_rate": 7.515392973560303e-05,
+ "loss": 0.3692,
+ "step": 906000
+ },
+ {
+ "epoch": 22.63,
+ "learning_rate": 7.439937220813715e-05,
+ "loss": 0.375,
+ "step": 909000
+ },
+ {
+ "epoch": 22.71,
+ "learning_rate": 7.364481468067125e-05,
+ "loss": 0.3721,
+ "step": 912000
+ },
+ {
+ "epoch": 22.78,
+ "learning_rate": 7.289025715320536e-05,
+ "loss": 0.3699,
+ "step": 915000
+ },
+ {
+ "epoch": 22.86,
+ "learning_rate": 7.213569962573946e-05,
+ "loss": 0.37,
+ "step": 918000
+ },
+ {
+ "epoch": 22.93,
+ "learning_rate": 7.138114209827356e-05,
+ "loss": 0.3702,
+ "step": 921000
+ },
+ {
+ "epoch": 23.01,
+ "learning_rate": 7.062658457080768e-05,
+ "loss": 0.3668,
+ "step": 924000
+ },
+ {
+ "epoch": 23.08,
+ "learning_rate": 6.987202704334178e-05,
+ "loss": 0.3602,
+ "step": 927000
+ },
+ {
+ "epoch": 23.16,
+ "learning_rate": 6.911746951587588e-05,
+ "loss": 0.3557,
+ "step": 930000
+ },
+ {
+ "epoch": 23.23,
+ "learning_rate": 6.836291198840998e-05,
+ "loss": 0.3607,
+ "step": 933000
+ },
+ {
+ "epoch": 23.31,
+ "learning_rate": 6.76083544609441e-05,
+ "loss": 0.3571,
+ "step": 936000
+ },
+ {
+ "epoch": 23.38,
+ "learning_rate": 6.68537969334782e-05,
+ "loss": 0.3589,
+ "step": 939000
+ },
+ {
+ "epoch": 23.46,
+ "learning_rate": 6.609923940601231e-05,
+ "loss": 0.361,
+ "step": 942000
+ },
+ {
+ "epoch": 23.53,
+ "learning_rate": 6.534468187854641e-05,
+ "loss": 0.3595,
+ "step": 945000
+ },
+ {
+ "epoch": 23.61,
+ "learning_rate": 6.459012435108053e-05,
+ "loss": 0.3554,
+ "step": 948000
+ },
+ {
+ "epoch": 23.68,
+ "learning_rate": 6.383556682361463e-05,
+ "loss": 0.3572,
+ "step": 951000
+ },
+ {
+ "epoch": 23.75,
+ "learning_rate": 6.308100929614873e-05,
+ "loss": 0.3604,
+ "step": 954000
+ },
+ {
+ "epoch": 23.83,
+ "learning_rate": 6.232645176868283e-05,
+ "loss": 0.3591,
+ "step": 957000
+ },
+ {
+ "epoch": 23.9,
+ "learning_rate": 6.157189424121695e-05,
+ "loss": 0.3582,
+ "step": 960000
+ },
+ {
+ "epoch": 23.98,
+ "learning_rate": 6.0817336713751056e-05,
+ "loss": 0.3568,
+ "step": 963000
+ },
+ {
+ "epoch": 24.05,
+ "learning_rate": 6.006277918628516e-05,
+ "loss": 0.3495,
+ "step": 966000
+ },
+ {
+ "epoch": 24.13,
+ "learning_rate": 5.930822165881926e-05,
+ "loss": 0.3484,
+ "step": 969000
+ },
+ {
+ "epoch": 24.2,
+ "learning_rate": 5.855366413135337e-05,
+ "loss": 0.3449,
+ "step": 972000
+ },
+ {
+ "epoch": 24.28,
+ "learning_rate": 5.7799106603887474e-05,
+ "loss": 0.3471,
+ "step": 975000
+ },
+ {
+ "epoch": 24.35,
+ "learning_rate": 5.704454907642158e-05,
+ "loss": 0.3495,
+ "step": 978000
+ },
+ {
+ "epoch": 24.43,
+ "learning_rate": 5.6289991548955684e-05,
+ "loss": 0.3489,
+ "step": 981000
+ },
+ {
+ "epoch": 24.5,
+ "learning_rate": 5.55354340214898e-05,
+ "loss": 0.3464,
+ "step": 984000
+ },
+ {
+ "epoch": 24.58,
+ "learning_rate": 5.47808764940239e-05,
+ "loss": 0.3485,
+ "step": 987000
+ },
+ {
+ "epoch": 24.65,
+ "learning_rate": 5.402631896655801e-05,
+ "loss": 0.3486,
+ "step": 990000
+ },
+ {
+ "epoch": 24.73,
+ "learning_rate": 5.327176143909211e-05,
+ "loss": 0.3476,
+ "step": 993000
+ },
+ {
+ "epoch": 24.8,
+ "learning_rate": 5.2517203911626224e-05,
+ "loss": 0.3502,
+ "step": 996000
+ },
+ {
+ "epoch": 24.88,
+ "learning_rate": 5.1762646384160325e-05,
+ "loss": 0.3492,
+ "step": 999000
+ },
+ {
+ "epoch": 24.95,
+ "learning_rate": 5.1008088856694426e-05,
+ "loss": 0.347,
+ "step": 1002000
+ },
+ {
+ "epoch": 25.02,
+ "learning_rate": 5.0253531329228534e-05,
+ "loss": 0.343,
+ "step": 1005000
+ },
+ {
+ "epoch": 25.1,
+ "learning_rate": 4.949897380176264e-05,
+ "loss": 0.3366,
+ "step": 1008000
+ },
+ {
+ "epoch": 25.17,
+ "learning_rate": 4.874441627429675e-05,
+ "loss": 0.3348,
+ "step": 1011000
+ },
+ {
+ "epoch": 25.25,
+ "learning_rate": 4.798985874683085e-05,
+ "loss": 0.3344,
+ "step": 1014000
+ },
+ {
+ "epoch": 25.32,
+ "learning_rate": 4.723530121936496e-05,
+ "loss": 0.3406,
+ "step": 1017000
+ },
+ {
+ "epoch": 25.4,
+ "learning_rate": 4.648074369189907e-05,
+ "loss": 0.3366,
+ "step": 1020000
+ },
+ {
+ "epoch": 25.47,
+ "learning_rate": 4.5726186164433176e-05,
+ "loss": 0.3392,
+ "step": 1023000
+ },
+ {
+ "epoch": 25.55,
+ "learning_rate": 4.497162863696728e-05,
+ "loss": 0.3379,
+ "step": 1026000
+ },
+ {
+ "epoch": 25.62,
+ "learning_rate": 4.421707110950138e-05,
+ "loss": 0.3388,
+ "step": 1029000
+ },
+ {
+ "epoch": 25.7,
+ "learning_rate": 4.346251358203549e-05,
+ "loss": 0.3383,
+ "step": 1032000
+ },
+ {
+ "epoch": 25.77,
+ "learning_rate": 4.27079560545696e-05,
+ "loss": 0.3372,
+ "step": 1035000
+ },
+ {
+ "epoch": 25.85,
+ "learning_rate": 4.19533985271037e-05,
+ "loss": 0.3358,
+ "step": 1038000
+ },
+ {
+ "epoch": 25.92,
+ "learning_rate": 4.1198840999637803e-05,
+ "loss": 0.3353,
+ "step": 1041000
+ },
+ {
+ "epoch": 26.0,
+ "learning_rate": 4.044428347217192e-05,
+ "loss": 0.34,
+ "step": 1044000
+ },
+ {
+ "epoch": 26.07,
+ "learning_rate": 3.968972594470602e-05,
+ "loss": 0.3282,
+ "step": 1047000
+ },
+ {
+ "epoch": 26.15,
+ "learning_rate": 3.893516841724013e-05,
+ "loss": 0.3267,
+ "step": 1050000
+ },
+ {
+ "epoch": 26.22,
+ "learning_rate": 3.818061088977423e-05,
+ "loss": 0.3268,
+ "step": 1053000
+ },
+ {
+ "epoch": 26.29,
+ "learning_rate": 3.742605336230834e-05,
+ "loss": 0.3248,
+ "step": 1056000
+ },
+ {
+ "epoch": 26.37,
+ "learning_rate": 3.6671495834842445e-05,
+ "loss": 0.3268,
+ "step": 1059000
+ },
+ {
+ "epoch": 26.44,
+ "learning_rate": 3.591693830737655e-05,
+ "loss": 0.324,
+ "step": 1062000
+ },
+ {
+ "epoch": 26.52,
+ "learning_rate": 3.516238077991066e-05,
+ "loss": 0.3298,
+ "step": 1065000
+ },
+ {
+ "epoch": 26.59,
+ "learning_rate": 3.440782325244476e-05,
+ "loss": 0.3296,
+ "step": 1068000
+ },
+ {
+ "epoch": 26.67,
+ "learning_rate": 3.365326572497887e-05,
+ "loss": 0.3261,
+ "step": 1071000
+ },
+ {
+ "epoch": 26.74,
+ "learning_rate": 3.289870819751297e-05,
+ "loss": 0.3284,
+ "step": 1074000
+ },
+ {
+ "epoch": 26.82,
+ "learning_rate": 3.214415067004708e-05,
+ "loss": 0.3279,
+ "step": 1077000
+ },
+ {
+ "epoch": 26.89,
+ "learning_rate": 3.138959314258119e-05,
+ "loss": 0.3273,
+ "step": 1080000
+ },
+ {
+ "epoch": 26.97,
+ "learning_rate": 3.0635035615115295e-05,
+ "loss": 0.3275,
+ "step": 1083000
+ },
+ {
+ "epoch": 27.04,
+ "learning_rate": 2.9880478087649397e-05,
+ "loss": 0.323,
+ "step": 1086000
+ },
+ {
+ "epoch": 27.12,
+ "learning_rate": 2.9125920560183505e-05,
+ "loss": 0.3182,
+ "step": 1089000
+ },
+ {
+ "epoch": 27.19,
+ "learning_rate": 2.837136303271761e-05,
+ "loss": 0.3209,
+ "step": 1092000
+ },
+ {
+ "epoch": 27.27,
+ "learning_rate": 2.7616805505251717e-05,
+ "loss": 0.3185,
+ "step": 1095000
+ },
+ {
+ "epoch": 27.34,
+ "learning_rate": 2.6862247977785822e-05,
+ "loss": 0.3214,
+ "step": 1098000
+ },
+ {
+ "epoch": 27.42,
+ "learning_rate": 2.610769045031993e-05,
+ "loss": 0.3164,
+ "step": 1101000
+ },
+ {
+ "epoch": 27.49,
+ "learning_rate": 2.5353132922854035e-05,
+ "loss": 0.3206,
+ "step": 1104000
+ },
+ {
+ "epoch": 27.56,
+ "learning_rate": 2.4598575395388143e-05,
+ "loss": 0.3175,
+ "step": 1107000
+ },
+ {
+ "epoch": 27.64,
+ "learning_rate": 2.3844017867922247e-05,
+ "loss": 0.3185,
+ "step": 1110000
+ },
+ {
+ "epoch": 27.71,
+ "learning_rate": 2.3089460340456355e-05,
+ "loss": 0.3199,
+ "step": 1113000
+ },
+ {
+ "epoch": 27.79,
+ "learning_rate": 2.233490281299046e-05,
+ "loss": 0.318,
+ "step": 1116000
+ },
+ {
+ "epoch": 27.86,
+ "learning_rate": 2.1580345285524568e-05,
+ "loss": 0.319,
+ "step": 1119000
+ },
+ {
+ "epoch": 27.94,
+ "learning_rate": 2.082578775805867e-05,
+ "loss": 0.3152,
+ "step": 1122000
+ },
+ {
+ "epoch": 28.01,
+ "learning_rate": 2.0071230230592777e-05,
+ "loss": 0.3161,
+ "step": 1125000
+ },
+ {
+ "epoch": 28.09,
+ "learning_rate": 1.9316672703126882e-05,
+ "loss": 0.3142,
+ "step": 1128000
+ },
+ {
+ "epoch": 28.16,
+ "learning_rate": 1.856211517566099e-05,
+ "loss": 0.3129,
+ "step": 1131000
+ },
+ {
+ "epoch": 28.24,
+ "learning_rate": 1.7807557648195098e-05,
+ "loss": 0.3123,
+ "step": 1134000
+ },
+ {
+ "epoch": 28.31,
+ "learning_rate": 1.7053000120729203e-05,
+ "loss": 0.314,
+ "step": 1137000
+ },
+ {
+ "epoch": 28.39,
+ "learning_rate": 1.629844259326331e-05,
+ "loss": 0.3137,
+ "step": 1140000
+ },
+ {
+ "epoch": 28.46,
+ "learning_rate": 1.5543885065797415e-05,
+ "loss": 0.3093,
+ "step": 1143000
+ },
+ {
+ "epoch": 28.54,
+ "learning_rate": 1.4789327538331522e-05,
+ "loss": 0.3128,
+ "step": 1146000
+ },
+ {
+ "epoch": 28.61,
+ "learning_rate": 1.4034770010865628e-05,
+ "loss": 0.3127,
+ "step": 1149000
+ },
+ {
+ "epoch": 28.69,
+ "learning_rate": 1.3280212483399733e-05,
+ "loss": 0.3116,
+ "step": 1152000
+ },
+ {
+ "epoch": 28.76,
+ "learning_rate": 1.2525654955933839e-05,
+ "loss": 0.3117,
+ "step": 1155000
+ },
+ {
+ "epoch": 28.83,
+ "learning_rate": 1.1771097428467945e-05,
+ "loss": 0.3083,
+ "step": 1158000
+ },
+ {
+ "epoch": 28.91,
+ "learning_rate": 1.1016539901002052e-05,
+ "loss": 0.3099,
+ "step": 1161000
+ },
+ {
+ "epoch": 28.98,
+ "learning_rate": 1.0261982373536158e-05,
+ "loss": 0.3064,
+ "step": 1164000
+ },
+ {
+ "epoch": 29.06,
+ "learning_rate": 9.507424846070264e-06,
+ "loss": 0.3065,
+ "step": 1167000
+ },
+ {
+ "epoch": 29.13,
+ "learning_rate": 8.752867318604369e-06,
+ "loss": 0.3055,
+ "step": 1170000
+ },
+ {
+ "epoch": 29.21,
+ "learning_rate": 7.998309791138475e-06,
+ "loss": 0.3074,
+ "step": 1173000
+ },
+ {
+ "epoch": 29.28,
+ "learning_rate": 7.243752263672582e-06,
+ "loss": 0.3085,
+ "step": 1176000
+ },
+ {
+ "epoch": 29.36,
+ "learning_rate": 6.489194736206688e-06,
+ "loss": 0.3071,
+ "step": 1179000
+ },
+ {
+ "epoch": 29.43,
+ "learning_rate": 5.734637208740793e-06,
+ "loss": 0.3092,
+ "step": 1182000
+ },
+ {
+ "epoch": 29.51,
+ "learning_rate": 4.9800796812749e-06,
+ "loss": 0.3074,
+ "step": 1185000
+ },
+ {
+ "epoch": 29.58,
+ "learning_rate": 4.225522153809006e-06,
+ "loss": 0.3055,
+ "step": 1188000
+ },
+ {
+ "epoch": 29.66,
+ "learning_rate": 3.4709646263431124e-06,
+ "loss": 0.3072,
+ "step": 1191000
+ },
+ {
+ "epoch": 29.73,
+ "learning_rate": 2.7164070988772183e-06,
+ "loss": 0.305,
+ "step": 1194000
+ },
+ {
+ "epoch": 29.81,
+ "learning_rate": 1.9618495714113242e-06,
+ "loss": 0.3048,
+ "step": 1197000
+ },
+ {
+ "epoch": 29.88,
+ "learning_rate": 1.2072920439454301e-06,
+ "loss": 0.3068,
+ "step": 1200000
+ },
+ {
+ "epoch": 29.96,
+ "learning_rate": 4.5273451647953635e-07,
+ "loss": 0.3059,
+ "step": 1203000
+ }
+ ],
+ "logging_steps": 3000,
+ "max_steps": 1204800,
+ "num_train_epochs": 30,
+ "save_steps": 500,
+ "total_flos": 2.3932840682448497e+21,
+ "trial_name": null,
+ "trial_params": null
+}
diff --git a/checkpoint-1204800/training_args.bin b/checkpoint-1204800/training_args.bin
new file mode 100644
index 0000000000000000000000000000000000000000..fd8dc3cd49483d3920a9ebf868118e8673b4a989
--- /dev/null
+++ b/checkpoint-1204800/training_args.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3ba804e9f40dd8d142a57ab99d24265056b11e547908881dba51c1cd9148def3
+size 4600
diff --git a/checkpoint-1204800/vocab.json b/checkpoint-1204800/vocab.json
new file mode 100644
index 0000000000000000000000000000000000000000..8b9102f390f8bc2f807efc9dac5ec470f0fe2f38
--- /dev/null
+++ b/checkpoint-1204800/vocab.json
@@ -0,0 +1,2253 @@
+{
+ "\b": 0,
+ "\"": 2,
+ "#": 3,
+ ";": 4,
+ "=": 5,
+ ">": 6,
+ "[PAD]": 2250,
+ "[UNK]": 2249,
+ "_": 7,
+ "`": 8,
+ "|": 1,
+ "}": 9,
+ "°": 10,
+ "è": 11,
+ "฿": 12,
+ "ᆫ": 13,
+ "ᆯ": 14,
+ "ᆷ": 15,
+ "ᇂ": 16,
+ "": 17,
+ "℃": 18,
+ "ℓ": 19,
+ "ㄱ": 20,
+ "ㄴ": 21,
+ "ㄸ": 22,
+ "ㄹ": 23,
+ "ㅁ": 24,
+ "ㅂ": 25,
+ "ㅅ": 26,
+ "ㅇ": 27,
+ "ㅋ": 28,
+ "ㅌ": 29,
+ "ㅍ": 30,
+ "ㅏ": 31,
+ "ㅔ": 32,
+ "ㅠ": 33,
+ "ㅡ": 34,
+ "無": 35,
+ "가": 36,
+ "각": 37,
+ "간": 38,
+ "갇": 39,
+ "갈": 40,
+ "갉": 41,
+ "감": 42,
+ "갑": 43,
+ "값": 44,
+ "갓": 45,
+ "갔": 46,
+ "강": 47,
+ "갖": 48,
+ "갗": 49,
+ "같": 50,
+ "갚": 51,
+ "갛": 52,
+ "개": 53,
+ "객": 54,
+ "갠": 55,
+ "갤": 56,
+ "갬": 57,
+ "갭": 58,
+ "갯": 59,
+ "갰": 60,
+ "갱": 61,
+ "갸": 62,
+ "갼": 63,
+ "걀": 64,
+ "걈": 65,
+ "걉": 66,
+ "걍": 67,
+ "걎": 68,
+ "걔": 69,
+ "걘": 70,
+ "거": 71,
+ "걱": 72,
+ "건": 73,
+ "걷": 74,
+ "걸": 75,
+ "검": 76,
+ "겁": 77,
+ "것": 78,
+ "겄": 79,
+ "겅": 80,
+ "겉": 81,
+ "겋": 82,
+ "게": 83,
+ "겐": 84,
+ "겔": 85,
+ "겜": 86,
+ "겝": 87,
+ "겟": 88,
+ "겠": 89,
+ "겡": 90,
+ "겨": 91,
+ "격": 92,
+ "겪": 93,
+ "견": 94,
+ "결": 95,
+ "겸": 96,
+ "겹": 97,
+ "겼": 98,
+ "경": 99,
+ "곁": 100,
+ "곃": 101,
+ "계": 102,
+ "곈": 103,
+ "곘": 104,
+ "고": 105,
+ "곡": 106,
+ "곤": 107,
+ "곧": 108,
+ "골": 109,
+ "곪": 110,
+ "곯": 111,
+ "곰": 112,
+ "곱": 113,
+ "곳": 114,
+ "공": 115,
+ "곶": 116,
+ "과": 117,
+ "곽": 118,
+ "관": 119,
+ "괄": 120,
+ "괌": 121,
+ "괍": 122,
+ "광": 123,
+ "괘": 124,
+ "괜": 125,
+ "괭": 126,
+ "괴": 127,
+ "괸": 128,
+ "괼": 129,
+ "굉": 130,
+ "교": 131,
+ "굑": 132,
+ "굔": 133,
+ "굣": 134,
+ "굥": 135,
+ "구": 136,
+ "국": 137,
+ "군": 138,
+ "굳": 139,
+ "굴": 140,
+ "굵": 141,
+ "굶": 142,
+ "굼": 143,
+ "굽": 144,
+ "굿": 145,
+ "궁": 146,
+ "궂": 147,
+ "궄": 148,
+ "궈": 149,
+ "권": 150,
+ "궐": 151,
+ "궜": 152,
+ "궤": 153,
+ "귀": 154,
+ "귄": 155,
+ "귈": 156,
+ "귓": 157,
+ "규": 158,
+ "귝": 159,
+ "균": 160,
+ "귤": 161,
+ "그": 162,
+ "극": 163,
+ "근": 164,
+ "귿": 165,
+ "글": 166,
+ "긁": 167,
+ "금": 168,
+ "급": 169,
+ "긋": 170,
+ "긍": 171,
+ "긑": 172,
+ "긔": 173,
+ "기": 174,
+ "긱": 175,
+ "긴": 176,
+ "길": 177,
+ "김": 178,
+ "깁": 179,
+ "깃": 180,
+ "깄": 181,
+ "깅": 182,
+ "깆": 183,
+ "깉": 184,
+ "깊": 185,
+ "까": 186,
+ "깍": 187,
+ "깎": 188,
+ "깐": 189,
+ "깔": 190,
+ "깜": 191,
+ "깝": 192,
+ "깟": 193,
+ "깠": 194,
+ "깡": 195,
+ "깥": 196,
+ "깨": 197,
+ "깩": 198,
+ "깬": 199,
+ "깰": 200,
+ "깸": 201,
+ "깹": 202,
+ "깻": 203,
+ "깼": 204,
+ "깽": 205,
+ "꺄": 206,
+ "꺅": 207,
+ "꺠": 208,
+ "꺤": 209,
+ "꺨": 210,
+ "꺴": 211,
+ "꺼": 212,
+ "꺽": 213,
+ "꺾": 214,
+ "껀": 215,
+ "껄": 216,
+ "껌": 217,
+ "껍": 218,
+ "껏": 219,
+ "껐": 220,
+ "껑": 221,
+ "껗": 222,
+ "께": 223,
+ "껜": 224,
+ "껨": 225,
+ "껫": 226,
+ "껭": 227,
+ "껴": 228,
+ "꼈": 229,
+ "꼉": 230,
+ "꼐": 231,
+ "꼬": 232,
+ "꼭": 233,
+ "꼰": 234,
+ "꼴": 235,
+ "꼼": 236,
+ "꼽": 237,
+ "꼿": 238,
+ "꽁": 239,
+ "꽂": 240,
+ "꽃": 241,
+ "꽅": 242,
+ "꽈": 243,
+ "꽉": 244,
+ "꽌": 245,
+ "꽐": 246,
+ "꽝": 247,
+ "꽤": 248,
+ "꽥": 249,
+ "꾀": 250,
+ "꾜": 251,
+ "꾸": 252,
+ "꾹": 253,
+ "꾼": 254,
+ "꿀": 255,
+ "꿇": 256,
+ "꿈": 257,
+ "꿉": 258,
+ "꿋": 259,
+ "꿍": 260,
+ "꿎": 261,
+ "꿔": 262,
+ "꿘": 263,
+ "꿧": 264,
+ "꿨": 265,
+ "꿩": 266,
+ "꿰": 267,
+ "뀌": 268,
+ "뀐": 269,
+ "뀔": 270,
+ "뀜": 271,
+ "뀝": 272,
+ "뀠": 273,
+ "뀨": 274,
+ "뀽": 275,
+ "끄": 276,
+ "끈": 277,
+ "끊": 278,
+ "끋": 279,
+ "끌": 280,
+ "끓": 281,
+ "끔": 282,
+ "끕": 283,
+ "끗": 284,
+ "끙": 285,
+ "끝": 286,
+ "끼": 287,
+ "끽": 288,
+ "낀": 289,
+ "낄": 290,
+ "낌": 291,
+ "낍": 292,
+ "낏": 293,
+ "낑": 294,
+ "나": 295,
+ "낙": 296,
+ "낚": 297,
+ "난": 298,
+ "날": 299,
+ "낡": 300,
+ "남": 301,
+ "납": 302,
+ "낫": 303,
+ "났": 304,
+ "낭": 305,
+ "낮": 306,
+ "낯": 307,
+ "낱": 308,
+ "낳": 309,
+ "내": 310,
+ "낵": 311,
+ "낸": 312,
+ "낼": 313,
+ "냄": 314,
+ "냅": 315,
+ "냇": 316,
+ "냈": 317,
+ "냉": 318,
+ "냐": 319,
+ "냑": 320,
+ "냔": 321,
+ "냘": 322,
+ "냠": 323,
+ "냥": 324,
+ "냬": 325,
+ "너": 326,
+ "넉": 327,
+ "넋": 328,
+ "넌": 329,
+ "널": 330,
+ "넒": 331,
+ "넓": 332,
+ "넘": 333,
+ "넙": 334,
+ "넛": 335,
+ "넜": 336,
+ "넝": 337,
+ "넢": 338,
+ "넣": 339,
+ "네": 340,
+ "넥": 341,
+ "넨": 342,
+ "넫": 343,
+ "넬": 344,
+ "넴": 345,
+ "넵": 346,
+ "넷": 347,
+ "넸": 348,
+ "넹": 349,
+ "녀": 350,
+ "녁": 351,
+ "년": 352,
+ "념": 353,
+ "녑": 354,
+ "녔": 355,
+ "녕": 356,
+ "녘": 357,
+ "녜": 358,
+ "노": 359,
+ "녹": 360,
+ "논": 361,
+ "놀": 362,
+ "놇": 363,
+ "놈": 364,
+ "놉": 365,
+ "놋": 366,
+ "농": 367,
+ "높": 368,
+ "놓": 369,
+ "놔": 370,
+ "놧": 371,
+ "놨": 372,
+ "놯": 373,
+ "뇌": 374,
+ "뇨": 375,
+ "뇰": 376,
+ "뇸": 377,
+ "뇽": 378,
+ "누": 379,
+ "눅": 380,
+ "눈": 381,
+ "눌": 382,
+ "눔": 383,
+ "눕": 384,
+ "눗": 385,
+ "눙": 386,
+ "눞": 387,
+ "눠": 388,
+ "눴": 389,
+ "뉘": 390,
+ "뉜": 391,
+ "뉠": 392,
+ "뉩": 393,
+ "뉴": 394,
+ "늄": 395,
+ "늉": 396,
+ "느": 397,
+ "늑": 398,
+ "는": 399,
+ "늗": 400,
+ "늘": 401,
+ "늙": 402,
+ "늠": 403,
+ "늡": 404,
+ "능": 405,
+ "늦": 406,
+ "늪": 407,
+ "늫": 408,
+ "늬": 409,
+ "니": 410,
+ "닉": 411,
+ "닌": 412,
+ "닐": 413,
+ "님": 414,
+ "닙": 415,
+ "닛": 416,
+ "닝": 417,
+ "다": 418,
+ "닥": 419,
+ "닦": 420,
+ "단": 421,
+ "닫": 422,
+ "달": 423,
+ "닭": 424,
+ "닮": 425,
+ "닯": 426,
+ "닳": 427,
+ "담": 428,
+ "답": 429,
+ "닷": 430,
+ "닸": 431,
+ "당": 432,
+ "닺": 433,
+ "닿": 434,
+ "대": 435,
+ "댁": 436,
+ "댄": 437,
+ "댈": 438,
+ "댐": 439,
+ "댑": 440,
+ "댓": 441,
+ "댔": 442,
+ "댕": 443,
+ "댗": 444,
+ "댜": 445,
+ "더": 446,
+ "덕": 447,
+ "던": 448,
+ "덜": 449,
+ "덞": 450,
+ "덟": 451,
+ "덤": 452,
+ "덥": 453,
+ "덧": 454,
+ "덩": 455,
+ "덪": 456,
+ "덫": 457,
+ "덮": 458,
+ "데": 459,
+ "덱": 460,
+ "덴": 461,
+ "델": 462,
+ "뎀": 463,
+ "뎁": 464,
+ "뎃": 465,
+ "뎅": 466,
+ "뎊": 467,
+ "뎌": 468,
+ "뎠": 469,
+ "뎡": 470,
+ "도": 471,
+ "독": 472,
+ "돈": 473,
+ "돋": 474,
+ "돌": 475,
+ "돔": 476,
+ "돕": 477,
+ "돗": 478,
+ "동": 479,
+ "돚": 480,
+ "돠": 481,
+ "돨": 482,
+ "돼": 483,
+ "됀": 484,
+ "됌": 485,
+ "됍": 486,
+ "됐": 487,
+ "됑": 488,
+ "되": 489,
+ "된": 490,
+ "될": 491,
+ "됨": 492,
+ "됩": 493,
+ "됬": 494,
+ "됴": 495,
+ "두": 496,
+ "둑": 497,
+ "둔": 498,
+ "둘": 499,
+ "둠": 500,
+ "둡": 501,
+ "둣": 502,
+ "둥": 503,
+ "둬": 504,
+ "뒀": 505,
+ "뒈": 506,
+ "뒤": 507,
+ "뒨": 508,
+ "뒷": 509,
+ "뒹": 510,
+ "듀": 511,
+ "듄": 512,
+ "듈": 513,
+ "듐": 514,
+ "드": 515,
+ "득": 516,
+ "든": 517,
+ "듣": 518,
+ "들": 519,
+ "듦": 520,
+ "듬": 521,
+ "듭": 522,
+ "듯": 523,
+ "등": 524,
+ "디": 525,
+ "딕": 526,
+ "딘": 527,
+ "딛": 528,
+ "딜": 529,
+ "딣": 530,
+ "딤": 531,
+ "딥": 532,
+ "딧": 533,
+ "딨": 534,
+ "딩": 535,
+ "딪": 536,
+ "딫": 537,
+ "따": 538,
+ "딱": 539,
+ "딲": 540,
+ "딴": 541,
+ "딸": 542,
+ "땀": 543,
+ "땁": 544,
+ "땃": 545,
+ "땄": 546,
+ "땅": 547,
+ "땋": 548,
+ "때": 549,
+ "땍": 550,
+ "땐": 551,
+ "땔": 552,
+ "땜": 553,
+ "땝": 554,
+ "땟": 555,
+ "땠": 556,
+ "땡": 557,
+ "떄": 558,
+ "떈": 559,
+ "떌": 560,
+ "떘": 561,
+ "떙": 562,
+ "떠": 563,
+ "떡": 564,
+ "떢": 565,
+ "떤": 566,
+ "떨": 567,
+ "떫": 568,
+ "떰": 569,
+ "떱": 570,
+ "떳": 571,
+ "떴": 572,
+ "떵": 573,
+ "떻": 574,
+ "떼": 575,
+ "떽": 576,
+ "뗀": 577,
+ "뗄": 578,
+ "뗌": 579,
+ "뗍": 580,
+ "뗏": 581,
+ "뗐": 582,
+ "뗘": 583,
+ "뗴": 584,
+ "뗸": 585,
+ "또": 586,
+ "똑": 587,
+ "똔": 588,
+ "똘": 589,
+ "똟": 590,
+ "똠": 591,
+ "똣": 592,
+ "똥": 593,
+ "똬": 594,
+ "뙈": 595,
+ "뙤": 596,
+ "뚜": 597,
+ "뚝": 598,
+ "뚠": 599,
+ "뚤": 600,
+ "뚫": 601,
+ "뚱": 602,
+ "뚷": 603,
+ "뛰": 604,
+ "뛴": 605,
+ "뛸": 606,
+ "뜀": 607,
+ "뜁": 608,
+ "뜨": 609,
+ "뜩": 610,
+ "뜬": 611,
+ "뜯": 612,
+ "뜰": 613,
+ "뜷": 614,
+ "뜸": 615,
+ "뜹": 616,
+ "뜻": 617,
+ "뜽": 618,
+ "띁": 619,
+ "띄": 620,
+ "띈": 621,
+ "띌": 622,
+ "띕": 623,
+ "띠": 624,
+ "띡": 625,
+ "띤": 626,
+ "띨": 627,
+ "띰": 628,
+ "띱": 629,
+ "띵": 630,
+ "라": 631,
+ "락": 632,
+ "란": 633,
+ "랄": 634,
+ "람": 635,
+ "랍": 636,
+ "랏": 637,
+ "랐": 638,
+ "랑": 639,
+ "랖": 640,
+ "랗": 641,
+ "래": 642,
+ "랙": 643,
+ "랜": 644,
+ "랠": 645,
+ "램": 646,
+ "랩": 647,
+ "랫": 648,
+ "랬": 649,
+ "랭": 650,
+ "랴": 651,
+ "략": 652,
+ "량": 653,
+ "럤": 654,
+ "러": 655,
+ "럭": 656,
+ "런": 657,
+ "럴": 658,
+ "럼": 659,
+ "럽": 660,
+ "럿": 661,
+ "렀": 662,
+ "렁": 663,
+ "렇": 664,
+ "레": 665,
+ "렉": 666,
+ "렌": 667,
+ "렐": 668,
+ "렘": 669,
+ "렙": 670,
+ "렛": 671,
+ "렜": 672,
+ "렝": 673,
+ "렣": 674,
+ "려": 675,
+ "력": 676,
+ "련": 677,
+ "렬": 678,
+ "렴": 679,
+ "렵": 680,
+ "렷": 681,
+ "렸": 682,
+ "령": 683,
+ "렿": 684,
+ "례": 685,
+ "롄": 686,
+ "로": 687,
+ "록": 688,
+ "론": 689,
+ "롤": 690,
+ "롬": 691,
+ "롭": 692,
+ "롯": 693,
+ "롱": 694,
+ "롷": 695,
+ "롸": 696,
+ "뢋": 697,
+ "뢍": 698,
+ "뢰": 699,
+ "룃": 700,
+ "료": 701,
+ "룐": 702,
+ "룡": 703,
+ "루": 704,
+ "룩": 705,
+ "룬": 706,
+ "룰": 707,
+ "룸": 708,
+ "룹": 709,
+ "룻": 710,
+ "룽": 711,
+ "뤄": 712,
+ "뤘": 713,
+ "뤙": 714,
+ "뤼": 715,
+ "륑": 716,
+ "류": 717,
+ "륙": 718,
+ "륜": 719,
+ "률": 720,
+ "륨": 721,
+ "륭": 722,
+ "르": 723,
+ "륵": 724,
+ "른": 725,
+ "륻": 726,
+ "를": 727,
+ "름": 728,
+ "릅": 729,
+ "릇": 730,
+ "릈": 731,
+ "릉": 732,
+ "릎": 733,
+ "릏": 734,
+ "리": 735,
+ "릭": 736,
+ "린": 737,
+ "릴": 738,
+ "림": 739,
+ "립": 740,
+ "릿": 741,
+ "맀": 742,
+ "링": 743,
+ "마": 744,
+ "막": 745,
+ "만": 746,
+ "맍": 747,
+ "많": 748,
+ "맏": 749,
+ "말": 750,
+ "맑": 751,
+ "맗": 752,
+ "맘": 753,
+ "맙": 754,
+ "맛": 755,
+ "맜": 756,
+ "망": 757,
+ "맞": 758,
+ "맡": 759,
+ "맣": 760,
+ "매": 761,
+ "맥": 762,
+ "맨": 763,
+ "맫": 764,
+ "맬": 765,
+ "맴": 766,
+ "맵": 767,
+ "맷": 768,
+ "맸": 769,
+ "맹": 770,
+ "맺": 771,
+ "맻": 772,
+ "맽": 773,
+ "먀": 774,
+ "먕": 775,
+ "먖": 776,
+ "머": 777,
+ "먹": 778,
+ "먼": 779,
+ "멀": 780,
+ "멈": 781,
+ "멉": 782,
+ "멋": 783,
+ "멌": 784,
+ "멍": 785,
+ "멎": 786,
+ "멏": 787,
+ "멓": 788,
+ "메": 789,
+ "멕": 790,
+ "멘": 791,
+ "멜": 792,
+ "멤": 793,
+ "멥": 794,
+ "멧": 795,
+ "멨": 796,
+ "멩": 797,
+ "멫": 798,
+ "며": 799,
+ "멱": 800,
+ "면": 801,
+ "멸": 802,
+ "몀": 803,
+ "몄": 804,
+ "명": 805,
+ "몇": 806,
+ "몊": 807,
+ "몌": 808,
+ "모": 809,
+ "목": 810,
+ "몫": 811,
+ "몬": 812,
+ "몰": 813,
+ "몸": 814,
+ "몹": 815,
+ "못": 816,
+ "몽": 817,
+ "뫼": 818,
+ "묘": 819,
+ "묜": 820,
+ "묭": 821,
+ "무": 822,
+ "묵": 823,
+ "묶": 824,
+ "문": 825,
+ "묻": 826,
+ "물": 827,
+ "묽": 828,
+ "뭄": 829,
+ "뭅": 830,
+ "뭇": 831,
+ "뭉": 832,
+ "뭍": 833,
+ "뭐": 834,
+ "뭔": 835,
+ "뭘": 836,
+ "뭡": 837,
+ "뭣": 838,
+ "뭥": 839,
+ "뭬": 840,
+ "뭰": 841,
+ "뮈": 842,
+ "뮌": 843,
+ "뮐": 844,
+ "뮤": 845,
+ "뮨": 846,
+ "뮬": 847,
+ "므": 848,
+ "믄": 849,
+ "믈": 850,
+ "믐": 851,
+ "믕": 852,
+ "미": 853,
+ "믹": 854,
+ "민": 855,
+ "믾": 856,
+ "믿": 857,
+ "밀": 858,
+ "밈": 859,
+ "밉": 860,
+ "밋": 861,
+ "밌": 862,
+ "밍": 863,
+ "밎": 864,
+ "및": 865,
+ "밐": 866,
+ "밑": 867,
+ "바": 868,
+ "박": 869,
+ "밖": 870,
+ "반": 871,
+ "받": 872,
+ "발": 873,
+ "밝": 874,
+ "밟": 875,
+ "밤": 876,
+ "밥": 877,
+ "밧": 878,
+ "밨": 879,
+ "방": 880,
+ "밭": 881,
+ "배": 882,
+ "백": 883,
+ "밴": 884,
+ "밸": 885,
+ "뱀": 886,
+ "뱁": 887,
+ "뱃": 888,
+ "뱄": 889,
+ "뱅": 890,
+ "뱉": 891,
+ "뱌": 892,
+ "뱐": 893,
+ "버": 894,
+ "벅": 895,
+ "번": 896,
+ "벌": 897,
+ "범": 898,
+ "법": 899,
+ "벗": 900,
+ "벘": 901,
+ "벙": 902,
+ "벚": 903,
+ "벛": 904,
+ "벞": 905,
+ "베": 906,
+ "벡": 907,
+ "벤": 908,
+ "벨": 909,
+ "벳": 910,
+ "벴": 911,
+ "벵": 912,
+ "벼": 913,
+ "벽": 914,
+ "변": 915,
+ "별": 916,
+ "볌": 917,
+ "볍": 918,
+ "볏": 919,
+ "볐": 920,
+ "병": 921,
+ "볓": 922,
+ "볕": 923,
+ "보": 924,
+ "복": 925,
+ "볶": 926,
+ "본": 927,
+ "볼": 928,
+ "봄": 929,
+ "봅": 930,
+ "봇": 931,
+ "봉": 932,
+ "봐": 933,
+ "봔": 934,
+ "봘": 935,
+ "봣": 936,
+ "봤": 937,
+ "봥": 938,
+ "봬": 939,
+ "봽": 940,
+ "뵀": 941,
+ "뵈": 942,
+ "뵌": 943,
+ "뵐": 944,
+ "뵙": 945,
+ "뵜": 946,
+ "뵤": 947,
+ "뵬": 948,
+ "뵹": 949,
+ "부": 950,
+ "북": 951,
+ "분": 952,
+ "붇": 953,
+ "불": 954,
+ "붉": 955,
+ "붐": 956,
+ "붑": 957,
+ "붓": 958,
+ "붔": 959,
+ "붕": 960,
+ "붙": 961,
+ "붚": 962,
+ "붰": 963,
+ "뷔": 964,
+ "뷜": 965,
+ "뷰": 966,
+ "뷸": 967,
+ "븁": 968,
+ "븅": 969,
+ "브": 970,
+ "븍": 971,
+ "븐": 972,
+ "블": 973,
+ "븕": 974,
+ "븜": 975,
+ "븝": 976,
+ "븟": 977,
+ "비": 978,
+ "빅": 979,
+ "빈": 980,
+ "빋": 981,
+ "빌": 982,
+ "빔": 983,
+ "빕": 984,
+ "빗": 985,
+ "빘": 986,
+ "빙": 987,
+ "빚": 988,
+ "빛": 989,
+ "빝": 990,
+ "빠": 991,
+ "빡": 992,
+ "빤": 993,
+ "빨": 994,
+ "빰": 995,
+ "빳": 996,
+ "빴": 997,
+ "빵": 998,
+ "빻": 999,
+ "빼": 1000,
+ "빽": 1001,
+ "뺀": 1002,
+ "뺄": 1003,
+ "뺌": 1004,
+ "뺍": 1005,
+ "뺏": 1006,
+ "뺐": 1007,
+ "뺑": 1008,
+ "뺘": 1009,
+ "뺙": 1010,
+ "뺨": 1011,
+ "뺴": 1012,
+ "뺵": 1013,
+ "뺼": 1014,
+ "뻇": 1015,
+ "뻈": 1016,
+ "뻉": 1017,
+ "뻐": 1018,
+ "뻑": 1019,
+ "뻔": 1020,
+ "뻗": 1021,
+ "뻘": 1022,
+ "뻠": 1023,
+ "뻣": 1024,
+ "뻤": 1025,
+ "뻥": 1026,
+ "뻬": 1027,
+ "뻰": 1028,
+ "뻴": 1029,
+ "뼀": 1030,
+ "뼁": 1031,
+ "뼈": 1032,
+ "뼉": 1033,
+ "뼐": 1034,
+ "뼘": 1035,
+ "뼛": 1036,
+ "뼝": 1037,
+ "뼨": 1038,
+ "뽀": 1039,
+ "뽁": 1040,
+ "뽂": 1041,
+ "뽄": 1042,
+ "뽈": 1043,
+ "뽐": 1044,
+ "뽑": 1045,
+ "뽓": 1046,
+ "뽕": 1047,
+ "뽝": 1048,
+ "뾰": 1049,
+ "뾱": 1050,
+ "뿅": 1051,
+ "뿌": 1052,
+ "뿍": 1053,
+ "뿐": 1054,
+ "뿓": 1055,
+ "뿔": 1056,
+ "뿜": 1057,
+ "뿝": 1058,
+ "뿟": 1059,
+ "뿠": 1060,
+ "뿡": 1061,
+ "쀼": 1062,
+ "쁘": 1063,
+ "쁜": 1064,
+ "쁠": 1065,
+ "쁨": 1066,
+ "쁩": 1067,
+ "삐": 1068,
+ "삑": 1069,
+ "삔": 1070,
+ "삘": 1071,
+ "삣": 1072,
+ "삥": 1073,
+ "삫": 1074,
+ "사": 1075,
+ "삭": 1076,
+ "산": 1077,
+ "살": 1078,
+ "삶": 1079,
+ "삼": 1080,
+ "삽": 1081,
+ "삿": 1082,
+ "샀": 1083,
+ "상": 1084,
+ "샅": 1085,
+ "새": 1086,
+ "색": 1087,
+ "샌": 1088,
+ "샐": 1089,
+ "샘": 1090,
+ "샙": 1091,
+ "샛": 1092,
+ "샜": 1093,
+ "생": 1094,
+ "샤": 1095,
+ "샥": 1096,
+ "샨": 1097,
+ "샬": 1098,
+ "샴": 1099,
+ "샵": 1100,
+ "샷": 1101,
+ "샸": 1102,
+ "샹": 1103,
+ "샾": 1104,
+ "섀": 1105,
+ "서": 1106,
+ "석": 1107,
+ "섞": 1108,
+ "선": 1109,
+ "섣": 1110,
+ "설": 1111,
+ "섬": 1112,
+ "섭": 1113,
+ "섯": 1114,
+ "섰": 1115,
+ "성": 1116,
+ "세": 1117,
+ "섹": 1118,
+ "센": 1119,
+ "셀": 1120,
+ "셈": 1121,
+ "셉": 1122,
+ "셋": 1123,
+ "셌": 1124,
+ "셍": 1125,
+ "셔": 1126,
+ "션": 1127,
+ "셜": 1128,
+ "셤": 1129,
+ "셥": 1130,
+ "셧": 1131,
+ "셨": 1132,
+ "셩": 1133,
+ "셰": 1134,
+ "셱": 1135,
+ "셴": 1136,
+ "셸": 1137,
+ "솁": 1138,
+ "소": 1139,
+ "속": 1140,
+ "솎": 1141,
+ "손": 1142,
+ "솓": 1143,
+ "솔": 1144,
+ "솜": 1145,
+ "솝": 1146,
+ "솟": 1147,
+ "송": 1148,
+ "솥": 1149,
+ "솧": 1150,
+ "솨": 1151,
+ "솩": 1152,
+ "쇄": 1153,
+ "쇠": 1154,
+ "쇳": 1155,
+ "쇼": 1156,
+ "쇽": 1157,
+ "숀": 1158,
+ "숄": 1159,
+ "숍": 1160,
+ "숏": 1161,
+ "숑": 1162,
+ "수": 1163,
+ "숙": 1164,
+ "순": 1165,
+ "숟": 1166,
+ "술": 1167,
+ "숨": 1168,
+ "숩": 1169,
+ "숫": 1170,
+ "숬": 1171,
+ "숭": 1172,
+ "숮": 1173,
+ "숯": 1174,
+ "숱": 1175,
+ "숲": 1176,
+ "숴": 1177,
+ "쉈": 1178,
+ "쉐": 1179,
+ "쉑": 1180,
+ "쉔": 1181,
+ "쉘": 1182,
+ "쉣": 1183,
+ "쉤": 1184,
+ "쉥": 1185,
+ "쉬": 1186,
+ "쉭": 1187,
+ "쉰": 1188,
+ "쉴": 1189,
+ "쉼": 1190,
+ "쉽": 1191,
+ "쉿": 1192,
+ "슈": 1193,
+ "슉": 1194,
+ "슌": 1195,
+ "슐": 1196,
+ "슘": 1197,
+ "슛": 1198,
+ "슝": 1199,
+ "스": 1200,
+ "슥": 1201,
+ "슨": 1202,
+ "슬": 1203,
+ "슭": 1204,
+ "슴": 1205,
+ "습": 1206,
+ "슷": 1207,
+ "승": 1208,
+ "슾": 1209,
+ "싀": 1210,
+ "싁": 1211,
+ "싑": 1212,
+ "시": 1213,
+ "식": 1214,
+ "신": 1215,
+ "싣": 1216,
+ "실": 1217,
+ "싫": 1218,
+ "심": 1219,
+ "십": 1220,
+ "싯": 1221,
+ "싰": 1222,
+ "싱": 1223,
+ "싵": 1224,
+ "싶": 1225,
+ "싸": 1226,
+ "싹": 1227,
+ "싼": 1228,
+ "쌀": 1229,
+ "쌈": 1230,
+ "쌉": 1231,
+ "쌋": 1232,
+ "쌌": 1233,
+ "쌍": 1234,
+ "쌓": 1235,
+ "쌔": 1236,
+ "쌕": 1237,
+ "쌘": 1238,
+ "쌜": 1239,
+ "쌤": 1240,
+ "쌥": 1241,
+ "쌨": 1242,
+ "쌩": 1243,
+ "쌰": 1244,
+ "썅": 1245,
+ "썜": 1246,
+ "썝": 1247,
+ "썡": 1248,
+ "써": 1249,
+ "썩": 1250,
+ "썪": 1251,
+ "썬": 1252,
+ "썰": 1253,
+ "썸": 1254,
+ "썹": 1255,
+ "썻": 1256,
+ "썼": 1257,
+ "썽": 1258,
+ "쎄": 1259,
+ "쎅": 1260,
+ "쎈": 1261,
+ "쎌": 1262,
+ "쎔": 1263,
+ "쎕": 1264,
+ "쎗": 1265,
+ "쎘": 1266,
+ "쎱": 1267,
+ "쎼": 1268,
+ "쎽": 1269,
+ "쏀": 1270,
+ "쏄": 1271,
+ "쏍": 1272,
+ "쏘": 1273,
+ "쏙": 1274,
+ "쏜": 1275,
+ "쏟": 1276,
+ "쏠": 1277,
+ "쏨": 1278,
+ "쏩": 1279,
+ "쏭": 1280,
+ "쏴": 1281,
+ "쏵": 1282,
+ "쐇": 1283,
+ "쐈": 1284,
+ "쐐": 1285,
+ "쐤": 1286,
+ "쐬": 1287,
+ "쐰": 1288,
+ "쐴": 1289,
+ "쐿": 1290,
+ "쑈": 1291,
+ "쑝": 1292,
+ "쑤": 1293,
+ "쑥": 1294,
+ "쑨": 1295,
+ "쑬": 1296,
+ "쒀": 1297,
+ "쒔": 1298,
+ "쒜": 1299,
+ "쒝": 1300,
+ "쒯": 1301,
+ "쒸": 1302,
+ "쒹": 1303,
+ "쓉": 1304,
+ "쓔": 1305,
+ "쓕": 1306,
+ "쓩": 1307,
+ "쓰": 1308,
+ "쓱": 1309,
+ "쓴": 1310,
+ "쓸": 1311,
+ "씀": 1312,
+ "씁": 1313,
+ "씅": 1314,
+ "씌": 1315,
+ "씨": 1316,
+ "씩": 1317,
+ "씬": 1318,
+ "씰": 1319,
+ "씸": 1320,
+ "씹": 1321,
+ "씻": 1322,
+ "씽": 1323,
+ "아": 1324,
+ "악": 1325,
+ "앆": 1326,
+ "안": 1327,
+ "앉": 1328,
+ "않": 1329,
+ "알": 1330,
+ "앎": 1331,
+ "앓": 1332,
+ "암": 1333,
+ "압": 1334,
+ "앗": 1335,
+ "았": 1336,
+ "앙": 1337,
+ "앚": 1338,
+ "앞": 1339,
+ "애": 1340,
+ "액": 1341,
+ "앤": 1342,
+ "앧": 1343,
+ "앨": 1344,
+ "앰": 1345,
+ "앱": 1346,
+ "앳": 1347,
+ "앴": 1348,
+ "앵": 1349,
+ "야": 1350,
+ "약": 1351,
+ "얀": 1352,
+ "얄": 1353,
+ "얇": 1354,
+ "얌": 1355,
+ "얍": 1356,
+ "얏": 1357,
+ "얐": 1358,
+ "양": 1359,
+ "얕": 1360,
+ "얗": 1361,
+ "얘": 1362,
+ "얜": 1363,
+ "얠": 1364,
+ "얫": 1365,
+ "얬": 1366,
+ "어": 1367,
+ "억": 1368,
+ "언": 1369,
+ "얹": 1370,
+ "얻": 1371,
+ "얼": 1372,
+ "얽": 1373,
+ "엄": 1374,
+ "업": 1375,
+ "없": 1376,
+ "엇": 1377,
+ "었": 1378,
+ "엉": 1379,
+ "엊": 1380,
+ "엌": 1381,
+ "엎": 1382,
+ "에": 1383,
+ "엑": 1384,
+ "엔": 1385,
+ "엘": 1386,
+ "엠": 1387,
+ "엡": 1388,
+ "엣": 1389,
+ "엤": 1390,
+ "엥": 1391,
+ "여": 1392,
+ "역": 1393,
+ "엮": 1394,
+ "연": 1395,
+ "열": 1396,
+ "엷": 1397,
+ "염": 1398,
+ "엽": 1399,
+ "엿": 1400,
+ "였": 1401,
+ "영": 1402,
+ "옅": 1403,
+ "옆": 1404,
+ "옇": 1405,
+ "예": 1406,
+ "옌": 1407,
+ "옐": 1408,
+ "옘": 1409,
+ "옙": 1410,
+ "옛": 1411,
+ "옜": 1412,
+ "오": 1413,
+ "옥": 1414,
+ "온": 1415,
+ "올": 1416,
+ "옭": 1417,
+ "옮": 1418,
+ "옳": 1419,
+ "옴": 1420,
+ "옵": 1421,
+ "옷": 1422,
+ "옹": 1423,
+ "옻": 1424,
+ "옾": 1425,
+ "와": 1426,
+ "왁": 1427,
+ "완": 1428,
+ "왈": 1429,
+ "왐": 1430,
+ "왑": 1431,
+ "왓": 1432,
+ "왔": 1433,
+ "왕": 1434,
+ "왜": 1435,
+ "왠": 1436,
+ "왤": 1437,
+ "왯": 1438,
+ "왱": 1439,
+ "외": 1440,
+ "왼": 1441,
+ "욉": 1442,
+ "요": 1443,
+ "욕": 1444,
+ "욘": 1445,
+ "욜": 1446,
+ "욤": 1447,
+ "욥": 1448,
+ "욧": 1449,
+ "용": 1450,
+ "우": 1451,
+ "욱": 1452,
+ "운": 1453,
+ "욷": 1454,
+ "울": 1455,
+ "움": 1456,
+ "웁": 1457,
+ "웃": 1458,
+ "웅": 1459,
+ "워": 1460,
+ "웍": 1461,
+ "원": 1462,
+ "월": 1463,
+ "웜": 1464,
+ "웝": 1465,
+ "웠": 1466,
+ "웡": 1467,
+ "웨": 1468,
+ "웩": 1469,
+ "웬": 1470,
+ "웰": 1471,
+ "웸": 1472,
+ "웹": 1473,
+ "웻": 1474,
+ "웽": 1475,
+ "위": 1476,
+ "윅": 1477,
+ "윈": 1478,
+ "윌": 1479,
+ "윔": 1480,
+ "윕": 1481,
+ "윗": 1482,
+ "윙": 1483,
+ "유": 1484,
+ "육": 1485,
+ "윤": 1486,
+ "율": 1487,
+ "윰": 1488,
+ "윱": 1489,
+ "윳": 1490,
+ "융": 1491,
+ "윷": 1492,
+ "으": 1493,
+ "윽": 1494,
+ "은": 1495,
+ "읃": 1496,
+ "을": 1497,
+ "읊": 1498,
+ "음": 1499,
+ "읍": 1500,
+ "읎": 1501,
+ "읏": 1502,
+ "응": 1503,
+ "읒": 1504,
+ "읔": 1505,
+ "읕": 1506,
+ "읖": 1507,
+ "읗": 1508,
+ "의": 1509,
+ "읭": 1510,
+ "이": 1511,
+ "익": 1512,
+ "인": 1513,
+ "읺": 1514,
+ "일": 1515,
+ "읽": 1516,
+ "잃": 1517,
+ "임": 1518,
+ "입": 1519,
+ "잇": 1520,
+ "있": 1521,
+ "잉": 1522,
+ "잊": 1523,
+ "잌": 1524,
+ "잍": 1525,
+ "잎": 1526,
+ "자": 1527,
+ "작": 1528,
+ "잔": 1529,
+ "잖": 1530,
+ "잘": 1531,
+ "잠": 1532,
+ "잡": 1533,
+ "잣": 1534,
+ "잤": 1535,
+ "장": 1536,
+ "잦": 1537,
+ "재": 1538,
+ "잭": 1539,
+ "잰": 1540,
+ "잴": 1541,
+ "잼": 1542,
+ "잽": 1543,
+ "잿": 1544,
+ "쟀": 1545,
+ "쟁": 1546,
+ "쟈": 1547,
+ "쟌": 1548,
+ "쟎": 1549,
+ "쟐": 1550,
+ "쟤": 1551,
+ "쟨": 1552,
+ "쟬": 1553,
+ "저": 1554,
+ "적": 1555,
+ "전": 1556,
+ "절": 1557,
+ "젊": 1558,
+ "점": 1559,
+ "접": 1560,
+ "젓": 1561,
+ "젔": 1562,
+ "정": 1563,
+ "젖": 1564,
+ "제": 1565,
+ "젝": 1566,
+ "젠": 1567,
+ "젤": 1568,
+ "젬": 1569,
+ "젭": 1570,
+ "젯": 1571,
+ "젱": 1572,
+ "져": 1573,
+ "젼": 1574,
+ "졌": 1575,
+ "졍": 1576,
+ "졔": 1577,
+ "조": 1578,
+ "족": 1579,
+ "존": 1580,
+ "졸": 1581,
+ "좀": 1582,
+ "좁": 1583,
+ "좃": 1584,
+ "종": 1585,
+ "좆": 1586,
+ "좇": 1587,
+ "좋": 1588,
+ "좌": 1589,
+ "좍": 1590,
+ "좔": 1591,
+ "좟": 1592,
+ "죄": 1593,
+ "죌": 1594,
+ "죔": 1595,
+ "죙": 1596,
+ "죠": 1597,
+ "죵": 1598,
+ "주": 1599,
+ "죽": 1600,
+ "준": 1601,
+ "줄": 1602,
+ "줌": 1603,
+ "줍": 1604,
+ "줏": 1605,
+ "중": 1606,
+ "줒": 1607,
+ "줘": 1608,
+ "줜": 1609,
+ "줬": 1610,
+ "줴": 1611,
+ "줸": 1612,
+ "쥐": 1613,
+ "쥑": 1614,
+ "쥔": 1615,
+ "쥘": 1616,
+ "쥡": 1617,
+ "쥤": 1618,
+ "쥬": 1619,
+ "쥰": 1620,
+ "쥴": 1621,
+ "쥼": 1622,
+ "즈": 1623,
+ "즉": 1624,
+ "즌": 1625,
+ "즐": 1626,
+ "즘": 1627,
+ "즙": 1628,
+ "즛": 1629,
+ "증": 1630,
+ "즞": 1631,
+ "지": 1632,
+ "직": 1633,
+ "진": 1634,
+ "짆": 1635,
+ "질": 1636,
+ "짊": 1637,
+ "짐": 1638,
+ "집": 1639,
+ "짓": 1640,
+ "징": 1641,
+ "짖": 1642,
+ "짙": 1643,
+ "짚": 1644,
+ "짜": 1645,
+ "짝": 1646,
+ "짠": 1647,
+ "짢": 1648,
+ "짤": 1649,
+ "짧": 1650,
+ "짫": 1651,
+ "짬": 1652,
+ "짭": 1653,
+ "짰": 1654,
+ "짱": 1655,
+ "째": 1656,
+ "짹": 1657,
+ "짼": 1658,
+ "쨀": 1659,
+ "쨈": 1660,
+ "쨉": 1661,
+ "쨋": 1662,
+ "쨌": 1663,
+ "쨍": 1664,
+ "쨔": 1665,
+ "쨘": 1666,
+ "쨥": 1667,
+ "쨩": 1668,
+ "쨰": 1669,
+ "쨱": 1670,
+ "쨴": 1671,
+ "쩃": 1672,
+ "쩄": 1673,
+ "쩅": 1674,
+ "쩌": 1675,
+ "쩍": 1676,
+ "쩐": 1677,
+ "쩔": 1678,
+ "쩜": 1679,
+ "쩝": 1680,
+ "쩠": 1681,
+ "쩡": 1682,
+ "쩨": 1683,
+ "쩰": 1684,
+ "쩻": 1685,
+ "쪄": 1686,
+ "쪅": 1687,
+ "쪘": 1688,
+ "쪙": 1689,
+ "쪨": 1690,
+ "쪼": 1691,
+ "쪽": 1692,
+ "쫀": 1693,
+ "쫄": 1694,
+ "쫌": 1695,
+ "쫍": 1696,
+ "쫑": 1697,
+ "쫒": 1698,
+ "쫓": 1699,
+ "쫘": 1700,
+ "쫙": 1701,
+ "쫜": 1702,
+ "쫠": 1703,
+ "쬐": 1704,
+ "쬔": 1705,
+ "쭀": 1706,
+ "쭈": 1707,
+ "쭉": 1708,
+ "쭌": 1709,
+ "쭐": 1710,
+ "쭘": 1711,
+ "쭙": 1712,
+ "쭝": 1713,
+ "쭤": 1714,
+ "쭸": 1715,
+ "쮸": 1716,
+ "쮹": 1717,
+ "쯔": 1718,
+ "쯘": 1719,
+ "쯜": 1720,
+ "쯤": 1721,
+ "쯥": 1722,
+ "쯧": 1723,
+ "쯩": 1724,
+ "찌": 1725,
+ "찍": 1726,
+ "찐": 1727,
+ "찔": 1728,
+ "찜": 1729,
+ "찝": 1730,
+ "찟": 1731,
+ "찡": 1732,
+ "찢": 1733,
+ "찧": 1734,
+ "차": 1735,
+ "착": 1736,
+ "찬": 1737,
+ "찮": 1738,
+ "찰": 1739,
+ "참": 1740,
+ "찹": 1741,
+ "찻": 1742,
+ "찼": 1743,
+ "창": 1744,
+ "찾": 1745,
+ "찿": 1746,
+ "챁": 1747,
+ "채": 1748,
+ "책": 1749,
+ "챈": 1750,
+ "챌": 1751,
+ "챔": 1752,
+ "챕": 1753,
+ "챗": 1754,
+ "챘": 1755,
+ "챙": 1756,
+ "챝": 1757,
+ "챠": 1758,
+ "챦": 1759,
+ "챱": 1760,
+ "챴": 1761,
+ "처": 1762,
+ "척": 1763,
+ "천": 1764,
+ "철": 1765,
+ "첨": 1766,
+ "첩": 1767,
+ "첫": 1768,
+ "청": 1769,
+ "체": 1770,
+ "첵": 1771,
+ "첸": 1772,
+ "첼": 1773,
+ "쳄": 1774,
+ "쳅": 1775,
+ "쳇": 1776,
+ "쳌": 1777,
+ "쳐": 1778,
+ "쳘": 1779,
+ "쳡": 1780,
+ "쳣": 1781,
+ "쳤": 1782,
+ "쳥": 1783,
+ "초": 1784,
+ "촉": 1785,
+ "촌": 1786,
+ "촐": 1787,
+ "촘": 1788,
+ "촙": 1789,
+ "촛": 1790,
+ "총": 1791,
+ "촤": 1792,
+ "촥": 1793,
+ "촨": 1794,
+ "촬": 1795,
+ "최": 1796,
+ "쵸": 1797,
+ "추": 1798,
+ "축": 1799,
+ "춘": 1800,
+ "출": 1801,
+ "춤": 1802,
+ "춥": 1803,
+ "춧": 1804,
+ "충": 1805,
+ "춰": 1806,
+ "췄": 1807,
+ "췌": 1808,
+ "취": 1809,
+ "츄": 1810,
+ "츈": 1811,
+ "츌": 1812,
+ "츠": 1813,
+ "측": 1814,
+ "츤": 1815,
+ "츨": 1816,
+ "츰": 1817,
+ "츱": 1818,
+ "층": 1819,
+ "츼": 1820,
+ "치": 1821,
+ "칙": 1822,
+ "친": 1823,
+ "칠": 1824,
+ "칡": 1825,
+ "침": 1826,
+ "칩": 1827,
+ "칫": 1828,
+ "칬": 1829,
+ "칭": 1830,
+ "칲": 1831,
+ "카": 1832,
+ "칵": 1833,
+ "칸": 1834,
+ "칼": 1835,
+ "캄": 1836,
+ "캅": 1837,
+ "캇": 1838,
+ "캉": 1839,
+ "캌": 1840,
+ "캍": 1841,
+ "캐": 1842,
+ "캑": 1843,
+ "캔": 1844,
+ "캘": 1845,
+ "캠": 1846,
+ "캡": 1847,
+ "캣": 1848,
+ "캤": 1849,
+ "캥": 1850,
+ "캬": 1851,
+ "커": 1852,
+ "컥": 1853,
+ "컨": 1854,
+ "컫": 1855,
+ "컬": 1856,
+ "컴": 1857,
+ "컵": 1858,
+ "컷": 1859,
+ "컸": 1860,
+ "컹": 1861,
+ "컾": 1862,
+ "케": 1863,
+ "켁": 1864,
+ "켄": 1865,
+ "켈": 1866,
+ "켐": 1867,
+ "켓": 1868,
+ "켔": 1869,
+ "켕": 1870,
+ "켜": 1871,
+ "켠": 1872,
+ "켤": 1873,
+ "켬": 1874,
+ "켭": 1875,
+ "켰": 1876,
+ "켱": 1877,
+ "코": 1878,
+ "콕": 1879,
+ "콘": 1880,
+ "콜": 1881,
+ "콤": 1882,
+ "콥": 1883,
+ "콧": 1884,
+ "콩": 1885,
+ "콬": 1886,
+ "콰": 1887,
+ "콱": 1888,
+ "콸": 1889,
+ "쾅": 1890,
+ "쾌": 1891,
+ "쾡": 1892,
+ "쾬": 1893,
+ "쾰": 1894,
+ "쿄": 1895,
+ "쿠": 1896,
+ "쿡": 1897,
+ "쿤": 1898,
+ "쿨": 1899,
+ "쿰": 1900,
+ "쿱": 1901,
+ "쿵": 1902,
+ "쿼": 1903,
+ "퀀": 1904,
+ "퀄": 1905,
+ "퀉": 1906,
+ "퀘": 1907,
+ "퀭": 1908,
+ "퀴": 1909,
+ "퀵": 1910,
+ "퀸": 1911,
+ "퀼": 1912,
+ "큄": 1913,
+ "큉": 1914,
+ "큐": 1915,
+ "큔": 1916,
+ "큘": 1917,
+ "큠": 1918,
+ "큥": 1919,
+ "크": 1920,
+ "큭": 1921,
+ "큰": 1922,
+ "클": 1923,
+ "큼": 1924,
+ "큽": 1925,
+ "큿": 1926,
+ "킁": 1927,
+ "키": 1928,
+ "킥": 1929,
+ "킨": 1930,
+ "킬": 1931,
+ "킴": 1932,
+ "킵": 1933,
+ "킷": 1934,
+ "킹": 1935,
+ "킾": 1936,
+ "킿": 1937,
+ "타": 1938,
+ "탁": 1939,
+ "탄": 1940,
+ "탈": 1941,
+ "탉": 1942,
+ "탐": 1943,
+ "탑": 1944,
+ "탓": 1945,
+ "탔": 1946,
+ "탕": 1947,
+ "태": 1948,
+ "택": 1949,
+ "탠": 1950,
+ "탤": 1951,
+ "탬": 1952,
+ "탭": 1953,
+ "탯": 1954,
+ "탰": 1955,
+ "탱": 1956,
+ "탶": 1957,
+ "터": 1958,
+ "턱": 1959,
+ "턴": 1960,
+ "털": 1961,
+ "텀": 1962,
+ "텁": 1963,
+ "텃": 1964,
+ "텄": 1965,
+ "텅": 1966,
+ "테": 1967,
+ "텍": 1968,
+ "텐": 1969,
+ "텔": 1970,
+ "템": 1971,
+ "텝": 1972,
+ "텟": 1973,
+ "텡": 1974,
+ "텨": 1975,
+ "텼": 1976,
+ "토": 1977,
+ "톡": 1978,
+ "톤": 1979,
+ "톨": 1980,
+ "톰": 1981,
+ "톱": 1982,
+ "톳": 1983,
+ "통": 1984,
+ "퇘": 1985,
+ "퇴": 1986,
+ "투": 1987,
+ "툭": 1988,
+ "툰": 1989,
+ "툴": 1990,
+ "툼": 1991,
+ "툽": 1992,
+ "툿": 1993,
+ "퉁": 1994,
+ "퉈": 1995,
+ "퉜": 1996,
+ "퉤": 1997,
+ "튀": 1998,
+ "튁": 1999,
+ "튄": 2000,
+ "튈": 2001,
+ "튑": 2002,
+ "튕": 2003,
+ "튜": 2004,
+ "튠": 2005,
+ "튤": 2006,
+ "튬": 2007,
+ "튭": 2008,
+ "트": 2009,
+ "특": 2010,
+ "튼": 2011,
+ "튿": 2012,
+ "틀": 2013,
+ "틈": 2014,
+ "틉": 2015,
+ "틋": 2016,
+ "틔": 2017,
+ "티": 2018,
+ "틱": 2019,
+ "틴": 2020,
+ "틸": 2021,
+ "팀": 2022,
+ "팁": 2023,
+ "팅": 2024,
+ "파": 2025,
+ "팍": 2026,
+ "팎": 2027,
+ "판": 2028,
+ "팔": 2029,
+ "팜": 2030,
+ "팝": 2031,
+ "팟": 2032,
+ "팠": 2033,
+ "팡": 2034,
+ "팥": 2035,
+ "패": 2036,
+ "팩": 2037,
+ "팬": 2038,
+ "팰": 2039,
+ "팸": 2040,
+ "팹": 2041,
+ "팻": 2042,
+ "팼": 2043,
+ "팽": 2044,
+ "퍄": 2045,
+ "퍠": 2046,
+ "퍼": 2047,
+ "퍽": 2048,
+ "펀": 2049,
+ "펄": 2050,
+ "펌": 2051,
+ "펍": 2052,
+ "펏": 2053,
+ "펐": 2054,
+ "펑": 2055,
+ "페": 2056,
+ "펙": 2057,
+ "펜": 2058,
+ "펠": 2059,
+ "펩": 2060,
+ "펫": 2061,
+ "펭": 2062,
+ "펴": 2063,
+ "편": 2064,
+ "펼": 2065,
+ "폄": 2066,
+ "폇": 2067,
+ "폈": 2068,
+ "평": 2069,
+ "폐": 2070,
+ "폣": 2071,
+ "포": 2072,
+ "폭": 2073,
+ "폰": 2074,
+ "폴": 2075,
+ "폼": 2076,
+ "폿": 2077,
+ "퐁": 2078,
+ "퐈": 2079,
+ "퐉": 2080,
+ "퐐": 2081,
+ "퐝": 2082,
+ "푀": 2083,
+ "표": 2084,
+ "푠": 2085,
+ "푭": 2086,
+ "푯": 2087,
+ "푱": 2088,
+ "푸": 2089,
+ "푹": 2090,
+ "푼": 2091,
+ "풀": 2092,
+ "품": 2093,
+ "풉": 2094,
+ "풋": 2095,
+ "풍": 2096,
+ "퓀": 2097,
+ "퓌": 2098,
+ "퓔": 2099,
+ "퓨": 2100,
+ "퓩": 2101,
+ "퓸": 2102,
+ "프": 2103,
+ "픈": 2104,
+ "플": 2105,
+ "픔": 2106,
+ "픕": 2107,
+ "피": 2108,
+ "픽": 2109,
+ "핀": 2110,
+ "필": 2111,
+ "핌": 2112,
+ "핍": 2113,
+ "핏": 2114,
+ "핑": 2115,
+ "하": 2116,
+ "학": 2117,
+ "핚": 2118,
+ "한": 2119,
+ "할": 2120,
+ "핡": 2121,
+ "핥": 2122,
+ "핧": 2123,
+ "함": 2124,
+ "합": 2125,
+ "핫": 2126,
+ "핬": 2127,
+ "항": 2128,
+ "핰": 2129,
+ "해": 2130,
+ "핵": 2131,
+ "핸": 2132,
+ "핼": 2133,
+ "햄": 2134,
+ "햅": 2135,
+ "햇": 2136,
+ "했": 2137,
+ "행": 2138,
+ "햐": 2139,
+ "햟": 2140,
+ "햠": 2141,
+ "햡": 2142,
+ "향": 2143,
+ "헀": 2144,
+ "허": 2145,
+ "헉": 2146,
+ "헌": 2147,
+ "헐": 2148,
+ "험": 2149,
+ "헙": 2150,
+ "헛": 2151,
+ "헝": 2152,
+ "헤": 2153,
+ "헥": 2154,
+ "헨": 2155,
+ "헬": 2156,
+ "헴": 2157,
+ "헵": 2158,
+ "헷": 2159,
+ "헸": 2160,
+ "헹": 2161,
+ "혀": 2162,
+ "혁": 2163,
+ "현": 2164,
+ "혈": 2165,
+ "혐": 2166,
+ "협": 2167,
+ "혓": 2168,
+ "혔": 2169,
+ "형": 2170,
+ "혜": 2171,
+ "호": 2172,
+ "혹": 2173,
+ "혼": 2174,
+ "홀": 2175,
+ "홈": 2176,
+ "홉": 2177,
+ "홋": 2178,
+ "홍": 2179,
+ "홑": 2180,
+ "화": 2181,
+ "확": 2182,
+ "환": 2183,
+ "활": 2184,
+ "홥": 2185,
+ "홧": 2186,
+ "황": 2187,
+ "홱": 2188,
+ "횃": 2189,
+ "횅": 2190,
+ "회": 2191,
+ "획": 2192,
+ "횐": 2193,
+ "횝": 2194,
+ "횟": 2195,
+ "횡": 2196,
+ "효": 2197,
+ "횩": 2198,
+ "횽": 2199,
+ "후": 2200,
+ "훅": 2201,
+ "훈": 2202,
+ "훌": 2203,
+ "훑": 2204,
+ "훔": 2205,
+ "훕": 2206,
+ "훗": 2207,
+ "훙": 2208,
+ "훠": 2209,
+ "훤": 2210,
+ "훨": 2211,
+ "훼": 2212,
+ "휀": 2213,
+ "휑": 2214,
+ "휘": 2215,
+ "휙": 2216,
+ "휜": 2217,
+ "휠": 2218,
+ "휩": 2219,
+ "휭": 2220,
+ "휴": 2221,
+ "휸": 2222,
+ "휼": 2223,
+ "흄": 2224,
+ "흉": 2225,
+ "흐": 2226,
+ "흑": 2227,
+ "흔": 2228,
+ "흘": 2229,
+ "흙": 2230,
+ "흠": 2231,
+ "흡": 2232,
+ "흣": 2233,
+ "흥": 2234,
+ "흩": 2235,
+ "흫": 2236,
+ "희": 2237,
+ "흰": 2238,
+ "흴": 2239,
+ "히": 2240,
+ "힉": 2241,
+ "힌": 2242,
+ "힐": 2243,
+ "힘": 2244,
+ "힙": 2245,
+ "힛": 2246,
+ "힜": 2247,
+ "힝": 2248
+}
diff --git a/config.json b/config.json
new file mode 100644
index 0000000000000000000000000000000000000000..f0f9dff62c09f38f93a6b44b656ef396b4046dcb
--- /dev/null
+++ b/config.json
@@ -0,0 +1,117 @@
+{
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
+ "activation_dropout": 0.0,
+ "adapter_attn_dim": null,
+ "adapter_kernel_size": 3,
+ "adapter_stride": 2,
+ "add_adapter": false,
+ "apply_spec_augment": true,
+ "architectures": [
+ "Wav2Vec2ForCTC"
+ ],
+ "attention_dropout": 0.05,
+ "bos_token_id": 1,
+ "classifier_proj_size": 256,
+ "codevector_dim": 768,
+ "contrastive_logits_temperature": 0.1,
+ "conv_bias": true,
+ "conv_dim": [
+ 512,
+ 512,
+ 512,
+ 512,
+ 512,
+ 512,
+ 512
+ ],
+ "conv_kernel": [
+ 10,
+ 3,
+ 3,
+ 3,
+ 3,
+ 2,
+ 2
+ ],
+ "conv_stride": [
+ 5,
+ 2,
+ 2,
+ 2,
+ 2,
+ 2,
+ 2
+ ],
+ "ctc_loss_reduction": "mean",
+ "ctc_zero_infinity": true,
+ "diversity_loss_weight": 0.1,
+ "do_stable_layer_norm": true,
+ "eos_token_id": 2,
+ "feat_extract_activation": "gelu",
+ "feat_extract_dropout": 0.0,
+ "feat_extract_norm": "layer",
+ "feat_proj_dropout": 0.05,
+ "feat_quantizer_dropout": 0.0,
+ "final_dropout": 0.0,
+ "gradient_checkpointing": false,
+ "hidden_act": "gelu",
+ "hidden_dropout": 0.05,
+ "hidden_size": 1024,
+ "initializer_range": 0.02,
+ "intermediate_size": 4096,
+ "layer_norm_eps": 1e-05,
+ "layerdrop": 0.05,
+ "mask_channel_length": 10,
+ "mask_channel_min_space": 1,
+ "mask_channel_other": 0.0,
+ "mask_channel_prob": 0.0,
+ "mask_channel_selection": "static",
+ "mask_feature_length": 10,
+ "mask_feature_min_masks": 0,
+ "mask_feature_prob": 0.0,
+ "mask_time_length": 10,
+ "mask_time_min_masks": 2,
+ "mask_time_min_space": 1,
+ "mask_time_other": 0.0,
+ "mask_time_prob": 0.05,
+ "mask_time_selection": "static",
+ "model_type": "wav2vec2",
+ "num_adapter_layers": 3,
+ "num_attention_heads": 16,
+ "num_codevector_groups": 2,
+ "num_codevectors_per_group": 320,
+ "num_conv_pos_embedding_groups": 16,
+ "num_conv_pos_embeddings": 128,
+ "num_feat_extract_layers": 7,
+ "num_hidden_layers": 24,
+ "num_negatives": 100,
+ "output_hidden_size": 1024,
+ "pad_token_id": 2250,
+ "proj_codevector_dim": 768,
+ "tdnn_dilation": [
+ 1,
+ 2,
+ 3,
+ 1,
+ 1
+ ],
+ "tdnn_dim": [
+ 512,
+ 512,
+ 512,
+ 512,
+ 1500
+ ],
+ "tdnn_kernel": [
+ 5,
+ 3,
+ 3,
+ 1,
+ 1
+ ],
+ "torch_dtype": "float32",
+ "transformers_version": "4.35.2",
+ "use_weighted_layer_sum": false,
+ "vocab_size": 2253,
+ "xvector_output_dim": 512
+}
diff --git a/model.safetensors b/model.safetensors
new file mode 100644
index 0000000000000000000000000000000000000000..f3c40630ff826afe95b480dd09b6860724aa1d74
--- /dev/null
+++ b/model.safetensors
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:779d6440fb37938766991c4e6018fd16b50ff11c3d6999bf52af0e10f824d67a
+size 1271044804
diff --git a/preprocessor_config.json b/preprocessor_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..e7d53bd058c34639e2dec1357537a3d013bcda63
--- /dev/null
+++ b/preprocessor_config.json
@@ -0,0 +1,10 @@
+{
+ "do_normalize": true,
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
+ "feature_size": 1,
+ "padding_side": "right",
+ "padding_value": 0,
+ "processor_class": "Wav2Vec2Processor",
+ "return_attention_mask": true,
+ "sampling_rate": 16000
+}
diff --git a/special_tokens_map.json b/special_tokens_map.json
new file mode 100644
index 0000000000000000000000000000000000000000..c7771b3470e665ede683e35dbcbbd3643ddb0c98
--- /dev/null
+++ b/special_tokens_map.json
@@ -0,0 +1,30 @@
+{
+ "bos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "eos_token": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false
+ },
+ "pad_token": {
+ "content": "[PAD]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false
+ },
+ "unk_token": {
+ "content": "[UNK]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false
+ }
+}
diff --git a/tokenizer_config.json b/tokenizer_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..30b0a1991f27c208f900171c8af8c0a8670b10aa
--- /dev/null
+++ b/tokenizer_config.json
@@ -0,0 +1,51 @@
+{
+ "added_tokens_decoder": {
+ "2249": {
+ "content": "[UNK]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false,
+ "special": false
+ },
+ "2250": {
+ "content": "[PAD]",
+ "lstrip": true,
+ "normalized": false,
+ "rstrip": true,
+ "single_word": false,
+ "special": false
+ },
+ "2251": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "2252": {
+ "content": "",
+ "lstrip": false,
+ "normalized": true,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ }
+ },
+ "bos_token": "",
+ "clean_up_tokenization_spaces": true,
+ "config": null,
+ "do_lower_case": false,
+ "eos_token": "",
+ "model_max_length": 1000000000000000019884624838656,
+ "pad_token": "[PAD]",
+ "processor_class": "Wav2Vec2Processor",
+ "replace_word_delimiter_char": " ",
+ "target_lang": null,
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
+ "tokenizer_type": "wav2vec2",
+ "trust_remote_code": false,
+ "unk_token": "[UNK]",
+ "word_delimiter_token": "|"
+}
diff --git a/train_results.json b/train_results.json
new file mode 100644
index 0000000000000000000000000000000000000000..bf24a3cbae753fcf622504b0c320e5503314f30f
--- /dev/null
+++ b/train_results.json
@@ -0,0 +1,8 @@
+{
+ "epoch": 30.0,
+ "train_loss": 0.5678151446034709,
+ "train_runtime": 679738.019,
+ "train_samples": 642553,
+ "train_samples_per_second": 28.359,
+ "train_steps_per_second": 1.772
+}
\ No newline at end of file
diff --git a/trainer_state.json b/trainer_state.json
new file mode 100644
index 0000000000000000000000000000000000000000..12e82f0605060d8aaf889eac44341b1eba02f032
--- /dev/null
+++ b/trainer_state.json
@@ -0,0 +1,2434 @@
+{
+ "best_metric": null,
+ "best_model_checkpoint": null,
+ "epoch": 30.0,
+ "eval_steps": 500,
+ "global_step": 1204800,
+ "is_hyper_param_search": false,
+ "is_local_process_zero": true,
+ "is_world_process_zero": true,
+ "log_history": [
+ {
+ "epoch": 0.07,
+ "learning_rate": 7.47011952191235e-05,
+ "loss": 11.8613,
+ "step": 3000
+ },
+ {
+ "epoch": 0.15,
+ "learning_rate": 0.000149402390438247,
+ "loss": 1.9866,
+ "step": 6000
+ },
+ {
+ "epoch": 0.22,
+ "learning_rate": 0.0002241035856573705,
+ "loss": 1.4383,
+ "step": 9000
+ },
+ {
+ "epoch": 0.3,
+ "learning_rate": 0.000298804780876494,
+ "loss": 1.3467,
+ "step": 12000
+ },
+ {
+ "epoch": 0.37,
+ "learning_rate": 0.0002992575153929735,
+ "loss": 1.3175,
+ "step": 15000
+ },
+ {
+ "epoch": 0.45,
+ "learning_rate": 0.00029850295786550764,
+ "loss": 1.2551,
+ "step": 18000
+ },
+ {
+ "epoch": 0.52,
+ "learning_rate": 0.00029774840033804177,
+ "loss": 1.2058,
+ "step": 21000
+ },
+ {
+ "epoch": 0.6,
+ "learning_rate": 0.00029699384281057584,
+ "loss": 1.1759,
+ "step": 24000
+ },
+ {
+ "epoch": 0.67,
+ "learning_rate": 0.00029623928528310997,
+ "loss": 1.148,
+ "step": 27000
+ },
+ {
+ "epoch": 0.75,
+ "learning_rate": 0.0002954847277556441,
+ "loss": 1.116,
+ "step": 30000
+ },
+ {
+ "epoch": 0.82,
+ "learning_rate": 0.00029473017022817817,
+ "loss": 1.0933,
+ "step": 33000
+ },
+ {
+ "epoch": 0.9,
+ "learning_rate": 0.00029397561270071225,
+ "loss": 1.0788,
+ "step": 36000
+ },
+ {
+ "epoch": 0.97,
+ "learning_rate": 0.0002932210551732464,
+ "loss": 1.0578,
+ "step": 39000
+ },
+ {
+ "epoch": 1.05,
+ "learning_rate": 0.0002924664976457805,
+ "loss": 1.0363,
+ "step": 42000
+ },
+ {
+ "epoch": 1.12,
+ "learning_rate": 0.0002917119401183146,
+ "loss": 1.0198,
+ "step": 45000
+ },
+ {
+ "epoch": 1.2,
+ "learning_rate": 0.0002909573825908487,
+ "loss": 1.0132,
+ "step": 48000
+ },
+ {
+ "epoch": 1.27,
+ "learning_rate": 0.00029020282506338283,
+ "loss": 0.9995,
+ "step": 51000
+ },
+ {
+ "epoch": 1.34,
+ "learning_rate": 0.0002894482675359169,
+ "loss": 0.992,
+ "step": 54000
+ },
+ {
+ "epoch": 1.42,
+ "learning_rate": 0.000288693710008451,
+ "loss": 0.9821,
+ "step": 57000
+ },
+ {
+ "epoch": 1.49,
+ "learning_rate": 0.0002879391524809851,
+ "loss": 0.9878,
+ "step": 60000
+ },
+ {
+ "epoch": 1.57,
+ "learning_rate": 0.00028718459495351924,
+ "loss": 0.9952,
+ "step": 63000
+ },
+ {
+ "epoch": 1.64,
+ "learning_rate": 0.0002864300374260533,
+ "loss": 0.9804,
+ "step": 66000
+ },
+ {
+ "epoch": 1.72,
+ "learning_rate": 0.00028567547989858744,
+ "loss": 0.9736,
+ "step": 69000
+ },
+ {
+ "epoch": 1.79,
+ "learning_rate": 0.00028492092237112157,
+ "loss": 0.9681,
+ "step": 72000
+ },
+ {
+ "epoch": 1.87,
+ "learning_rate": 0.00028416636484365564,
+ "loss": 0.965,
+ "step": 75000
+ },
+ {
+ "epoch": 1.94,
+ "learning_rate": 0.00028341180731618977,
+ "loss": 0.9519,
+ "step": 78000
+ },
+ {
+ "epoch": 2.02,
+ "learning_rate": 0.00028265724978872385,
+ "loss": 0.9525,
+ "step": 81000
+ },
+ {
+ "epoch": 2.09,
+ "learning_rate": 0.000281902692261258,
+ "loss": 0.9175,
+ "step": 84000
+ },
+ {
+ "epoch": 2.17,
+ "learning_rate": 0.00028114813473379205,
+ "loss": 0.9129,
+ "step": 87000
+ },
+ {
+ "epoch": 2.24,
+ "learning_rate": 0.0002803935772063262,
+ "loss": 0.9167,
+ "step": 90000
+ },
+ {
+ "epoch": 2.32,
+ "learning_rate": 0.0002796390196788603,
+ "loss": 0.9037,
+ "step": 93000
+ },
+ {
+ "epoch": 2.39,
+ "learning_rate": 0.0002788844621513944,
+ "loss": 0.8967,
+ "step": 96000
+ },
+ {
+ "epoch": 2.47,
+ "learning_rate": 0.0002781299046239285,
+ "loss": 0.8896,
+ "step": 99000
+ },
+ {
+ "epoch": 2.54,
+ "learning_rate": 0.0002773753470964626,
+ "loss": 0.8848,
+ "step": 102000
+ },
+ {
+ "epoch": 2.61,
+ "learning_rate": 0.0002766207895689967,
+ "loss": 0.8864,
+ "step": 105000
+ },
+ {
+ "epoch": 2.69,
+ "learning_rate": 0.00027586623204153084,
+ "loss": 0.8793,
+ "step": 108000
+ },
+ {
+ "epoch": 2.76,
+ "learning_rate": 0.0002751116745140649,
+ "loss": 0.8727,
+ "step": 111000
+ },
+ {
+ "epoch": 2.84,
+ "learning_rate": 0.00027435711698659904,
+ "loss": 0.8605,
+ "step": 114000
+ },
+ {
+ "epoch": 2.91,
+ "learning_rate": 0.00027360255945913317,
+ "loss": 0.8614,
+ "step": 117000
+ },
+ {
+ "epoch": 2.99,
+ "learning_rate": 0.00027284800193166724,
+ "loss": 0.8584,
+ "step": 120000
+ },
+ {
+ "epoch": 3.06,
+ "learning_rate": 0.00027209344440420137,
+ "loss": 0.8322,
+ "step": 123000
+ },
+ {
+ "epoch": 3.14,
+ "learning_rate": 0.0002713388868767355,
+ "loss": 0.8182,
+ "step": 126000
+ },
+ {
+ "epoch": 3.21,
+ "learning_rate": 0.0002705843293492696,
+ "loss": 0.8203,
+ "step": 129000
+ },
+ {
+ "epoch": 3.29,
+ "learning_rate": 0.00026982977182180365,
+ "loss": 0.824,
+ "step": 132000
+ },
+ {
+ "epoch": 3.36,
+ "learning_rate": 0.0002690752142943378,
+ "loss": 0.819,
+ "step": 135000
+ },
+ {
+ "epoch": 3.44,
+ "learning_rate": 0.0002683206567668719,
+ "loss": 0.8144,
+ "step": 138000
+ },
+ {
+ "epoch": 3.51,
+ "learning_rate": 0.000267566099239406,
+ "loss": 0.8158,
+ "step": 141000
+ },
+ {
+ "epoch": 3.59,
+ "learning_rate": 0.0002668115417119401,
+ "loss": 0.8148,
+ "step": 144000
+ },
+ {
+ "epoch": 3.66,
+ "learning_rate": 0.00026605698418447424,
+ "loss": 0.8188,
+ "step": 147000
+ },
+ {
+ "epoch": 3.74,
+ "learning_rate": 0.0002653024266570083,
+ "loss": 0.8064,
+ "step": 150000
+ },
+ {
+ "epoch": 3.81,
+ "learning_rate": 0.0002645478691295424,
+ "loss": 0.8047,
+ "step": 153000
+ },
+ {
+ "epoch": 3.88,
+ "learning_rate": 0.0002637933116020765,
+ "loss": 0.8008,
+ "step": 156000
+ },
+ {
+ "epoch": 3.96,
+ "learning_rate": 0.00026303875407461064,
+ "loss": 0.799,
+ "step": 159000
+ },
+ {
+ "epoch": 4.03,
+ "learning_rate": 0.0002622841965471447,
+ "loss": 0.7822,
+ "step": 162000
+ },
+ {
+ "epoch": 4.11,
+ "learning_rate": 0.00026152963901967884,
+ "loss": 0.7657,
+ "step": 165000
+ },
+ {
+ "epoch": 4.18,
+ "learning_rate": 0.00026077508149221297,
+ "loss": 0.7627,
+ "step": 168000
+ },
+ {
+ "epoch": 4.26,
+ "learning_rate": 0.00026002052396474705,
+ "loss": 0.7603,
+ "step": 171000
+ },
+ {
+ "epoch": 4.33,
+ "learning_rate": 0.0002592659664372812,
+ "loss": 0.7608,
+ "step": 174000
+ },
+ {
+ "epoch": 4.41,
+ "learning_rate": 0.00025851140890981525,
+ "loss": 0.7642,
+ "step": 177000
+ },
+ {
+ "epoch": 4.48,
+ "learning_rate": 0.0002577568513823494,
+ "loss": 0.7607,
+ "step": 180000
+ },
+ {
+ "epoch": 4.56,
+ "learning_rate": 0.0002570022938548835,
+ "loss": 0.7546,
+ "step": 183000
+ },
+ {
+ "epoch": 4.63,
+ "learning_rate": 0.0002562477363274176,
+ "loss": 0.7531,
+ "step": 186000
+ },
+ {
+ "epoch": 4.71,
+ "learning_rate": 0.0002554931787999517,
+ "loss": 0.7572,
+ "step": 189000
+ },
+ {
+ "epoch": 4.78,
+ "learning_rate": 0.0002547386212724858,
+ "loss": 0.7578,
+ "step": 192000
+ },
+ {
+ "epoch": 4.86,
+ "learning_rate": 0.0002539840637450199,
+ "loss": 0.7558,
+ "step": 195000
+ },
+ {
+ "epoch": 4.93,
+ "learning_rate": 0.000253229506217554,
+ "loss": 0.7556,
+ "step": 198000
+ },
+ {
+ "epoch": 5.0,
+ "learning_rate": 0.0002524749486900881,
+ "loss": 0.7476,
+ "step": 201000
+ },
+ {
+ "epoch": 5.08,
+ "learning_rate": 0.00025172039116262224,
+ "loss": 0.721,
+ "step": 204000
+ },
+ {
+ "epoch": 5.15,
+ "learning_rate": 0.0002509658336351563,
+ "loss": 0.7241,
+ "step": 207000
+ },
+ {
+ "epoch": 5.23,
+ "learning_rate": 0.00025021127610769044,
+ "loss": 0.7183,
+ "step": 210000
+ },
+ {
+ "epoch": 5.3,
+ "learning_rate": 0.00024945671858022457,
+ "loss": 0.7163,
+ "step": 213000
+ },
+ {
+ "epoch": 5.38,
+ "learning_rate": 0.00024870216105275865,
+ "loss": 0.716,
+ "step": 216000
+ },
+ {
+ "epoch": 5.45,
+ "learning_rate": 0.0002479476035252927,
+ "loss": 0.7208,
+ "step": 219000
+ },
+ {
+ "epoch": 5.53,
+ "learning_rate": 0.00024719304599782685,
+ "loss": 0.7149,
+ "step": 222000
+ },
+ {
+ "epoch": 5.6,
+ "learning_rate": 0.000246438488470361,
+ "loss": 0.7168,
+ "step": 225000
+ },
+ {
+ "epoch": 5.68,
+ "learning_rate": 0.00024568393094289505,
+ "loss": 0.7131,
+ "step": 228000
+ },
+ {
+ "epoch": 5.75,
+ "learning_rate": 0.0002449293734154292,
+ "loss": 0.7134,
+ "step": 231000
+ },
+ {
+ "epoch": 5.83,
+ "learning_rate": 0.0002441748158879633,
+ "loss": 0.7088,
+ "step": 234000
+ },
+ {
+ "epoch": 5.9,
+ "learning_rate": 0.00024342025836049738,
+ "loss": 0.7101,
+ "step": 237000
+ },
+ {
+ "epoch": 5.98,
+ "learning_rate": 0.00024266570083303148,
+ "loss": 0.7106,
+ "step": 240000
+ },
+ {
+ "epoch": 6.05,
+ "learning_rate": 0.0002419111433055656,
+ "loss": 0.6846,
+ "step": 243000
+ },
+ {
+ "epoch": 6.13,
+ "learning_rate": 0.00024115658577809968,
+ "loss": 0.6761,
+ "step": 246000
+ },
+ {
+ "epoch": 6.2,
+ "learning_rate": 0.00024040202825063379,
+ "loss": 0.6783,
+ "step": 249000
+ },
+ {
+ "epoch": 6.27,
+ "learning_rate": 0.00023964747072316791,
+ "loss": 0.6815,
+ "step": 252000
+ },
+ {
+ "epoch": 6.35,
+ "learning_rate": 0.00023889291319570202,
+ "loss": 0.6864,
+ "step": 255000
+ },
+ {
+ "epoch": 6.42,
+ "learning_rate": 0.00023813835566823612,
+ "loss": 0.688,
+ "step": 258000
+ },
+ {
+ "epoch": 6.5,
+ "learning_rate": 0.00023738379814077025,
+ "loss": 0.6843,
+ "step": 261000
+ },
+ {
+ "epoch": 6.57,
+ "learning_rate": 0.00023662924061330435,
+ "loss": 0.6842,
+ "step": 264000
+ },
+ {
+ "epoch": 6.65,
+ "learning_rate": 0.00023587468308583842,
+ "loss": 0.6874,
+ "step": 267000
+ },
+ {
+ "epoch": 6.72,
+ "learning_rate": 0.00023512012555837258,
+ "loss": 0.6777,
+ "step": 270000
+ },
+ {
+ "epoch": 6.8,
+ "learning_rate": 0.00023436556803090665,
+ "loss": 0.6813,
+ "step": 273000
+ },
+ {
+ "epoch": 6.87,
+ "learning_rate": 0.00023361101050344075,
+ "loss": 0.6859,
+ "step": 276000
+ },
+ {
+ "epoch": 6.95,
+ "learning_rate": 0.00023285645297597488,
+ "loss": 0.6756,
+ "step": 279000
+ },
+ {
+ "epoch": 7.02,
+ "learning_rate": 0.00023210189544850898,
+ "loss": 0.6682,
+ "step": 282000
+ },
+ {
+ "epoch": 7.1,
+ "learning_rate": 0.00023134733792104308,
+ "loss": 0.6456,
+ "step": 285000
+ },
+ {
+ "epoch": 7.17,
+ "learning_rate": 0.00023059278039357716,
+ "loss": 0.6463,
+ "step": 288000
+ },
+ {
+ "epoch": 7.25,
+ "learning_rate": 0.0002298382228661113,
+ "loss": 0.6508,
+ "step": 291000
+ },
+ {
+ "epoch": 7.32,
+ "learning_rate": 0.00022908366533864539,
+ "loss": 0.6513,
+ "step": 294000
+ },
+ {
+ "epoch": 7.4,
+ "learning_rate": 0.0002283291078111795,
+ "loss": 0.6479,
+ "step": 297000
+ },
+ {
+ "epoch": 7.47,
+ "learning_rate": 0.00022757455028371362,
+ "loss": 0.6514,
+ "step": 300000
+ },
+ {
+ "epoch": 7.54,
+ "learning_rate": 0.00022681999275624772,
+ "loss": 0.648,
+ "step": 303000
+ },
+ {
+ "epoch": 7.62,
+ "learning_rate": 0.00022606543522878182,
+ "loss": 0.6467,
+ "step": 306000
+ },
+ {
+ "epoch": 7.69,
+ "learning_rate": 0.00022531087770131595,
+ "loss": 0.6476,
+ "step": 309000
+ },
+ {
+ "epoch": 7.77,
+ "learning_rate": 0.00022455632017385005,
+ "loss": 0.6485,
+ "step": 312000
+ },
+ {
+ "epoch": 7.84,
+ "learning_rate": 0.00022380176264638412,
+ "loss": 0.6464,
+ "step": 315000
+ },
+ {
+ "epoch": 7.92,
+ "learning_rate": 0.00022304720511891825,
+ "loss": 0.644,
+ "step": 318000
+ },
+ {
+ "epoch": 7.99,
+ "learning_rate": 0.00022229264759145235,
+ "loss": 0.6423,
+ "step": 321000
+ },
+ {
+ "epoch": 8.07,
+ "learning_rate": 0.00022153809006398645,
+ "loss": 0.6169,
+ "step": 324000
+ },
+ {
+ "epoch": 8.14,
+ "learning_rate": 0.00022078353253652058,
+ "loss": 0.6166,
+ "step": 327000
+ },
+ {
+ "epoch": 8.22,
+ "learning_rate": 0.00022002897500905468,
+ "loss": 0.6174,
+ "step": 330000
+ },
+ {
+ "epoch": 8.29,
+ "learning_rate": 0.00021927441748158878,
+ "loss": 0.62,
+ "step": 333000
+ },
+ {
+ "epoch": 8.37,
+ "learning_rate": 0.00021851985995412286,
+ "loss": 0.6217,
+ "step": 336000
+ },
+ {
+ "epoch": 8.44,
+ "learning_rate": 0.00021776530242665699,
+ "loss": 0.6187,
+ "step": 339000
+ },
+ {
+ "epoch": 8.52,
+ "learning_rate": 0.0002170107448991911,
+ "loss": 0.6221,
+ "step": 342000
+ },
+ {
+ "epoch": 8.59,
+ "learning_rate": 0.0002162561873717252,
+ "loss": 0.6202,
+ "step": 345000
+ },
+ {
+ "epoch": 8.67,
+ "learning_rate": 0.00021550162984425932,
+ "loss": 0.6198,
+ "step": 348000
+ },
+ {
+ "epoch": 8.74,
+ "learning_rate": 0.00021474707231679342,
+ "loss": 0.6159,
+ "step": 351000
+ },
+ {
+ "epoch": 8.81,
+ "learning_rate": 0.00021399251478932752,
+ "loss": 0.615,
+ "step": 354000
+ },
+ {
+ "epoch": 8.89,
+ "learning_rate": 0.00021323795726186165,
+ "loss": 0.6188,
+ "step": 357000
+ },
+ {
+ "epoch": 8.96,
+ "learning_rate": 0.00021248339973439572,
+ "loss": 0.6167,
+ "step": 360000
+ },
+ {
+ "epoch": 9.04,
+ "learning_rate": 0.00021172884220692982,
+ "loss": 0.6022,
+ "step": 363000
+ },
+ {
+ "epoch": 9.11,
+ "learning_rate": 0.00021097428467946395,
+ "loss": 0.5912,
+ "step": 366000
+ },
+ {
+ "epoch": 9.19,
+ "learning_rate": 0.00021021972715199805,
+ "loss": 0.5906,
+ "step": 369000
+ },
+ {
+ "epoch": 9.26,
+ "learning_rate": 0.00020946516962453215,
+ "loss": 0.5921,
+ "step": 372000
+ },
+ {
+ "epoch": 9.34,
+ "learning_rate": 0.00020871061209706628,
+ "loss": 0.584,
+ "step": 375000
+ },
+ {
+ "epoch": 9.41,
+ "learning_rate": 0.00020795605456960038,
+ "loss": 0.5884,
+ "step": 378000
+ },
+ {
+ "epoch": 9.49,
+ "learning_rate": 0.00020720149704213446,
+ "loss": 0.585,
+ "step": 381000
+ },
+ {
+ "epoch": 9.56,
+ "learning_rate": 0.00020644693951466859,
+ "loss": 0.5878,
+ "step": 384000
+ },
+ {
+ "epoch": 9.64,
+ "learning_rate": 0.0002056923819872027,
+ "loss": 0.5894,
+ "step": 387000
+ },
+ {
+ "epoch": 9.71,
+ "learning_rate": 0.0002049378244597368,
+ "loss": 0.5875,
+ "step": 390000
+ },
+ {
+ "epoch": 9.79,
+ "learning_rate": 0.0002041832669322709,
+ "loss": 0.5877,
+ "step": 393000
+ },
+ {
+ "epoch": 9.86,
+ "learning_rate": 0.00020342870940480502,
+ "loss": 0.5876,
+ "step": 396000
+ },
+ {
+ "epoch": 9.94,
+ "learning_rate": 0.00020267415187733912,
+ "loss": 0.5876,
+ "step": 399000
+ },
+ {
+ "epoch": 10.01,
+ "learning_rate": 0.0002019195943498732,
+ "loss": 0.5885,
+ "step": 402000
+ },
+ {
+ "epoch": 10.08,
+ "learning_rate": 0.00020116503682240732,
+ "loss": 0.5606,
+ "step": 405000
+ },
+ {
+ "epoch": 10.16,
+ "learning_rate": 0.00020041047929494142,
+ "loss": 0.5618,
+ "step": 408000
+ },
+ {
+ "epoch": 10.23,
+ "learning_rate": 0.00019965592176747552,
+ "loss": 0.5661,
+ "step": 411000
+ },
+ {
+ "epoch": 10.31,
+ "learning_rate": 0.00019890136424000965,
+ "loss": 0.5723,
+ "step": 414000
+ },
+ {
+ "epoch": 10.38,
+ "learning_rate": 0.00019814680671254375,
+ "loss": 0.5665,
+ "step": 417000
+ },
+ {
+ "epoch": 10.46,
+ "learning_rate": 0.00019739224918507786,
+ "loss": 0.5635,
+ "step": 420000
+ },
+ {
+ "epoch": 10.53,
+ "learning_rate": 0.00019663769165761198,
+ "loss": 0.5677,
+ "step": 423000
+ },
+ {
+ "epoch": 10.61,
+ "learning_rate": 0.00019588313413014606,
+ "loss": 0.5657,
+ "step": 426000
+ },
+ {
+ "epoch": 10.68,
+ "learning_rate": 0.00019512857660268016,
+ "loss": 0.5675,
+ "step": 429000
+ },
+ {
+ "epoch": 10.76,
+ "learning_rate": 0.0001943740190752143,
+ "loss": 0.5646,
+ "step": 432000
+ },
+ {
+ "epoch": 10.83,
+ "learning_rate": 0.0001936194615477484,
+ "loss": 0.5663,
+ "step": 435000
+ },
+ {
+ "epoch": 10.91,
+ "learning_rate": 0.0001928649040202825,
+ "loss": 0.5692,
+ "step": 438000
+ },
+ {
+ "epoch": 10.98,
+ "learning_rate": 0.0001921103464928166,
+ "loss": 0.5664,
+ "step": 441000
+ },
+ {
+ "epoch": 11.06,
+ "learning_rate": 0.00019135578896535072,
+ "loss": 0.5487,
+ "step": 444000
+ },
+ {
+ "epoch": 11.13,
+ "learning_rate": 0.0001906012314378848,
+ "loss": 0.5436,
+ "step": 447000
+ },
+ {
+ "epoch": 11.21,
+ "learning_rate": 0.0001898466739104189,
+ "loss": 0.5438,
+ "step": 450000
+ },
+ {
+ "epoch": 11.28,
+ "learning_rate": 0.00018909211638295302,
+ "loss": 0.5444,
+ "step": 453000
+ },
+ {
+ "epoch": 11.35,
+ "learning_rate": 0.00018833755885548712,
+ "loss": 0.5422,
+ "step": 456000
+ },
+ {
+ "epoch": 11.43,
+ "learning_rate": 0.00018758300132802123,
+ "loss": 0.5452,
+ "step": 459000
+ },
+ {
+ "epoch": 11.5,
+ "learning_rate": 0.00018682844380055535,
+ "loss": 0.545,
+ "step": 462000
+ },
+ {
+ "epoch": 11.58,
+ "learning_rate": 0.00018607388627308946,
+ "loss": 0.5418,
+ "step": 465000
+ },
+ {
+ "epoch": 11.65,
+ "learning_rate": 0.00018531932874562353,
+ "loss": 0.5457,
+ "step": 468000
+ },
+ {
+ "epoch": 11.73,
+ "learning_rate": 0.00018456477121815766,
+ "loss": 0.5425,
+ "step": 471000
+ },
+ {
+ "epoch": 11.8,
+ "learning_rate": 0.00018381021369069176,
+ "loss": 0.5435,
+ "step": 474000
+ },
+ {
+ "epoch": 11.88,
+ "learning_rate": 0.00018305565616322586,
+ "loss": 0.5489,
+ "step": 477000
+ },
+ {
+ "epoch": 11.95,
+ "learning_rate": 0.00018230109863576,
+ "loss": 0.5457,
+ "step": 480000
+ },
+ {
+ "epoch": 12.03,
+ "learning_rate": 0.0001815465411082941,
+ "loss": 0.5353,
+ "step": 483000
+ },
+ {
+ "epoch": 12.1,
+ "learning_rate": 0.0001807919835808282,
+ "loss": 0.5185,
+ "step": 486000
+ },
+ {
+ "epoch": 12.18,
+ "learning_rate": 0.00018003742605336227,
+ "loss": 0.5223,
+ "step": 489000
+ },
+ {
+ "epoch": 12.25,
+ "learning_rate": 0.0001792828685258964,
+ "loss": 0.5172,
+ "step": 492000
+ },
+ {
+ "epoch": 12.33,
+ "learning_rate": 0.0001785283109984305,
+ "loss": 0.5191,
+ "step": 495000
+ },
+ {
+ "epoch": 12.4,
+ "learning_rate": 0.0001777737534709646,
+ "loss": 0.5221,
+ "step": 498000
+ },
+ {
+ "epoch": 12.48,
+ "learning_rate": 0.00017701919594349872,
+ "loss": 0.522,
+ "step": 501000
+ },
+ {
+ "epoch": 12.55,
+ "learning_rate": 0.00017626463841603283,
+ "loss": 0.525,
+ "step": 504000
+ },
+ {
+ "epoch": 12.62,
+ "learning_rate": 0.00017551008088856693,
+ "loss": 0.5265,
+ "step": 507000
+ },
+ {
+ "epoch": 12.7,
+ "learning_rate": 0.00017475552336110106,
+ "loss": 0.526,
+ "step": 510000
+ },
+ {
+ "epoch": 12.77,
+ "learning_rate": 0.00017400096583363513,
+ "loss": 0.527,
+ "step": 513000
+ },
+ {
+ "epoch": 12.85,
+ "learning_rate": 0.00017324640830616923,
+ "loss": 0.5259,
+ "step": 516000
+ },
+ {
+ "epoch": 12.92,
+ "learning_rate": 0.00017249185077870336,
+ "loss": 0.5234,
+ "step": 519000
+ },
+ {
+ "epoch": 13.0,
+ "learning_rate": 0.00017173729325123746,
+ "loss": 0.5259,
+ "step": 522000
+ },
+ {
+ "epoch": 13.07,
+ "learning_rate": 0.00017098273572377156,
+ "loss": 0.5027,
+ "step": 525000
+ },
+ {
+ "epoch": 13.15,
+ "learning_rate": 0.0001702281781963057,
+ "loss": 0.5043,
+ "step": 528000
+ },
+ {
+ "epoch": 13.22,
+ "learning_rate": 0.0001694736206688398,
+ "loss": 0.5051,
+ "step": 531000
+ },
+ {
+ "epoch": 13.3,
+ "learning_rate": 0.00016871906314137387,
+ "loss": 0.5062,
+ "step": 534000
+ },
+ {
+ "epoch": 13.37,
+ "learning_rate": 0.00016796450561390797,
+ "loss": 0.5062,
+ "step": 537000
+ },
+ {
+ "epoch": 13.45,
+ "learning_rate": 0.0001672099480864421,
+ "loss": 0.508,
+ "step": 540000
+ },
+ {
+ "epoch": 13.52,
+ "learning_rate": 0.0001664553905589762,
+ "loss": 0.5086,
+ "step": 543000
+ },
+ {
+ "epoch": 13.6,
+ "learning_rate": 0.0001657008330315103,
+ "loss": 0.5072,
+ "step": 546000
+ },
+ {
+ "epoch": 13.67,
+ "learning_rate": 0.00016494627550404443,
+ "loss": 0.5,
+ "step": 549000
+ },
+ {
+ "epoch": 13.75,
+ "learning_rate": 0.00016419171797657853,
+ "loss": 0.5067,
+ "step": 552000
+ },
+ {
+ "epoch": 13.82,
+ "learning_rate": 0.0001634371604491126,
+ "loss": 0.5055,
+ "step": 555000
+ },
+ {
+ "epoch": 13.89,
+ "learning_rate": 0.00016268260292164673,
+ "loss": 0.501,
+ "step": 558000
+ },
+ {
+ "epoch": 13.97,
+ "learning_rate": 0.00016192804539418083,
+ "loss": 0.5068,
+ "step": 561000
+ },
+ {
+ "epoch": 14.04,
+ "learning_rate": 0.00016117348786671493,
+ "loss": 0.4915,
+ "step": 564000
+ },
+ {
+ "epoch": 14.12,
+ "learning_rate": 0.00016041893033924906,
+ "loss": 0.4865,
+ "step": 567000
+ },
+ {
+ "epoch": 14.19,
+ "learning_rate": 0.00015966437281178316,
+ "loss": 0.4881,
+ "step": 570000
+ },
+ {
+ "epoch": 14.27,
+ "learning_rate": 0.00015890981528431726,
+ "loss": 0.4842,
+ "step": 573000
+ },
+ {
+ "epoch": 14.34,
+ "learning_rate": 0.0001581552577568514,
+ "loss": 0.4873,
+ "step": 576000
+ },
+ {
+ "epoch": 14.42,
+ "learning_rate": 0.00015740070022938547,
+ "loss": 0.4861,
+ "step": 579000
+ },
+ {
+ "epoch": 14.49,
+ "learning_rate": 0.00015664614270191957,
+ "loss": 0.4867,
+ "step": 582000
+ },
+ {
+ "epoch": 14.57,
+ "learning_rate": 0.00015589158517445367,
+ "loss": 0.4902,
+ "step": 585000
+ },
+ {
+ "epoch": 14.64,
+ "learning_rate": 0.0001551370276469878,
+ "loss": 0.4927,
+ "step": 588000
+ },
+ {
+ "epoch": 14.72,
+ "learning_rate": 0.0001543824701195219,
+ "loss": 0.4904,
+ "step": 591000
+ },
+ {
+ "epoch": 14.79,
+ "learning_rate": 0.000153627912592056,
+ "loss": 0.4909,
+ "step": 594000
+ },
+ {
+ "epoch": 14.87,
+ "learning_rate": 0.00015287335506459013,
+ "loss": 0.4914,
+ "step": 597000
+ },
+ {
+ "epoch": 14.94,
+ "learning_rate": 0.00015211879753712423,
+ "loss": 0.4864,
+ "step": 600000
+ },
+ {
+ "epoch": 15.01,
+ "learning_rate": 0.0001513642400096583,
+ "loss": 0.4834,
+ "step": 603000
+ },
+ {
+ "epoch": 15.09,
+ "learning_rate": 0.00015060968248219243,
+ "loss": 0.4687,
+ "step": 606000
+ },
+ {
+ "epoch": 15.16,
+ "learning_rate": 0.00014985512495472653,
+ "loss": 0.4683,
+ "step": 609000
+ },
+ {
+ "epoch": 15.24,
+ "learning_rate": 0.00014910056742726066,
+ "loss": 0.4657,
+ "step": 612000
+ },
+ {
+ "epoch": 15.31,
+ "learning_rate": 0.00014834600989979473,
+ "loss": 0.4727,
+ "step": 615000
+ },
+ {
+ "epoch": 15.39,
+ "learning_rate": 0.00014759145237232886,
+ "loss": 0.4709,
+ "step": 618000
+ },
+ {
+ "epoch": 15.46,
+ "learning_rate": 0.00014683689484486296,
+ "loss": 0.4703,
+ "step": 621000
+ },
+ {
+ "epoch": 15.54,
+ "learning_rate": 0.00014608233731739707,
+ "loss": 0.4709,
+ "step": 624000
+ },
+ {
+ "epoch": 15.61,
+ "learning_rate": 0.00014532777978993117,
+ "loss": 0.4726,
+ "step": 627000
+ },
+ {
+ "epoch": 15.69,
+ "learning_rate": 0.00014457322226246527,
+ "loss": 0.4684,
+ "step": 630000
+ },
+ {
+ "epoch": 15.76,
+ "learning_rate": 0.0001438186647349994,
+ "loss": 0.4725,
+ "step": 633000
+ },
+ {
+ "epoch": 15.84,
+ "learning_rate": 0.0001430641072075335,
+ "loss": 0.4689,
+ "step": 636000
+ },
+ {
+ "epoch": 15.91,
+ "learning_rate": 0.0001423095496800676,
+ "loss": 0.468,
+ "step": 639000
+ },
+ {
+ "epoch": 15.99,
+ "learning_rate": 0.0001415549921526017,
+ "loss": 0.4749,
+ "step": 642000
+ },
+ {
+ "epoch": 16.06,
+ "learning_rate": 0.00014080043462513583,
+ "loss": 0.4551,
+ "step": 645000
+ },
+ {
+ "epoch": 16.14,
+ "learning_rate": 0.0001400458770976699,
+ "loss": 0.4536,
+ "step": 648000
+ },
+ {
+ "epoch": 16.21,
+ "learning_rate": 0.00013929131957020403,
+ "loss": 0.4548,
+ "step": 651000
+ },
+ {
+ "epoch": 16.28,
+ "learning_rate": 0.00013853676204273813,
+ "loss": 0.4541,
+ "step": 654000
+ },
+ {
+ "epoch": 16.36,
+ "learning_rate": 0.00013778220451527223,
+ "loss": 0.4573,
+ "step": 657000
+ },
+ {
+ "epoch": 16.43,
+ "learning_rate": 0.00013702764698780633,
+ "loss": 0.4521,
+ "step": 660000
+ },
+ {
+ "epoch": 16.51,
+ "learning_rate": 0.00013627308946034044,
+ "loss": 0.4564,
+ "step": 663000
+ },
+ {
+ "epoch": 16.58,
+ "learning_rate": 0.00013551853193287456,
+ "loss": 0.4563,
+ "step": 666000
+ },
+ {
+ "epoch": 16.66,
+ "learning_rate": 0.00013476397440540867,
+ "loss": 0.4582,
+ "step": 669000
+ },
+ {
+ "epoch": 16.73,
+ "learning_rate": 0.00013400941687794277,
+ "loss": 0.4556,
+ "step": 672000
+ },
+ {
+ "epoch": 16.81,
+ "learning_rate": 0.00013325485935047687,
+ "loss": 0.4527,
+ "step": 675000
+ },
+ {
+ "epoch": 16.88,
+ "learning_rate": 0.00013250030182301097,
+ "loss": 0.4535,
+ "step": 678000
+ },
+ {
+ "epoch": 16.96,
+ "learning_rate": 0.00013174574429554507,
+ "loss": 0.4578,
+ "step": 681000
+ },
+ {
+ "epoch": 17.03,
+ "learning_rate": 0.0001309911867680792,
+ "loss": 0.449,
+ "step": 684000
+ },
+ {
+ "epoch": 17.11,
+ "learning_rate": 0.0001302366292406133,
+ "loss": 0.4389,
+ "step": 687000
+ },
+ {
+ "epoch": 17.18,
+ "learning_rate": 0.0001294820717131474,
+ "loss": 0.438,
+ "step": 690000
+ },
+ {
+ "epoch": 17.26,
+ "learning_rate": 0.0001287275141856815,
+ "loss": 0.4396,
+ "step": 693000
+ },
+ {
+ "epoch": 17.33,
+ "learning_rate": 0.0001279729566582156,
+ "loss": 0.437,
+ "step": 696000
+ },
+ {
+ "epoch": 17.41,
+ "learning_rate": 0.00012721839913074973,
+ "loss": 0.443,
+ "step": 699000
+ },
+ {
+ "epoch": 17.48,
+ "learning_rate": 0.0001264638416032838,
+ "loss": 0.4428,
+ "step": 702000
+ },
+ {
+ "epoch": 17.55,
+ "learning_rate": 0.00012570928407581793,
+ "loss": 0.4384,
+ "step": 705000
+ },
+ {
+ "epoch": 17.63,
+ "learning_rate": 0.00012495472654835204,
+ "loss": 0.4387,
+ "step": 708000
+ },
+ {
+ "epoch": 17.7,
+ "learning_rate": 0.00012420016902088614,
+ "loss": 0.4416,
+ "step": 711000
+ },
+ {
+ "epoch": 17.78,
+ "learning_rate": 0.00012344561149342024,
+ "loss": 0.4398,
+ "step": 714000
+ },
+ {
+ "epoch": 17.85,
+ "learning_rate": 0.00012269105396595437,
+ "loss": 0.437,
+ "step": 717000
+ },
+ {
+ "epoch": 17.93,
+ "learning_rate": 0.00012193649643848845,
+ "loss": 0.4393,
+ "step": 720000
+ },
+ {
+ "epoch": 18.0,
+ "learning_rate": 0.00012118193891102257,
+ "loss": 0.4416,
+ "step": 723000
+ },
+ {
+ "epoch": 18.08,
+ "learning_rate": 0.00012042738138355667,
+ "loss": 0.4216,
+ "step": 726000
+ },
+ {
+ "epoch": 18.15,
+ "learning_rate": 0.00011967282385609077,
+ "loss": 0.4206,
+ "step": 729000
+ },
+ {
+ "epoch": 18.23,
+ "learning_rate": 0.00011891826632862489,
+ "loss": 0.4223,
+ "step": 732000
+ },
+ {
+ "epoch": 18.3,
+ "learning_rate": 0.00011816370880115899,
+ "loss": 0.4261,
+ "step": 735000
+ },
+ {
+ "epoch": 18.38,
+ "learning_rate": 0.0001174091512736931,
+ "loss": 0.4238,
+ "step": 738000
+ },
+ {
+ "epoch": 18.45,
+ "learning_rate": 0.0001166545937462272,
+ "loss": 0.4224,
+ "step": 741000
+ },
+ {
+ "epoch": 18.53,
+ "learning_rate": 0.0001159000362187613,
+ "loss": 0.4261,
+ "step": 744000
+ },
+ {
+ "epoch": 18.6,
+ "learning_rate": 0.00011514547869129542,
+ "loss": 0.4287,
+ "step": 747000
+ },
+ {
+ "epoch": 18.68,
+ "learning_rate": 0.00011439092116382951,
+ "loss": 0.4261,
+ "step": 750000
+ },
+ {
+ "epoch": 18.75,
+ "learning_rate": 0.00011363636363636362,
+ "loss": 0.4259,
+ "step": 753000
+ },
+ {
+ "epoch": 18.82,
+ "learning_rate": 0.00011288180610889774,
+ "loss": 0.4233,
+ "step": 756000
+ },
+ {
+ "epoch": 18.9,
+ "learning_rate": 0.00011212724858143184,
+ "loss": 0.427,
+ "step": 759000
+ },
+ {
+ "epoch": 18.97,
+ "learning_rate": 0.00011137269105396594,
+ "loss": 0.4302,
+ "step": 762000
+ },
+ {
+ "epoch": 19.05,
+ "learning_rate": 0.00011061813352650005,
+ "loss": 0.4109,
+ "step": 765000
+ },
+ {
+ "epoch": 19.12,
+ "learning_rate": 0.00010986357599903416,
+ "loss": 0.4088,
+ "step": 768000
+ },
+ {
+ "epoch": 19.2,
+ "learning_rate": 0.00010910901847156827,
+ "loss": 0.4078,
+ "step": 771000
+ },
+ {
+ "epoch": 19.27,
+ "learning_rate": 0.00010835446094410236,
+ "loss": 0.4094,
+ "step": 774000
+ },
+ {
+ "epoch": 19.35,
+ "learning_rate": 0.00010759990341663647,
+ "loss": 0.409,
+ "step": 777000
+ },
+ {
+ "epoch": 19.42,
+ "learning_rate": 0.00010684534588917059,
+ "loss": 0.4086,
+ "step": 780000
+ },
+ {
+ "epoch": 19.5,
+ "learning_rate": 0.00010609078836170468,
+ "loss": 0.406,
+ "step": 783000
+ },
+ {
+ "epoch": 19.57,
+ "learning_rate": 0.00010533623083423879,
+ "loss": 0.4102,
+ "step": 786000
+ },
+ {
+ "epoch": 19.65,
+ "learning_rate": 0.0001045816733067729,
+ "loss": 0.4089,
+ "step": 789000
+ },
+ {
+ "epoch": 19.72,
+ "learning_rate": 0.000103827115779307,
+ "loss": 0.4096,
+ "step": 792000
+ },
+ {
+ "epoch": 19.8,
+ "learning_rate": 0.00010307255825184111,
+ "loss": 0.4119,
+ "step": 795000
+ },
+ {
+ "epoch": 19.87,
+ "learning_rate": 0.00010231800072437521,
+ "loss": 0.4101,
+ "step": 798000
+ },
+ {
+ "epoch": 19.95,
+ "learning_rate": 0.00010156344319690932,
+ "loss": 0.4125,
+ "step": 801000
+ },
+ {
+ "epoch": 20.02,
+ "learning_rate": 0.00010080888566944344,
+ "loss": 0.4091,
+ "step": 804000
+ },
+ {
+ "epoch": 20.09,
+ "learning_rate": 0.00010005432814197753,
+ "loss": 0.3946,
+ "step": 807000
+ },
+ {
+ "epoch": 20.17,
+ "learning_rate": 9.929977061451164e-05,
+ "loss": 0.3959,
+ "step": 810000
+ },
+ {
+ "epoch": 20.24,
+ "learning_rate": 9.854521308704576e-05,
+ "loss": 0.3954,
+ "step": 813000
+ },
+ {
+ "epoch": 20.32,
+ "learning_rate": 9.779065555957984e-05,
+ "loss": 0.3974,
+ "step": 816000
+ },
+ {
+ "epoch": 20.39,
+ "learning_rate": 9.703609803211396e-05,
+ "loss": 0.3943,
+ "step": 819000
+ },
+ {
+ "epoch": 20.47,
+ "learning_rate": 9.628154050464806e-05,
+ "loss": 0.3984,
+ "step": 822000
+ },
+ {
+ "epoch": 20.54,
+ "learning_rate": 9.552698297718217e-05,
+ "loss": 0.3963,
+ "step": 825000
+ },
+ {
+ "epoch": 20.62,
+ "learning_rate": 9.477242544971629e-05,
+ "loss": 0.3927,
+ "step": 828000
+ },
+ {
+ "epoch": 20.69,
+ "learning_rate": 9.401786792225038e-05,
+ "loss": 0.3955,
+ "step": 831000
+ },
+ {
+ "epoch": 20.77,
+ "learning_rate": 9.326331039478449e-05,
+ "loss": 0.3982,
+ "step": 834000
+ },
+ {
+ "epoch": 20.84,
+ "learning_rate": 9.25087528673186e-05,
+ "loss": 0.3976,
+ "step": 837000
+ },
+ {
+ "epoch": 20.92,
+ "learning_rate": 9.17541953398527e-05,
+ "loss": 0.3957,
+ "step": 840000
+ },
+ {
+ "epoch": 20.99,
+ "learning_rate": 9.099963781238681e-05,
+ "loss": 0.3982,
+ "step": 843000
+ },
+ {
+ "epoch": 21.07,
+ "learning_rate": 9.024508028492091e-05,
+ "loss": 0.3806,
+ "step": 846000
+ },
+ {
+ "epoch": 21.14,
+ "learning_rate": 8.949052275745503e-05,
+ "loss": 0.3819,
+ "step": 849000
+ },
+ {
+ "epoch": 21.22,
+ "learning_rate": 8.873596522998913e-05,
+ "loss": 0.3847,
+ "step": 852000
+ },
+ {
+ "epoch": 21.29,
+ "learning_rate": 8.798140770252323e-05,
+ "loss": 0.3843,
+ "step": 855000
+ },
+ {
+ "epoch": 21.36,
+ "learning_rate": 8.722685017505734e-05,
+ "loss": 0.3859,
+ "step": 858000
+ },
+ {
+ "epoch": 21.44,
+ "learning_rate": 8.647229264759146e-05,
+ "loss": 0.3821,
+ "step": 861000
+ },
+ {
+ "epoch": 21.51,
+ "learning_rate": 8.571773512012555e-05,
+ "loss": 0.386,
+ "step": 864000
+ },
+ {
+ "epoch": 21.59,
+ "learning_rate": 8.496317759265966e-05,
+ "loss": 0.3853,
+ "step": 867000
+ },
+ {
+ "epoch": 21.66,
+ "learning_rate": 8.420862006519376e-05,
+ "loss": 0.3856,
+ "step": 870000
+ },
+ {
+ "epoch": 21.74,
+ "learning_rate": 8.345406253772786e-05,
+ "loss": 0.3843,
+ "step": 873000
+ },
+ {
+ "epoch": 21.81,
+ "learning_rate": 8.269950501026198e-05,
+ "loss": 0.3845,
+ "step": 876000
+ },
+ {
+ "epoch": 21.89,
+ "learning_rate": 8.194494748279608e-05,
+ "loss": 0.3809,
+ "step": 879000
+ },
+ {
+ "epoch": 21.96,
+ "learning_rate": 8.11903899553302e-05,
+ "loss": 0.3824,
+ "step": 882000
+ },
+ {
+ "epoch": 22.04,
+ "learning_rate": 8.04358324278643e-05,
+ "loss": 0.3801,
+ "step": 885000
+ },
+ {
+ "epoch": 22.11,
+ "learning_rate": 7.96812749003984e-05,
+ "loss": 0.3702,
+ "step": 888000
+ },
+ {
+ "epoch": 22.19,
+ "learning_rate": 7.892671737293251e-05,
+ "loss": 0.3713,
+ "step": 891000
+ },
+ {
+ "epoch": 22.26,
+ "learning_rate": 7.817215984546663e-05,
+ "loss": 0.3715,
+ "step": 894000
+ },
+ {
+ "epoch": 22.34,
+ "learning_rate": 7.741760231800071e-05,
+ "loss": 0.3681,
+ "step": 897000
+ },
+ {
+ "epoch": 22.41,
+ "learning_rate": 7.666304479053483e-05,
+ "loss": 0.3714,
+ "step": 900000
+ },
+ {
+ "epoch": 22.49,
+ "learning_rate": 7.590848726306893e-05,
+ "loss": 0.3725,
+ "step": 903000
+ },
+ {
+ "epoch": 22.56,
+ "learning_rate": 7.515392973560303e-05,
+ "loss": 0.3692,
+ "step": 906000
+ },
+ {
+ "epoch": 22.63,
+ "learning_rate": 7.439937220813715e-05,
+ "loss": 0.375,
+ "step": 909000
+ },
+ {
+ "epoch": 22.71,
+ "learning_rate": 7.364481468067125e-05,
+ "loss": 0.3721,
+ "step": 912000
+ },
+ {
+ "epoch": 22.78,
+ "learning_rate": 7.289025715320536e-05,
+ "loss": 0.3699,
+ "step": 915000
+ },
+ {
+ "epoch": 22.86,
+ "learning_rate": 7.213569962573946e-05,
+ "loss": 0.37,
+ "step": 918000
+ },
+ {
+ "epoch": 22.93,
+ "learning_rate": 7.138114209827356e-05,
+ "loss": 0.3702,
+ "step": 921000
+ },
+ {
+ "epoch": 23.01,
+ "learning_rate": 7.062658457080768e-05,
+ "loss": 0.3668,
+ "step": 924000
+ },
+ {
+ "epoch": 23.08,
+ "learning_rate": 6.987202704334178e-05,
+ "loss": 0.3602,
+ "step": 927000
+ },
+ {
+ "epoch": 23.16,
+ "learning_rate": 6.911746951587588e-05,
+ "loss": 0.3557,
+ "step": 930000
+ },
+ {
+ "epoch": 23.23,
+ "learning_rate": 6.836291198840998e-05,
+ "loss": 0.3607,
+ "step": 933000
+ },
+ {
+ "epoch": 23.31,
+ "learning_rate": 6.76083544609441e-05,
+ "loss": 0.3571,
+ "step": 936000
+ },
+ {
+ "epoch": 23.38,
+ "learning_rate": 6.68537969334782e-05,
+ "loss": 0.3589,
+ "step": 939000
+ },
+ {
+ "epoch": 23.46,
+ "learning_rate": 6.609923940601231e-05,
+ "loss": 0.361,
+ "step": 942000
+ },
+ {
+ "epoch": 23.53,
+ "learning_rate": 6.534468187854641e-05,
+ "loss": 0.3595,
+ "step": 945000
+ },
+ {
+ "epoch": 23.61,
+ "learning_rate": 6.459012435108053e-05,
+ "loss": 0.3554,
+ "step": 948000
+ },
+ {
+ "epoch": 23.68,
+ "learning_rate": 6.383556682361463e-05,
+ "loss": 0.3572,
+ "step": 951000
+ },
+ {
+ "epoch": 23.75,
+ "learning_rate": 6.308100929614873e-05,
+ "loss": 0.3604,
+ "step": 954000
+ },
+ {
+ "epoch": 23.83,
+ "learning_rate": 6.232645176868283e-05,
+ "loss": 0.3591,
+ "step": 957000
+ },
+ {
+ "epoch": 23.9,
+ "learning_rate": 6.157189424121695e-05,
+ "loss": 0.3582,
+ "step": 960000
+ },
+ {
+ "epoch": 23.98,
+ "learning_rate": 6.0817336713751056e-05,
+ "loss": 0.3568,
+ "step": 963000
+ },
+ {
+ "epoch": 24.05,
+ "learning_rate": 6.006277918628516e-05,
+ "loss": 0.3495,
+ "step": 966000
+ },
+ {
+ "epoch": 24.13,
+ "learning_rate": 5.930822165881926e-05,
+ "loss": 0.3484,
+ "step": 969000
+ },
+ {
+ "epoch": 24.2,
+ "learning_rate": 5.855366413135337e-05,
+ "loss": 0.3449,
+ "step": 972000
+ },
+ {
+ "epoch": 24.28,
+ "learning_rate": 5.7799106603887474e-05,
+ "loss": 0.3471,
+ "step": 975000
+ },
+ {
+ "epoch": 24.35,
+ "learning_rate": 5.704454907642158e-05,
+ "loss": 0.3495,
+ "step": 978000
+ },
+ {
+ "epoch": 24.43,
+ "learning_rate": 5.6289991548955684e-05,
+ "loss": 0.3489,
+ "step": 981000
+ },
+ {
+ "epoch": 24.5,
+ "learning_rate": 5.55354340214898e-05,
+ "loss": 0.3464,
+ "step": 984000
+ },
+ {
+ "epoch": 24.58,
+ "learning_rate": 5.47808764940239e-05,
+ "loss": 0.3485,
+ "step": 987000
+ },
+ {
+ "epoch": 24.65,
+ "learning_rate": 5.402631896655801e-05,
+ "loss": 0.3486,
+ "step": 990000
+ },
+ {
+ "epoch": 24.73,
+ "learning_rate": 5.327176143909211e-05,
+ "loss": 0.3476,
+ "step": 993000
+ },
+ {
+ "epoch": 24.8,
+ "learning_rate": 5.2517203911626224e-05,
+ "loss": 0.3502,
+ "step": 996000
+ },
+ {
+ "epoch": 24.88,
+ "learning_rate": 5.1762646384160325e-05,
+ "loss": 0.3492,
+ "step": 999000
+ },
+ {
+ "epoch": 24.95,
+ "learning_rate": 5.1008088856694426e-05,
+ "loss": 0.347,
+ "step": 1002000
+ },
+ {
+ "epoch": 25.02,
+ "learning_rate": 5.0253531329228534e-05,
+ "loss": 0.343,
+ "step": 1005000
+ },
+ {
+ "epoch": 25.1,
+ "learning_rate": 4.949897380176264e-05,
+ "loss": 0.3366,
+ "step": 1008000
+ },
+ {
+ "epoch": 25.17,
+ "learning_rate": 4.874441627429675e-05,
+ "loss": 0.3348,
+ "step": 1011000
+ },
+ {
+ "epoch": 25.25,
+ "learning_rate": 4.798985874683085e-05,
+ "loss": 0.3344,
+ "step": 1014000
+ },
+ {
+ "epoch": 25.32,
+ "learning_rate": 4.723530121936496e-05,
+ "loss": 0.3406,
+ "step": 1017000
+ },
+ {
+ "epoch": 25.4,
+ "learning_rate": 4.648074369189907e-05,
+ "loss": 0.3366,
+ "step": 1020000
+ },
+ {
+ "epoch": 25.47,
+ "learning_rate": 4.5726186164433176e-05,
+ "loss": 0.3392,
+ "step": 1023000
+ },
+ {
+ "epoch": 25.55,
+ "learning_rate": 4.497162863696728e-05,
+ "loss": 0.3379,
+ "step": 1026000
+ },
+ {
+ "epoch": 25.62,
+ "learning_rate": 4.421707110950138e-05,
+ "loss": 0.3388,
+ "step": 1029000
+ },
+ {
+ "epoch": 25.7,
+ "learning_rate": 4.346251358203549e-05,
+ "loss": 0.3383,
+ "step": 1032000
+ },
+ {
+ "epoch": 25.77,
+ "learning_rate": 4.27079560545696e-05,
+ "loss": 0.3372,
+ "step": 1035000
+ },
+ {
+ "epoch": 25.85,
+ "learning_rate": 4.19533985271037e-05,
+ "loss": 0.3358,
+ "step": 1038000
+ },
+ {
+ "epoch": 25.92,
+ "learning_rate": 4.1198840999637803e-05,
+ "loss": 0.3353,
+ "step": 1041000
+ },
+ {
+ "epoch": 26.0,
+ "learning_rate": 4.044428347217192e-05,
+ "loss": 0.34,
+ "step": 1044000
+ },
+ {
+ "epoch": 26.07,
+ "learning_rate": 3.968972594470602e-05,
+ "loss": 0.3282,
+ "step": 1047000
+ },
+ {
+ "epoch": 26.15,
+ "learning_rate": 3.893516841724013e-05,
+ "loss": 0.3267,
+ "step": 1050000
+ },
+ {
+ "epoch": 26.22,
+ "learning_rate": 3.818061088977423e-05,
+ "loss": 0.3268,
+ "step": 1053000
+ },
+ {
+ "epoch": 26.29,
+ "learning_rate": 3.742605336230834e-05,
+ "loss": 0.3248,
+ "step": 1056000
+ },
+ {
+ "epoch": 26.37,
+ "learning_rate": 3.6671495834842445e-05,
+ "loss": 0.3268,
+ "step": 1059000
+ },
+ {
+ "epoch": 26.44,
+ "learning_rate": 3.591693830737655e-05,
+ "loss": 0.324,
+ "step": 1062000
+ },
+ {
+ "epoch": 26.52,
+ "learning_rate": 3.516238077991066e-05,
+ "loss": 0.3298,
+ "step": 1065000
+ },
+ {
+ "epoch": 26.59,
+ "learning_rate": 3.440782325244476e-05,
+ "loss": 0.3296,
+ "step": 1068000
+ },
+ {
+ "epoch": 26.67,
+ "learning_rate": 3.365326572497887e-05,
+ "loss": 0.3261,
+ "step": 1071000
+ },
+ {
+ "epoch": 26.74,
+ "learning_rate": 3.289870819751297e-05,
+ "loss": 0.3284,
+ "step": 1074000
+ },
+ {
+ "epoch": 26.82,
+ "learning_rate": 3.214415067004708e-05,
+ "loss": 0.3279,
+ "step": 1077000
+ },
+ {
+ "epoch": 26.89,
+ "learning_rate": 3.138959314258119e-05,
+ "loss": 0.3273,
+ "step": 1080000
+ },
+ {
+ "epoch": 26.97,
+ "learning_rate": 3.0635035615115295e-05,
+ "loss": 0.3275,
+ "step": 1083000
+ },
+ {
+ "epoch": 27.04,
+ "learning_rate": 2.9880478087649397e-05,
+ "loss": 0.323,
+ "step": 1086000
+ },
+ {
+ "epoch": 27.12,
+ "learning_rate": 2.9125920560183505e-05,
+ "loss": 0.3182,
+ "step": 1089000
+ },
+ {
+ "epoch": 27.19,
+ "learning_rate": 2.837136303271761e-05,
+ "loss": 0.3209,
+ "step": 1092000
+ },
+ {
+ "epoch": 27.27,
+ "learning_rate": 2.7616805505251717e-05,
+ "loss": 0.3185,
+ "step": 1095000
+ },
+ {
+ "epoch": 27.34,
+ "learning_rate": 2.6862247977785822e-05,
+ "loss": 0.3214,
+ "step": 1098000
+ },
+ {
+ "epoch": 27.42,
+ "learning_rate": 2.610769045031993e-05,
+ "loss": 0.3164,
+ "step": 1101000
+ },
+ {
+ "epoch": 27.49,
+ "learning_rate": 2.5353132922854035e-05,
+ "loss": 0.3206,
+ "step": 1104000
+ },
+ {
+ "epoch": 27.56,
+ "learning_rate": 2.4598575395388143e-05,
+ "loss": 0.3175,
+ "step": 1107000
+ },
+ {
+ "epoch": 27.64,
+ "learning_rate": 2.3844017867922247e-05,
+ "loss": 0.3185,
+ "step": 1110000
+ },
+ {
+ "epoch": 27.71,
+ "learning_rate": 2.3089460340456355e-05,
+ "loss": 0.3199,
+ "step": 1113000
+ },
+ {
+ "epoch": 27.79,
+ "learning_rate": 2.233490281299046e-05,
+ "loss": 0.318,
+ "step": 1116000
+ },
+ {
+ "epoch": 27.86,
+ "learning_rate": 2.1580345285524568e-05,
+ "loss": 0.319,
+ "step": 1119000
+ },
+ {
+ "epoch": 27.94,
+ "learning_rate": 2.082578775805867e-05,
+ "loss": 0.3152,
+ "step": 1122000
+ },
+ {
+ "epoch": 28.01,
+ "learning_rate": 2.0071230230592777e-05,
+ "loss": 0.3161,
+ "step": 1125000
+ },
+ {
+ "epoch": 28.09,
+ "learning_rate": 1.9316672703126882e-05,
+ "loss": 0.3142,
+ "step": 1128000
+ },
+ {
+ "epoch": 28.16,
+ "learning_rate": 1.856211517566099e-05,
+ "loss": 0.3129,
+ "step": 1131000
+ },
+ {
+ "epoch": 28.24,
+ "learning_rate": 1.7807557648195098e-05,
+ "loss": 0.3123,
+ "step": 1134000
+ },
+ {
+ "epoch": 28.31,
+ "learning_rate": 1.7053000120729203e-05,
+ "loss": 0.314,
+ "step": 1137000
+ },
+ {
+ "epoch": 28.39,
+ "learning_rate": 1.629844259326331e-05,
+ "loss": 0.3137,
+ "step": 1140000
+ },
+ {
+ "epoch": 28.46,
+ "learning_rate": 1.5543885065797415e-05,
+ "loss": 0.3093,
+ "step": 1143000
+ },
+ {
+ "epoch": 28.54,
+ "learning_rate": 1.4789327538331522e-05,
+ "loss": 0.3128,
+ "step": 1146000
+ },
+ {
+ "epoch": 28.61,
+ "learning_rate": 1.4034770010865628e-05,
+ "loss": 0.3127,
+ "step": 1149000
+ },
+ {
+ "epoch": 28.69,
+ "learning_rate": 1.3280212483399733e-05,
+ "loss": 0.3116,
+ "step": 1152000
+ },
+ {
+ "epoch": 28.76,
+ "learning_rate": 1.2525654955933839e-05,
+ "loss": 0.3117,
+ "step": 1155000
+ },
+ {
+ "epoch": 28.83,
+ "learning_rate": 1.1771097428467945e-05,
+ "loss": 0.3083,
+ "step": 1158000
+ },
+ {
+ "epoch": 28.91,
+ "learning_rate": 1.1016539901002052e-05,
+ "loss": 0.3099,
+ "step": 1161000
+ },
+ {
+ "epoch": 28.98,
+ "learning_rate": 1.0261982373536158e-05,
+ "loss": 0.3064,
+ "step": 1164000
+ },
+ {
+ "epoch": 29.06,
+ "learning_rate": 9.507424846070264e-06,
+ "loss": 0.3065,
+ "step": 1167000
+ },
+ {
+ "epoch": 29.13,
+ "learning_rate": 8.752867318604369e-06,
+ "loss": 0.3055,
+ "step": 1170000
+ },
+ {
+ "epoch": 29.21,
+ "learning_rate": 7.998309791138475e-06,
+ "loss": 0.3074,
+ "step": 1173000
+ },
+ {
+ "epoch": 29.28,
+ "learning_rate": 7.243752263672582e-06,
+ "loss": 0.3085,
+ "step": 1176000
+ },
+ {
+ "epoch": 29.36,
+ "learning_rate": 6.489194736206688e-06,
+ "loss": 0.3071,
+ "step": 1179000
+ },
+ {
+ "epoch": 29.43,
+ "learning_rate": 5.734637208740793e-06,
+ "loss": 0.3092,
+ "step": 1182000
+ },
+ {
+ "epoch": 29.51,
+ "learning_rate": 4.9800796812749e-06,
+ "loss": 0.3074,
+ "step": 1185000
+ },
+ {
+ "epoch": 29.58,
+ "learning_rate": 4.225522153809006e-06,
+ "loss": 0.3055,
+ "step": 1188000
+ },
+ {
+ "epoch": 29.66,
+ "learning_rate": 3.4709646263431124e-06,
+ "loss": 0.3072,
+ "step": 1191000
+ },
+ {
+ "epoch": 29.73,
+ "learning_rate": 2.7164070988772183e-06,
+ "loss": 0.305,
+ "step": 1194000
+ },
+ {
+ "epoch": 29.81,
+ "learning_rate": 1.9618495714113242e-06,
+ "loss": 0.3048,
+ "step": 1197000
+ },
+ {
+ "epoch": 29.88,
+ "learning_rate": 1.2072920439454301e-06,
+ "loss": 0.3068,
+ "step": 1200000
+ },
+ {
+ "epoch": 29.96,
+ "learning_rate": 4.5273451647953635e-07,
+ "loss": 0.3059,
+ "step": 1203000
+ },
+ {
+ "epoch": 30.0,
+ "step": 1204800,
+ "total_flos": 2.3932840682448497e+21,
+ "train_loss": 0.5678151446034709,
+ "train_runtime": 679738.019,
+ "train_samples_per_second": 28.359,
+ "train_steps_per_second": 1.772
+ }
+ ],
+ "logging_steps": 3000,
+ "max_steps": 1204800,
+ "num_train_epochs": 30,
+ "save_steps": 500,
+ "total_flos": 2.3932840682448497e+21,
+ "trial_name": null,
+ "trial_params": null
+}
diff --git a/training_args.bin b/training_args.bin
new file mode 100644
index 0000000000000000000000000000000000000000..fd8dc3cd49483d3920a9ebf868118e8673b4a989
--- /dev/null
+++ b/training_args.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3ba804e9f40dd8d142a57ab99d24265056b11e547908881dba51c1cd9148def3
+size 4600
diff --git a/vocab.json b/vocab.json
new file mode 100644
index 0000000000000000000000000000000000000000..8b9102f390f8bc2f807efc9dac5ec470f0fe2f38
--- /dev/null
+++ b/vocab.json
@@ -0,0 +1,2253 @@
+{
+ "\b": 0,
+ "\"": 2,
+ "#": 3,
+ ";": 4,
+ "=": 5,
+ ">": 6,
+ "[PAD]": 2250,
+ "[UNK]": 2249,
+ "_": 7,
+ "`": 8,
+ "|": 1,
+ "}": 9,
+ "°": 10,
+ "è": 11,
+ "฿": 12,
+ "ᆫ": 13,
+ "ᆯ": 14,
+ "ᆷ": 15,
+ "ᇂ": 16,
+ "": 17,
+ "℃": 18,
+ "ℓ": 19,
+ "ㄱ": 20,
+ "ㄴ": 21,
+ "ㄸ": 22,
+ "ㄹ": 23,
+ "ㅁ": 24,
+ "ㅂ": 25,
+ "ㅅ": 26,
+ "ㅇ": 27,
+ "ㅋ": 28,
+ "ㅌ": 29,
+ "ㅍ": 30,
+ "ㅏ": 31,
+ "ㅔ": 32,
+ "ㅠ": 33,
+ "ㅡ": 34,
+ "無": 35,
+ "가": 36,
+ "각": 37,
+ "간": 38,
+ "갇": 39,
+ "갈": 40,
+ "갉": 41,
+ "감": 42,
+ "갑": 43,
+ "값": 44,
+ "갓": 45,
+ "갔": 46,
+ "강": 47,
+ "갖": 48,
+ "갗": 49,
+ "같": 50,
+ "갚": 51,
+ "갛": 52,
+ "개": 53,
+ "객": 54,
+ "갠": 55,
+ "갤": 56,
+ "갬": 57,
+ "갭": 58,
+ "갯": 59,
+ "갰": 60,
+ "갱": 61,
+ "갸": 62,
+ "갼": 63,
+ "걀": 64,
+ "걈": 65,
+ "걉": 66,
+ "걍": 67,
+ "걎": 68,
+ "걔": 69,
+ "걘": 70,
+ "거": 71,
+ "걱": 72,
+ "건": 73,
+ "걷": 74,
+ "걸": 75,
+ "검": 76,
+ "겁": 77,
+ "것": 78,
+ "겄": 79,
+ "겅": 80,
+ "겉": 81,
+ "겋": 82,
+ "게": 83,
+ "겐": 84,
+ "겔": 85,
+ "겜": 86,
+ "겝": 87,
+ "겟": 88,
+ "겠": 89,
+ "겡": 90,
+ "겨": 91,
+ "격": 92,
+ "겪": 93,
+ "견": 94,
+ "결": 95,
+ "겸": 96,
+ "겹": 97,
+ "겼": 98,
+ "경": 99,
+ "곁": 100,
+ "곃": 101,
+ "계": 102,
+ "곈": 103,
+ "곘": 104,
+ "고": 105,
+ "곡": 106,
+ "곤": 107,
+ "곧": 108,
+ "골": 109,
+ "곪": 110,
+ "곯": 111,
+ "곰": 112,
+ "곱": 113,
+ "곳": 114,
+ "공": 115,
+ "곶": 116,
+ "과": 117,
+ "곽": 118,
+ "관": 119,
+ "괄": 120,
+ "괌": 121,
+ "괍": 122,
+ "광": 123,
+ "괘": 124,
+ "괜": 125,
+ "괭": 126,
+ "괴": 127,
+ "괸": 128,
+ "괼": 129,
+ "굉": 130,
+ "교": 131,
+ "굑": 132,
+ "굔": 133,
+ "굣": 134,
+ "굥": 135,
+ "구": 136,
+ "국": 137,
+ "군": 138,
+ "굳": 139,
+ "굴": 140,
+ "굵": 141,
+ "굶": 142,
+ "굼": 143,
+ "굽": 144,
+ "굿": 145,
+ "궁": 146,
+ "궂": 147,
+ "궄": 148,
+ "궈": 149,
+ "권": 150,
+ "궐": 151,
+ "궜": 152,
+ "궤": 153,
+ "귀": 154,
+ "귄": 155,
+ "귈": 156,
+ "귓": 157,
+ "규": 158,
+ "귝": 159,
+ "균": 160,
+ "귤": 161,
+ "그": 162,
+ "극": 163,
+ "근": 164,
+ "귿": 165,
+ "글": 166,
+ "긁": 167,
+ "금": 168,
+ "급": 169,
+ "긋": 170,
+ "긍": 171,
+ "긑": 172,
+ "긔": 173,
+ "기": 174,
+ "긱": 175,
+ "긴": 176,
+ "길": 177,
+ "김": 178,
+ "깁": 179,
+ "깃": 180,
+ "깄": 181,
+ "깅": 182,
+ "깆": 183,
+ "깉": 184,
+ "깊": 185,
+ "까": 186,
+ "깍": 187,
+ "깎": 188,
+ "깐": 189,
+ "깔": 190,
+ "깜": 191,
+ "깝": 192,
+ "깟": 193,
+ "깠": 194,
+ "깡": 195,
+ "깥": 196,
+ "깨": 197,
+ "깩": 198,
+ "깬": 199,
+ "깰": 200,
+ "깸": 201,
+ "깹": 202,
+ "깻": 203,
+ "깼": 204,
+ "깽": 205,
+ "꺄": 206,
+ "꺅": 207,
+ "꺠": 208,
+ "꺤": 209,
+ "꺨": 210,
+ "꺴": 211,
+ "꺼": 212,
+ "꺽": 213,
+ "꺾": 214,
+ "껀": 215,
+ "껄": 216,
+ "껌": 217,
+ "껍": 218,
+ "껏": 219,
+ "껐": 220,
+ "껑": 221,
+ "껗": 222,
+ "께": 223,
+ "껜": 224,
+ "껨": 225,
+ "껫": 226,
+ "껭": 227,
+ "껴": 228,
+ "꼈": 229,
+ "꼉": 230,
+ "꼐": 231,
+ "꼬": 232,
+ "꼭": 233,
+ "꼰": 234,
+ "꼴": 235,
+ "꼼": 236,
+ "꼽": 237,
+ "꼿": 238,
+ "꽁": 239,
+ "꽂": 240,
+ "꽃": 241,
+ "꽅": 242,
+ "꽈": 243,
+ "꽉": 244,
+ "꽌": 245,
+ "꽐": 246,
+ "꽝": 247,
+ "꽤": 248,
+ "꽥": 249,
+ "꾀": 250,
+ "꾜": 251,
+ "꾸": 252,
+ "꾹": 253,
+ "꾼": 254,
+ "꿀": 255,
+ "꿇": 256,
+ "꿈": 257,
+ "꿉": 258,
+ "꿋": 259,
+ "꿍": 260,
+ "꿎": 261,
+ "꿔": 262,
+ "꿘": 263,
+ "꿧": 264,
+ "꿨": 265,
+ "꿩": 266,
+ "꿰": 267,
+ "뀌": 268,
+ "뀐": 269,
+ "뀔": 270,
+ "뀜": 271,
+ "뀝": 272,
+ "뀠": 273,
+ "뀨": 274,
+ "뀽": 275,
+ "끄": 276,
+ "끈": 277,
+ "끊": 278,
+ "끋": 279,
+ "끌": 280,
+ "끓": 281,
+ "끔": 282,
+ "끕": 283,
+ "끗": 284,
+ "끙": 285,
+ "끝": 286,
+ "끼": 287,
+ "끽": 288,
+ "낀": 289,
+ "낄": 290,
+ "낌": 291,
+ "낍": 292,
+ "낏": 293,
+ "낑": 294,
+ "나": 295,
+ "낙": 296,
+ "낚": 297,
+ "난": 298,
+ "날": 299,
+ "낡": 300,
+ "남": 301,
+ "납": 302,
+ "낫": 303,
+ "났": 304,
+ "낭": 305,
+ "낮": 306,
+ "낯": 307,
+ "낱": 308,
+ "낳": 309,
+ "내": 310,
+ "낵": 311,
+ "낸": 312,
+ "낼": 313,
+ "냄": 314,
+ "냅": 315,
+ "냇": 316,
+ "냈": 317,
+ "냉": 318,
+ "냐": 319,
+ "냑": 320,
+ "냔": 321,
+ "냘": 322,
+ "냠": 323,
+ "냥": 324,
+ "냬": 325,
+ "너": 326,
+ "넉": 327,
+ "넋": 328,
+ "넌": 329,
+ "널": 330,
+ "넒": 331,
+ "넓": 332,
+ "넘": 333,
+ "넙": 334,
+ "넛": 335,
+ "넜": 336,
+ "넝": 337,
+ "넢": 338,
+ "넣": 339,
+ "네": 340,
+ "넥": 341,
+ "넨": 342,
+ "넫": 343,
+ "넬": 344,
+ "넴": 345,
+ "넵": 346,
+ "넷": 347,
+ "넸": 348,
+ "넹": 349,
+ "녀": 350,
+ "녁": 351,
+ "년": 352,
+ "념": 353,
+ "녑": 354,
+ "녔": 355,
+ "녕": 356,
+ "녘": 357,
+ "녜": 358,
+ "노": 359,
+ "녹": 360,
+ "논": 361,
+ "놀": 362,
+ "놇": 363,
+ "놈": 364,
+ "놉": 365,
+ "놋": 366,
+ "농": 367,
+ "높": 368,
+ "놓": 369,
+ "놔": 370,
+ "놧": 371,
+ "놨": 372,
+ "놯": 373,
+ "뇌": 374,
+ "뇨": 375,
+ "뇰": 376,
+ "뇸": 377,
+ "뇽": 378,
+ "누": 379,
+ "눅": 380,
+ "눈": 381,
+ "눌": 382,
+ "눔": 383,
+ "눕": 384,
+ "눗": 385,
+ "눙": 386,
+ "눞": 387,
+ "눠": 388,
+ "눴": 389,
+ "뉘": 390,
+ "뉜": 391,
+ "뉠": 392,
+ "뉩": 393,
+ "뉴": 394,
+ "늄": 395,
+ "늉": 396,
+ "느": 397,
+ "늑": 398,
+ "는": 399,
+ "늗": 400,
+ "늘": 401,
+ "늙": 402,
+ "늠": 403,
+ "늡": 404,
+ "능": 405,
+ "늦": 406,
+ "늪": 407,
+ "늫": 408,
+ "늬": 409,
+ "니": 410,
+ "닉": 411,
+ "닌": 412,
+ "닐": 413,
+ "님": 414,
+ "닙": 415,
+ "닛": 416,
+ "닝": 417,
+ "다": 418,
+ "닥": 419,
+ "닦": 420,
+ "단": 421,
+ "닫": 422,
+ "달": 423,
+ "닭": 424,
+ "닮": 425,
+ "닯": 426,
+ "닳": 427,
+ "담": 428,
+ "답": 429,
+ "닷": 430,
+ "닸": 431,
+ "당": 432,
+ "닺": 433,
+ "닿": 434,
+ "대": 435,
+ "댁": 436,
+ "댄": 437,
+ "댈": 438,
+ "댐": 439,
+ "댑": 440,
+ "댓": 441,
+ "댔": 442,
+ "댕": 443,
+ "댗": 444,
+ "댜": 445,
+ "더": 446,
+ "덕": 447,
+ "던": 448,
+ "덜": 449,
+ "덞": 450,
+ "덟": 451,
+ "덤": 452,
+ "덥": 453,
+ "덧": 454,
+ "덩": 455,
+ "덪": 456,
+ "덫": 457,
+ "덮": 458,
+ "데": 459,
+ "덱": 460,
+ "덴": 461,
+ "델": 462,
+ "뎀": 463,
+ "뎁": 464,
+ "뎃": 465,
+ "뎅": 466,
+ "뎊": 467,
+ "뎌": 468,
+ "뎠": 469,
+ "뎡": 470,
+ "도": 471,
+ "독": 472,
+ "돈": 473,
+ "돋": 474,
+ "돌": 475,
+ "돔": 476,
+ "돕": 477,
+ "돗": 478,
+ "동": 479,
+ "돚": 480,
+ "돠": 481,
+ "돨": 482,
+ "돼": 483,
+ "됀": 484,
+ "됌": 485,
+ "됍": 486,
+ "됐": 487,
+ "됑": 488,
+ "되": 489,
+ "된": 490,
+ "될": 491,
+ "됨": 492,
+ "됩": 493,
+ "됬": 494,
+ "됴": 495,
+ "두": 496,
+ "둑": 497,
+ "둔": 498,
+ "둘": 499,
+ "둠": 500,
+ "둡": 501,
+ "둣": 502,
+ "둥": 503,
+ "둬": 504,
+ "뒀": 505,
+ "뒈": 506,
+ "뒤": 507,
+ "뒨": 508,
+ "뒷": 509,
+ "뒹": 510,
+ "듀": 511,
+ "듄": 512,
+ "듈": 513,
+ "듐": 514,
+ "드": 515,
+ "득": 516,
+ "든": 517,
+ "듣": 518,
+ "들": 519,
+ "듦": 520,
+ "듬": 521,
+ "듭": 522,
+ "듯": 523,
+ "등": 524,
+ "디": 525,
+ "딕": 526,
+ "딘": 527,
+ "딛": 528,
+ "딜": 529,
+ "딣": 530,
+ "딤": 531,
+ "딥": 532,
+ "딧": 533,
+ "딨": 534,
+ "딩": 535,
+ "딪": 536,
+ "딫": 537,
+ "따": 538,
+ "딱": 539,
+ "딲": 540,
+ "딴": 541,
+ "딸": 542,
+ "땀": 543,
+ "땁": 544,
+ "땃": 545,
+ "땄": 546,
+ "땅": 547,
+ "땋": 548,
+ "때": 549,
+ "땍": 550,
+ "땐": 551,
+ "땔": 552,
+ "땜": 553,
+ "땝": 554,
+ "땟": 555,
+ "땠": 556,
+ "땡": 557,
+ "떄": 558,
+ "떈": 559,
+ "떌": 560,
+ "떘": 561,
+ "떙": 562,
+ "떠": 563,
+ "떡": 564,
+ "떢": 565,
+ "떤": 566,
+ "떨": 567,
+ "떫": 568,
+ "떰": 569,
+ "떱": 570,
+ "떳": 571,
+ "떴": 572,
+ "떵": 573,
+ "떻": 574,
+ "떼": 575,
+ "떽": 576,
+ "뗀": 577,
+ "뗄": 578,
+ "뗌": 579,
+ "뗍": 580,
+ "뗏": 581,
+ "뗐": 582,
+ "뗘": 583,
+ "뗴": 584,
+ "뗸": 585,
+ "또": 586,
+ "똑": 587,
+ "똔": 588,
+ "똘": 589,
+ "똟": 590,
+ "똠": 591,
+ "똣": 592,
+ "똥": 593,
+ "똬": 594,
+ "뙈": 595,
+ "뙤": 596,
+ "뚜": 597,
+ "뚝": 598,
+ "뚠": 599,
+ "뚤": 600,
+ "뚫": 601,
+ "뚱": 602,
+ "뚷": 603,
+ "뛰": 604,
+ "뛴": 605,
+ "뛸": 606,
+ "뜀": 607,
+ "뜁": 608,
+ "뜨": 609,
+ "뜩": 610,
+ "뜬": 611,
+ "뜯": 612,
+ "뜰": 613,
+ "뜷": 614,
+ "뜸": 615,
+ "뜹": 616,
+ "뜻": 617,
+ "뜽": 618,
+ "띁": 619,
+ "띄": 620,
+ "띈": 621,
+ "띌": 622,
+ "띕": 623,
+ "띠": 624,
+ "띡": 625,
+ "띤": 626,
+ "띨": 627,
+ "띰": 628,
+ "띱": 629,
+ "띵": 630,
+ "라": 631,
+ "락": 632,
+ "란": 633,
+ "랄": 634,
+ "람": 635,
+ "랍": 636,
+ "랏": 637,
+ "랐": 638,
+ "랑": 639,
+ "랖": 640,
+ "랗": 641,
+ "래": 642,
+ "랙": 643,
+ "랜": 644,
+ "랠": 645,
+ "램": 646,
+ "랩": 647,
+ "랫": 648,
+ "랬": 649,
+ "랭": 650,
+ "랴": 651,
+ "략": 652,
+ "량": 653,
+ "럤": 654,
+ "러": 655,
+ "럭": 656,
+ "런": 657,
+ "럴": 658,
+ "럼": 659,
+ "럽": 660,
+ "럿": 661,
+ "렀": 662,
+ "렁": 663,
+ "렇": 664,
+ "레": 665,
+ "렉": 666,
+ "렌": 667,
+ "렐": 668,
+ "렘": 669,
+ "렙": 670,
+ "렛": 671,
+ "렜": 672,
+ "렝": 673,
+ "렣": 674,
+ "려": 675,
+ "력": 676,
+ "련": 677,
+ "렬": 678,
+ "렴": 679,
+ "렵": 680,
+ "렷": 681,
+ "렸": 682,
+ "령": 683,
+ "렿": 684,
+ "례": 685,
+ "롄": 686,
+ "로": 687,
+ "록": 688,
+ "론": 689,
+ "롤": 690,
+ "롬": 691,
+ "롭": 692,
+ "롯": 693,
+ "롱": 694,
+ "롷": 695,
+ "롸": 696,
+ "뢋": 697,
+ "뢍": 698,
+ "뢰": 699,
+ "룃": 700,
+ "료": 701,
+ "룐": 702,
+ "룡": 703,
+ "루": 704,
+ "룩": 705,
+ "룬": 706,
+ "룰": 707,
+ "룸": 708,
+ "룹": 709,
+ "룻": 710,
+ "룽": 711,
+ "뤄": 712,
+ "뤘": 713,
+ "뤙": 714,
+ "뤼": 715,
+ "륑": 716,
+ "류": 717,
+ "륙": 718,
+ "륜": 719,
+ "률": 720,
+ "륨": 721,
+ "륭": 722,
+ "르": 723,
+ "륵": 724,
+ "른": 725,
+ "륻": 726,
+ "를": 727,
+ "름": 728,
+ "릅": 729,
+ "릇": 730,
+ "릈": 731,
+ "릉": 732,
+ "릎": 733,
+ "릏": 734,
+ "리": 735,
+ "릭": 736,
+ "린": 737,
+ "릴": 738,
+ "림": 739,
+ "립": 740,
+ "릿": 741,
+ "맀": 742,
+ "링": 743,
+ "마": 744,
+ "막": 745,
+ "만": 746,
+ "맍": 747,
+ "많": 748,
+ "맏": 749,
+ "말": 750,
+ "맑": 751,
+ "맗": 752,
+ "맘": 753,
+ "맙": 754,
+ "맛": 755,
+ "맜": 756,
+ "망": 757,
+ "맞": 758,
+ "맡": 759,
+ "맣": 760,
+ "매": 761,
+ "맥": 762,
+ "맨": 763,
+ "맫": 764,
+ "맬": 765,
+ "맴": 766,
+ "맵": 767,
+ "맷": 768,
+ "맸": 769,
+ "맹": 770,
+ "맺": 771,
+ "맻": 772,
+ "맽": 773,
+ "먀": 774,
+ "먕": 775,
+ "먖": 776,
+ "머": 777,
+ "먹": 778,
+ "먼": 779,
+ "멀": 780,
+ "멈": 781,
+ "멉": 782,
+ "멋": 783,
+ "멌": 784,
+ "멍": 785,
+ "멎": 786,
+ "멏": 787,
+ "멓": 788,
+ "메": 789,
+ "멕": 790,
+ "멘": 791,
+ "멜": 792,
+ "멤": 793,
+ "멥": 794,
+ "멧": 795,
+ "멨": 796,
+ "멩": 797,
+ "멫": 798,
+ "며": 799,
+ "멱": 800,
+ "면": 801,
+ "멸": 802,
+ "몀": 803,
+ "몄": 804,
+ "명": 805,
+ "몇": 806,
+ "몊": 807,
+ "몌": 808,
+ "모": 809,
+ "목": 810,
+ "몫": 811,
+ "몬": 812,
+ "몰": 813,
+ "몸": 814,
+ "몹": 815,
+ "못": 816,
+ "몽": 817,
+ "뫼": 818,
+ "묘": 819,
+ "묜": 820,
+ "묭": 821,
+ "무": 822,
+ "묵": 823,
+ "묶": 824,
+ "문": 825,
+ "묻": 826,
+ "물": 827,
+ "묽": 828,
+ "뭄": 829,
+ "뭅": 830,
+ "뭇": 831,
+ "뭉": 832,
+ "뭍": 833,
+ "뭐": 834,
+ "뭔": 835,
+ "뭘": 836,
+ "뭡": 837,
+ "뭣": 838,
+ "뭥": 839,
+ "뭬": 840,
+ "뭰": 841,
+ "뮈": 842,
+ "뮌": 843,
+ "뮐": 844,
+ "뮤": 845,
+ "뮨": 846,
+ "뮬": 847,
+ "므": 848,
+ "믄": 849,
+ "믈": 850,
+ "믐": 851,
+ "믕": 852,
+ "미": 853,
+ "믹": 854,
+ "민": 855,
+ "믾": 856,
+ "믿": 857,
+ "밀": 858,
+ "밈": 859,
+ "밉": 860,
+ "밋": 861,
+ "밌": 862,
+ "밍": 863,
+ "밎": 864,
+ "및": 865,
+ "밐": 866,
+ "밑": 867,
+ "바": 868,
+ "박": 869,
+ "밖": 870,
+ "반": 871,
+ "받": 872,
+ "발": 873,
+ "밝": 874,
+ "밟": 875,
+ "밤": 876,
+ "밥": 877,
+ "밧": 878,
+ "밨": 879,
+ "방": 880,
+ "밭": 881,
+ "배": 882,
+ "백": 883,
+ "밴": 884,
+ "밸": 885,
+ "뱀": 886,
+ "뱁": 887,
+ "뱃": 888,
+ "뱄": 889,
+ "뱅": 890,
+ "뱉": 891,
+ "뱌": 892,
+ "뱐": 893,
+ "버": 894,
+ "벅": 895,
+ "번": 896,
+ "벌": 897,
+ "범": 898,
+ "법": 899,
+ "벗": 900,
+ "벘": 901,
+ "벙": 902,
+ "벚": 903,
+ "벛": 904,
+ "벞": 905,
+ "베": 906,
+ "벡": 907,
+ "벤": 908,
+ "벨": 909,
+ "벳": 910,
+ "벴": 911,
+ "벵": 912,
+ "벼": 913,
+ "벽": 914,
+ "변": 915,
+ "별": 916,
+ "볌": 917,
+ "볍": 918,
+ "볏": 919,
+ "볐": 920,
+ "병": 921,
+ "볓": 922,
+ "볕": 923,
+ "보": 924,
+ "복": 925,
+ "볶": 926,
+ "본": 927,
+ "볼": 928,
+ "봄": 929,
+ "봅": 930,
+ "봇": 931,
+ "봉": 932,
+ "봐": 933,
+ "봔": 934,
+ "봘": 935,
+ "봣": 936,
+ "봤": 937,
+ "봥": 938,
+ "봬": 939,
+ "봽": 940,
+ "뵀": 941,
+ "뵈": 942,
+ "뵌": 943,
+ "뵐": 944,
+ "뵙": 945,
+ "뵜": 946,
+ "뵤": 947,
+ "뵬": 948,
+ "뵹": 949,
+ "부": 950,
+ "북": 951,
+ "분": 952,
+ "붇": 953,
+ "불": 954,
+ "붉": 955,
+ "붐": 956,
+ "붑": 957,
+ "붓": 958,
+ "붔": 959,
+ "붕": 960,
+ "붙": 961,
+ "붚": 962,
+ "붰": 963,
+ "뷔": 964,
+ "뷜": 965,
+ "뷰": 966,
+ "뷸": 967,
+ "븁": 968,
+ "븅": 969,
+ "브": 970,
+ "븍": 971,
+ "븐": 972,
+ "블": 973,
+ "븕": 974,
+ "븜": 975,
+ "븝": 976,
+ "븟": 977,
+ "비": 978,
+ "빅": 979,
+ "빈": 980,
+ "빋": 981,
+ "빌": 982,
+ "빔": 983,
+ "빕": 984,
+ "빗": 985,
+ "빘": 986,
+ "빙": 987,
+ "빚": 988,
+ "빛": 989,
+ "빝": 990,
+ "빠": 991,
+ "빡": 992,
+ "빤": 993,
+ "빨": 994,
+ "빰": 995,
+ "빳": 996,
+ "빴": 997,
+ "빵": 998,
+ "빻": 999,
+ "빼": 1000,
+ "빽": 1001,
+ "뺀": 1002,
+ "뺄": 1003,
+ "뺌": 1004,
+ "뺍": 1005,
+ "뺏": 1006,
+ "뺐": 1007,
+ "뺑": 1008,
+ "뺘": 1009,
+ "뺙": 1010,
+ "뺨": 1011,
+ "뺴": 1012,
+ "뺵": 1013,
+ "뺼": 1014,
+ "뻇": 1015,
+ "뻈": 1016,
+ "뻉": 1017,
+ "뻐": 1018,
+ "뻑": 1019,
+ "뻔": 1020,
+ "뻗": 1021,
+ "뻘": 1022,
+ "뻠": 1023,
+ "뻣": 1024,
+ "뻤": 1025,
+ "뻥": 1026,
+ "뻬": 1027,
+ "뻰": 1028,
+ "뻴": 1029,
+ "뼀": 1030,
+ "뼁": 1031,
+ "뼈": 1032,
+ "뼉": 1033,
+ "뼐": 1034,
+ "뼘": 1035,
+ "뼛": 1036,
+ "뼝": 1037,
+ "뼨": 1038,
+ "뽀": 1039,
+ "뽁": 1040,
+ "뽂": 1041,
+ "뽄": 1042,
+ "뽈": 1043,
+ "뽐": 1044,
+ "뽑": 1045,
+ "뽓": 1046,
+ "뽕": 1047,
+ "뽝": 1048,
+ "뾰": 1049,
+ "뾱": 1050,
+ "뿅": 1051,
+ "뿌": 1052,
+ "뿍": 1053,
+ "뿐": 1054,
+ "뿓": 1055,
+ "뿔": 1056,
+ "뿜": 1057,
+ "뿝": 1058,
+ "뿟": 1059,
+ "뿠": 1060,
+ "뿡": 1061,
+ "쀼": 1062,
+ "쁘": 1063,
+ "쁜": 1064,
+ "쁠": 1065,
+ "쁨": 1066,
+ "쁩": 1067,
+ "삐": 1068,
+ "삑": 1069,
+ "삔": 1070,
+ "삘": 1071,
+ "삣": 1072,
+ "삥": 1073,
+ "삫": 1074,
+ "사": 1075,
+ "삭": 1076,
+ "산": 1077,
+ "살": 1078,
+ "삶": 1079,
+ "삼": 1080,
+ "삽": 1081,
+ "삿": 1082,
+ "샀": 1083,
+ "상": 1084,
+ "샅": 1085,
+ "새": 1086,
+ "색": 1087,
+ "샌": 1088,
+ "샐": 1089,
+ "샘": 1090,
+ "샙": 1091,
+ "샛": 1092,
+ "샜": 1093,
+ "생": 1094,
+ "샤": 1095,
+ "샥": 1096,
+ "샨": 1097,
+ "샬": 1098,
+ "샴": 1099,
+ "샵": 1100,
+ "샷": 1101,
+ "샸": 1102,
+ "샹": 1103,
+ "샾": 1104,
+ "섀": 1105,
+ "서": 1106,
+ "석": 1107,
+ "섞": 1108,
+ "선": 1109,
+ "섣": 1110,
+ "설": 1111,
+ "섬": 1112,
+ "섭": 1113,
+ "섯": 1114,
+ "섰": 1115,
+ "성": 1116,
+ "세": 1117,
+ "섹": 1118,
+ "센": 1119,
+ "셀": 1120,
+ "셈": 1121,
+ "셉": 1122,
+ "셋": 1123,
+ "셌": 1124,
+ "셍": 1125,
+ "셔": 1126,
+ "션": 1127,
+ "셜": 1128,
+ "셤": 1129,
+ "셥": 1130,
+ "셧": 1131,
+ "셨": 1132,
+ "셩": 1133,
+ "셰": 1134,
+ "셱": 1135,
+ "셴": 1136,
+ "셸": 1137,
+ "솁": 1138,
+ "소": 1139,
+ "속": 1140,
+ "솎": 1141,
+ "손": 1142,
+ "솓": 1143,
+ "솔": 1144,
+ "솜": 1145,
+ "솝": 1146,
+ "솟": 1147,
+ "송": 1148,
+ "솥": 1149,
+ "솧": 1150,
+ "솨": 1151,
+ "솩": 1152,
+ "쇄": 1153,
+ "쇠": 1154,
+ "쇳": 1155,
+ "쇼": 1156,
+ "쇽": 1157,
+ "숀": 1158,
+ "숄": 1159,
+ "숍": 1160,
+ "숏": 1161,
+ "숑": 1162,
+ "수": 1163,
+ "숙": 1164,
+ "순": 1165,
+ "숟": 1166,
+ "술": 1167,
+ "숨": 1168,
+ "숩": 1169,
+ "숫": 1170,
+ "숬": 1171,
+ "숭": 1172,
+ "숮": 1173,
+ "숯": 1174,
+ "숱": 1175,
+ "숲": 1176,
+ "숴": 1177,
+ "쉈": 1178,
+ "쉐": 1179,
+ "쉑": 1180,
+ "쉔": 1181,
+ "쉘": 1182,
+ "쉣": 1183,
+ "쉤": 1184,
+ "쉥": 1185,
+ "쉬": 1186,
+ "쉭": 1187,
+ "쉰": 1188,
+ "쉴": 1189,
+ "쉼": 1190,
+ "쉽": 1191,
+ "쉿": 1192,
+ "슈": 1193,
+ "슉": 1194,
+ "슌": 1195,
+ "슐": 1196,
+ "슘": 1197,
+ "슛": 1198,
+ "슝": 1199,
+ "스": 1200,
+ "슥": 1201,
+ "슨": 1202,
+ "슬": 1203,
+ "슭": 1204,
+ "슴": 1205,
+ "습": 1206,
+ "슷": 1207,
+ "승": 1208,
+ "슾": 1209,
+ "싀": 1210,
+ "싁": 1211,
+ "싑": 1212,
+ "시": 1213,
+ "식": 1214,
+ "신": 1215,
+ "싣": 1216,
+ "실": 1217,
+ "싫": 1218,
+ "심": 1219,
+ "십": 1220,
+ "싯": 1221,
+ "싰": 1222,
+ "싱": 1223,
+ "싵": 1224,
+ "싶": 1225,
+ "싸": 1226,
+ "싹": 1227,
+ "싼": 1228,
+ "쌀": 1229,
+ "쌈": 1230,
+ "쌉": 1231,
+ "쌋": 1232,
+ "쌌": 1233,
+ "쌍": 1234,
+ "쌓": 1235,
+ "쌔": 1236,
+ "쌕": 1237,
+ "쌘": 1238,
+ "쌜": 1239,
+ "쌤": 1240,
+ "쌥": 1241,
+ "쌨": 1242,
+ "쌩": 1243,
+ "쌰": 1244,
+ "썅": 1245,
+ "썜": 1246,
+ "썝": 1247,
+ "썡": 1248,
+ "써": 1249,
+ "썩": 1250,
+ "썪": 1251,
+ "썬": 1252,
+ "썰": 1253,
+ "썸": 1254,
+ "썹": 1255,
+ "썻": 1256,
+ "썼": 1257,
+ "썽": 1258,
+ "쎄": 1259,
+ "쎅": 1260,
+ "쎈": 1261,
+ "쎌": 1262,
+ "쎔": 1263,
+ "쎕": 1264,
+ "쎗": 1265,
+ "쎘": 1266,
+ "쎱": 1267,
+ "쎼": 1268,
+ "쎽": 1269,
+ "쏀": 1270,
+ "쏄": 1271,
+ "쏍": 1272,
+ "쏘": 1273,
+ "쏙": 1274,
+ "쏜": 1275,
+ "쏟": 1276,
+ "쏠": 1277,
+ "쏨": 1278,
+ "쏩": 1279,
+ "쏭": 1280,
+ "쏴": 1281,
+ "쏵": 1282,
+ "쐇": 1283,
+ "쐈": 1284,
+ "쐐": 1285,
+ "쐤": 1286,
+ "쐬": 1287,
+ "쐰": 1288,
+ "쐴": 1289,
+ "쐿": 1290,
+ "쑈": 1291,
+ "쑝": 1292,
+ "쑤": 1293,
+ "쑥": 1294,
+ "쑨": 1295,
+ "쑬": 1296,
+ "쒀": 1297,
+ "쒔": 1298,
+ "쒜": 1299,
+ "쒝": 1300,
+ "쒯": 1301,
+ "쒸": 1302,
+ "쒹": 1303,
+ "쓉": 1304,
+ "쓔": 1305,
+ "쓕": 1306,
+ "쓩": 1307,
+ "쓰": 1308,
+ "쓱": 1309,
+ "쓴": 1310,
+ "쓸": 1311,
+ "씀": 1312,
+ "씁": 1313,
+ "씅": 1314,
+ "씌": 1315,
+ "씨": 1316,
+ "씩": 1317,
+ "씬": 1318,
+ "씰": 1319,
+ "씸": 1320,
+ "씹": 1321,
+ "씻": 1322,
+ "씽": 1323,
+ "아": 1324,
+ "악": 1325,
+ "앆": 1326,
+ "안": 1327,
+ "앉": 1328,
+ "않": 1329,
+ "알": 1330,
+ "앎": 1331,
+ "앓": 1332,
+ "암": 1333,
+ "압": 1334,
+ "앗": 1335,
+ "았": 1336,
+ "앙": 1337,
+ "앚": 1338,
+ "앞": 1339,
+ "애": 1340,
+ "액": 1341,
+ "앤": 1342,
+ "앧": 1343,
+ "앨": 1344,
+ "앰": 1345,
+ "앱": 1346,
+ "앳": 1347,
+ "앴": 1348,
+ "앵": 1349,
+ "야": 1350,
+ "약": 1351,
+ "얀": 1352,
+ "얄": 1353,
+ "얇": 1354,
+ "얌": 1355,
+ "얍": 1356,
+ "얏": 1357,
+ "얐": 1358,
+ "양": 1359,
+ "얕": 1360,
+ "얗": 1361,
+ "얘": 1362,
+ "얜": 1363,
+ "얠": 1364,
+ "얫": 1365,
+ "얬": 1366,
+ "어": 1367,
+ "억": 1368,
+ "언": 1369,
+ "얹": 1370,
+ "얻": 1371,
+ "얼": 1372,
+ "얽": 1373,
+ "엄": 1374,
+ "업": 1375,
+ "없": 1376,
+ "엇": 1377,
+ "었": 1378,
+ "엉": 1379,
+ "엊": 1380,
+ "엌": 1381,
+ "엎": 1382,
+ "에": 1383,
+ "엑": 1384,
+ "엔": 1385,
+ "엘": 1386,
+ "엠": 1387,
+ "엡": 1388,
+ "엣": 1389,
+ "엤": 1390,
+ "엥": 1391,
+ "여": 1392,
+ "역": 1393,
+ "엮": 1394,
+ "연": 1395,
+ "열": 1396,
+ "엷": 1397,
+ "염": 1398,
+ "엽": 1399,
+ "엿": 1400,
+ "였": 1401,
+ "영": 1402,
+ "옅": 1403,
+ "옆": 1404,
+ "옇": 1405,
+ "예": 1406,
+ "옌": 1407,
+ "옐": 1408,
+ "옘": 1409,
+ "옙": 1410,
+ "옛": 1411,
+ "옜": 1412,
+ "오": 1413,
+ "옥": 1414,
+ "온": 1415,
+ "올": 1416,
+ "옭": 1417,
+ "옮": 1418,
+ "옳": 1419,
+ "옴": 1420,
+ "옵": 1421,
+ "옷": 1422,
+ "옹": 1423,
+ "옻": 1424,
+ "옾": 1425,
+ "와": 1426,
+ "왁": 1427,
+ "완": 1428,
+ "왈": 1429,
+ "왐": 1430,
+ "왑": 1431,
+ "왓": 1432,
+ "왔": 1433,
+ "왕": 1434,
+ "왜": 1435,
+ "왠": 1436,
+ "왤": 1437,
+ "왯": 1438,
+ "왱": 1439,
+ "외": 1440,
+ "왼": 1441,
+ "욉": 1442,
+ "요": 1443,
+ "욕": 1444,
+ "욘": 1445,
+ "욜": 1446,
+ "욤": 1447,
+ "욥": 1448,
+ "욧": 1449,
+ "용": 1450,
+ "우": 1451,
+ "욱": 1452,
+ "운": 1453,
+ "욷": 1454,
+ "울": 1455,
+ "움": 1456,
+ "웁": 1457,
+ "웃": 1458,
+ "웅": 1459,
+ "워": 1460,
+ "웍": 1461,
+ "원": 1462,
+ "월": 1463,
+ "웜": 1464,
+ "웝": 1465,
+ "웠": 1466,
+ "웡": 1467,
+ "웨": 1468,
+ "웩": 1469,
+ "웬": 1470,
+ "웰": 1471,
+ "웸": 1472,
+ "웹": 1473,
+ "웻": 1474,
+ "웽": 1475,
+ "위": 1476,
+ "윅": 1477,
+ "윈": 1478,
+ "윌": 1479,
+ "윔": 1480,
+ "윕": 1481,
+ "윗": 1482,
+ "윙": 1483,
+ "유": 1484,
+ "육": 1485,
+ "윤": 1486,
+ "율": 1487,
+ "윰": 1488,
+ "윱": 1489,
+ "윳": 1490,
+ "융": 1491,
+ "윷": 1492,
+ "으": 1493,
+ "윽": 1494,
+ "은": 1495,
+ "읃": 1496,
+ "을": 1497,
+ "읊": 1498,
+ "음": 1499,
+ "읍": 1500,
+ "읎": 1501,
+ "읏": 1502,
+ "응": 1503,
+ "읒": 1504,
+ "읔": 1505,
+ "읕": 1506,
+ "읖": 1507,
+ "읗": 1508,
+ "의": 1509,
+ "읭": 1510,
+ "이": 1511,
+ "익": 1512,
+ "인": 1513,
+ "읺": 1514,
+ "일": 1515,
+ "읽": 1516,
+ "잃": 1517,
+ "임": 1518,
+ "입": 1519,
+ "잇": 1520,
+ "있": 1521,
+ "잉": 1522,
+ "잊": 1523,
+ "잌": 1524,
+ "잍": 1525,
+ "잎": 1526,
+ "자": 1527,
+ "작": 1528,
+ "잔": 1529,
+ "잖": 1530,
+ "잘": 1531,
+ "잠": 1532,
+ "잡": 1533,
+ "잣": 1534,
+ "잤": 1535,
+ "장": 1536,
+ "잦": 1537,
+ "재": 1538,
+ "잭": 1539,
+ "잰": 1540,
+ "잴": 1541,
+ "잼": 1542,
+ "잽": 1543,
+ "잿": 1544,
+ "쟀": 1545,
+ "쟁": 1546,
+ "쟈": 1547,
+ "쟌": 1548,
+ "쟎": 1549,
+ "쟐": 1550,
+ "쟤": 1551,
+ "쟨": 1552,
+ "쟬": 1553,
+ "저": 1554,
+ "적": 1555,
+ "전": 1556,
+ "절": 1557,
+ "젊": 1558,
+ "점": 1559,
+ "접": 1560,
+ "젓": 1561,
+ "젔": 1562,
+ "정": 1563,
+ "젖": 1564,
+ "제": 1565,
+ "젝": 1566,
+ "젠": 1567,
+ "젤": 1568,
+ "젬": 1569,
+ "젭": 1570,
+ "젯": 1571,
+ "젱": 1572,
+ "져": 1573,
+ "젼": 1574,
+ "졌": 1575,
+ "졍": 1576,
+ "졔": 1577,
+ "조": 1578,
+ "족": 1579,
+ "존": 1580,
+ "졸": 1581,
+ "좀": 1582,
+ "좁": 1583,
+ "좃": 1584,
+ "종": 1585,
+ "좆": 1586,
+ "좇": 1587,
+ "좋": 1588,
+ "좌": 1589,
+ "좍": 1590,
+ "좔": 1591,
+ "좟": 1592,
+ "죄": 1593,
+ "죌": 1594,
+ "죔": 1595,
+ "죙": 1596,
+ "죠": 1597,
+ "죵": 1598,
+ "주": 1599,
+ "죽": 1600,
+ "준": 1601,
+ "줄": 1602,
+ "줌": 1603,
+ "줍": 1604,
+ "줏": 1605,
+ "중": 1606,
+ "줒": 1607,
+ "줘": 1608,
+ "줜": 1609,
+ "줬": 1610,
+ "줴": 1611,
+ "줸": 1612,
+ "쥐": 1613,
+ "쥑": 1614,
+ "쥔": 1615,
+ "쥘": 1616,
+ "쥡": 1617,
+ "쥤": 1618,
+ "쥬": 1619,
+ "쥰": 1620,
+ "쥴": 1621,
+ "쥼": 1622,
+ "즈": 1623,
+ "즉": 1624,
+ "즌": 1625,
+ "즐": 1626,
+ "즘": 1627,
+ "즙": 1628,
+ "즛": 1629,
+ "증": 1630,
+ "즞": 1631,
+ "지": 1632,
+ "직": 1633,
+ "진": 1634,
+ "짆": 1635,
+ "질": 1636,
+ "짊": 1637,
+ "짐": 1638,
+ "집": 1639,
+ "짓": 1640,
+ "징": 1641,
+ "짖": 1642,
+ "짙": 1643,
+ "짚": 1644,
+ "짜": 1645,
+ "짝": 1646,
+ "짠": 1647,
+ "짢": 1648,
+ "짤": 1649,
+ "짧": 1650,
+ "짫": 1651,
+ "짬": 1652,
+ "짭": 1653,
+ "짰": 1654,
+ "짱": 1655,
+ "째": 1656,
+ "짹": 1657,
+ "짼": 1658,
+ "쨀": 1659,
+ "쨈": 1660,
+ "쨉": 1661,
+ "쨋": 1662,
+ "쨌": 1663,
+ "쨍": 1664,
+ "쨔": 1665,
+ "쨘": 1666,
+ "쨥": 1667,
+ "쨩": 1668,
+ "쨰": 1669,
+ "쨱": 1670,
+ "쨴": 1671,
+ "쩃": 1672,
+ "쩄": 1673,
+ "쩅": 1674,
+ "쩌": 1675,
+ "쩍": 1676,
+ "쩐": 1677,
+ "쩔": 1678,
+ "쩜": 1679,
+ "쩝": 1680,
+ "쩠": 1681,
+ "쩡": 1682,
+ "쩨": 1683,
+ "쩰": 1684,
+ "쩻": 1685,
+ "쪄": 1686,
+ "쪅": 1687,
+ "쪘": 1688,
+ "쪙": 1689,
+ "쪨": 1690,
+ "쪼": 1691,
+ "쪽": 1692,
+ "쫀": 1693,
+ "쫄": 1694,
+ "쫌": 1695,
+ "쫍": 1696,
+ "쫑": 1697,
+ "쫒": 1698,
+ "쫓": 1699,
+ "쫘": 1700,
+ "쫙": 1701,
+ "쫜": 1702,
+ "쫠": 1703,
+ "쬐": 1704,
+ "쬔": 1705,
+ "쭀": 1706,
+ "쭈": 1707,
+ "쭉": 1708,
+ "쭌": 1709,
+ "쭐": 1710,
+ "쭘": 1711,
+ "쭙": 1712,
+ "쭝": 1713,
+ "쭤": 1714,
+ "쭸": 1715,
+ "쮸": 1716,
+ "쮹": 1717,
+ "쯔": 1718,
+ "쯘": 1719,
+ "쯜": 1720,
+ "쯤": 1721,
+ "쯥": 1722,
+ "쯧": 1723,
+ "쯩": 1724,
+ "찌": 1725,
+ "찍": 1726,
+ "찐": 1727,
+ "찔": 1728,
+ "찜": 1729,
+ "찝": 1730,
+ "찟": 1731,
+ "찡": 1732,
+ "찢": 1733,
+ "찧": 1734,
+ "차": 1735,
+ "착": 1736,
+ "찬": 1737,
+ "찮": 1738,
+ "찰": 1739,
+ "참": 1740,
+ "찹": 1741,
+ "찻": 1742,
+ "찼": 1743,
+ "창": 1744,
+ "찾": 1745,
+ "찿": 1746,
+ "챁": 1747,
+ "채": 1748,
+ "책": 1749,
+ "챈": 1750,
+ "챌": 1751,
+ "챔": 1752,
+ "챕": 1753,
+ "챗": 1754,
+ "챘": 1755,
+ "챙": 1756,
+ "챝": 1757,
+ "챠": 1758,
+ "챦": 1759,
+ "챱": 1760,
+ "챴": 1761,
+ "처": 1762,
+ "척": 1763,
+ "천": 1764,
+ "철": 1765,
+ "첨": 1766,
+ "첩": 1767,
+ "첫": 1768,
+ "청": 1769,
+ "체": 1770,
+ "첵": 1771,
+ "첸": 1772,
+ "첼": 1773,
+ "쳄": 1774,
+ "쳅": 1775,
+ "쳇": 1776,
+ "쳌": 1777,
+ "쳐": 1778,
+ "쳘": 1779,
+ "쳡": 1780,
+ "쳣": 1781,
+ "쳤": 1782,
+ "쳥": 1783,
+ "초": 1784,
+ "촉": 1785,
+ "촌": 1786,
+ "촐": 1787,
+ "촘": 1788,
+ "촙": 1789,
+ "촛": 1790,
+ "총": 1791,
+ "촤": 1792,
+ "촥": 1793,
+ "촨": 1794,
+ "촬": 1795,
+ "최": 1796,
+ "쵸": 1797,
+ "추": 1798,
+ "축": 1799,
+ "춘": 1800,
+ "출": 1801,
+ "춤": 1802,
+ "춥": 1803,
+ "춧": 1804,
+ "충": 1805,
+ "춰": 1806,
+ "췄": 1807,
+ "췌": 1808,
+ "취": 1809,
+ "츄": 1810,
+ "츈": 1811,
+ "츌": 1812,
+ "츠": 1813,
+ "측": 1814,
+ "츤": 1815,
+ "츨": 1816,
+ "츰": 1817,
+ "츱": 1818,
+ "층": 1819,
+ "츼": 1820,
+ "치": 1821,
+ "칙": 1822,
+ "친": 1823,
+ "칠": 1824,
+ "칡": 1825,
+ "침": 1826,
+ "칩": 1827,
+ "칫": 1828,
+ "칬": 1829,
+ "칭": 1830,
+ "칲": 1831,
+ "카": 1832,
+ "칵": 1833,
+ "칸": 1834,
+ "칼": 1835,
+ "캄": 1836,
+ "캅": 1837,
+ "캇": 1838,
+ "캉": 1839,
+ "캌": 1840,
+ "캍": 1841,
+ "캐": 1842,
+ "캑": 1843,
+ "캔": 1844,
+ "캘": 1845,
+ "캠": 1846,
+ "캡": 1847,
+ "캣": 1848,
+ "캤": 1849,
+ "캥": 1850,
+ "캬": 1851,
+ "커": 1852,
+ "컥": 1853,
+ "컨": 1854,
+ "컫": 1855,
+ "컬": 1856,
+ "컴": 1857,
+ "컵": 1858,
+ "컷": 1859,
+ "컸": 1860,
+ "컹": 1861,
+ "컾": 1862,
+ "케": 1863,
+ "켁": 1864,
+ "켄": 1865,
+ "켈": 1866,
+ "켐": 1867,
+ "켓": 1868,
+ "켔": 1869,
+ "켕": 1870,
+ "켜": 1871,
+ "켠": 1872,
+ "켤": 1873,
+ "켬": 1874,
+ "켭": 1875,
+ "켰": 1876,
+ "켱": 1877,
+ "코": 1878,
+ "콕": 1879,
+ "콘": 1880,
+ "콜": 1881,
+ "콤": 1882,
+ "콥": 1883,
+ "콧": 1884,
+ "콩": 1885,
+ "콬": 1886,
+ "콰": 1887,
+ "콱": 1888,
+ "콸": 1889,
+ "쾅": 1890,
+ "쾌": 1891,
+ "쾡": 1892,
+ "쾬": 1893,
+ "쾰": 1894,
+ "쿄": 1895,
+ "쿠": 1896,
+ "쿡": 1897,
+ "쿤": 1898,
+ "쿨": 1899,
+ "쿰": 1900,
+ "쿱": 1901,
+ "쿵": 1902,
+ "쿼": 1903,
+ "퀀": 1904,
+ "퀄": 1905,
+ "퀉": 1906,
+ "퀘": 1907,
+ "퀭": 1908,
+ "퀴": 1909,
+ "퀵": 1910,
+ "퀸": 1911,
+ "퀼": 1912,
+ "큄": 1913,
+ "큉": 1914,
+ "큐": 1915,
+ "큔": 1916,
+ "큘": 1917,
+ "큠": 1918,
+ "큥": 1919,
+ "크": 1920,
+ "큭": 1921,
+ "큰": 1922,
+ "클": 1923,
+ "큼": 1924,
+ "큽": 1925,
+ "큿": 1926,
+ "킁": 1927,
+ "키": 1928,
+ "킥": 1929,
+ "킨": 1930,
+ "킬": 1931,
+ "킴": 1932,
+ "킵": 1933,
+ "킷": 1934,
+ "킹": 1935,
+ "킾": 1936,
+ "킿": 1937,
+ "타": 1938,
+ "탁": 1939,
+ "탄": 1940,
+ "탈": 1941,
+ "탉": 1942,
+ "탐": 1943,
+ "탑": 1944,
+ "탓": 1945,
+ "탔": 1946,
+ "탕": 1947,
+ "태": 1948,
+ "택": 1949,
+ "탠": 1950,
+ "탤": 1951,
+ "탬": 1952,
+ "탭": 1953,
+ "탯": 1954,
+ "탰": 1955,
+ "탱": 1956,
+ "탶": 1957,
+ "터": 1958,
+ "턱": 1959,
+ "턴": 1960,
+ "털": 1961,
+ "텀": 1962,
+ "텁": 1963,
+ "텃": 1964,
+ "텄": 1965,
+ "텅": 1966,
+ "테": 1967,
+ "텍": 1968,
+ "텐": 1969,
+ "텔": 1970,
+ "템": 1971,
+ "텝": 1972,
+ "텟": 1973,
+ "텡": 1974,
+ "텨": 1975,
+ "텼": 1976,
+ "토": 1977,
+ "톡": 1978,
+ "톤": 1979,
+ "톨": 1980,
+ "톰": 1981,
+ "톱": 1982,
+ "톳": 1983,
+ "통": 1984,
+ "퇘": 1985,
+ "퇴": 1986,
+ "투": 1987,
+ "툭": 1988,
+ "툰": 1989,
+ "툴": 1990,
+ "툼": 1991,
+ "툽": 1992,
+ "툿": 1993,
+ "퉁": 1994,
+ "퉈": 1995,
+ "퉜": 1996,
+ "퉤": 1997,
+ "튀": 1998,
+ "튁": 1999,
+ "튄": 2000,
+ "튈": 2001,
+ "튑": 2002,
+ "튕": 2003,
+ "튜": 2004,
+ "튠": 2005,
+ "튤": 2006,
+ "튬": 2007,
+ "튭": 2008,
+ "트": 2009,
+ "특": 2010,
+ "튼": 2011,
+ "튿": 2012,
+ "틀": 2013,
+ "틈": 2014,
+ "틉": 2015,
+ "틋": 2016,
+ "틔": 2017,
+ "티": 2018,
+ "틱": 2019,
+ "틴": 2020,
+ "틸": 2021,
+ "팀": 2022,
+ "팁": 2023,
+ "팅": 2024,
+ "파": 2025,
+ "팍": 2026,
+ "팎": 2027,
+ "판": 2028,
+ "팔": 2029,
+ "팜": 2030,
+ "팝": 2031,
+ "팟": 2032,
+ "팠": 2033,
+ "팡": 2034,
+ "팥": 2035,
+ "패": 2036,
+ "팩": 2037,
+ "팬": 2038,
+ "팰": 2039,
+ "팸": 2040,
+ "팹": 2041,
+ "팻": 2042,
+ "팼": 2043,
+ "팽": 2044,
+ "퍄": 2045,
+ "퍠": 2046,
+ "퍼": 2047,
+ "퍽": 2048,
+ "펀": 2049,
+ "펄": 2050,
+ "펌": 2051,
+ "펍": 2052,
+ "펏": 2053,
+ "펐": 2054,
+ "펑": 2055,
+ "페": 2056,
+ "펙": 2057,
+ "펜": 2058,
+ "펠": 2059,
+ "펩": 2060,
+ "펫": 2061,
+ "펭": 2062,
+ "펴": 2063,
+ "편": 2064,
+ "펼": 2065,
+ "폄": 2066,
+ "폇": 2067,
+ "폈": 2068,
+ "평": 2069,
+ "폐": 2070,
+ "폣": 2071,
+ "포": 2072,
+ "폭": 2073,
+ "폰": 2074,
+ "폴": 2075,
+ "폼": 2076,
+ "폿": 2077,
+ "퐁": 2078,
+ "퐈": 2079,
+ "퐉": 2080,
+ "퐐": 2081,
+ "퐝": 2082,
+ "푀": 2083,
+ "표": 2084,
+ "푠": 2085,
+ "푭": 2086,
+ "푯": 2087,
+ "푱": 2088,
+ "푸": 2089,
+ "푹": 2090,
+ "푼": 2091,
+ "풀": 2092,
+ "품": 2093,
+ "풉": 2094,
+ "풋": 2095,
+ "풍": 2096,
+ "퓀": 2097,
+ "퓌": 2098,
+ "퓔": 2099,
+ "퓨": 2100,
+ "퓩": 2101,
+ "퓸": 2102,
+ "프": 2103,
+ "픈": 2104,
+ "플": 2105,
+ "픔": 2106,
+ "픕": 2107,
+ "피": 2108,
+ "픽": 2109,
+ "핀": 2110,
+ "필": 2111,
+ "핌": 2112,
+ "핍": 2113,
+ "핏": 2114,
+ "핑": 2115,
+ "하": 2116,
+ "학": 2117,
+ "핚": 2118,
+ "한": 2119,
+ "할": 2120,
+ "핡": 2121,
+ "핥": 2122,
+ "핧": 2123,
+ "함": 2124,
+ "합": 2125,
+ "핫": 2126,
+ "핬": 2127,
+ "항": 2128,
+ "핰": 2129,
+ "해": 2130,
+ "핵": 2131,
+ "핸": 2132,
+ "핼": 2133,
+ "햄": 2134,
+ "햅": 2135,
+ "햇": 2136,
+ "했": 2137,
+ "행": 2138,
+ "햐": 2139,
+ "햟": 2140,
+ "햠": 2141,
+ "햡": 2142,
+ "향": 2143,
+ "헀": 2144,
+ "허": 2145,
+ "헉": 2146,
+ "헌": 2147,
+ "헐": 2148,
+ "험": 2149,
+ "헙": 2150,
+ "헛": 2151,
+ "헝": 2152,
+ "헤": 2153,
+ "헥": 2154,
+ "헨": 2155,
+ "헬": 2156,
+ "헴": 2157,
+ "헵": 2158,
+ "헷": 2159,
+ "헸": 2160,
+ "헹": 2161,
+ "혀": 2162,
+ "혁": 2163,
+ "현": 2164,
+ "혈": 2165,
+ "혐": 2166,
+ "협": 2167,
+ "혓": 2168,
+ "혔": 2169,
+ "형": 2170,
+ "혜": 2171,
+ "호": 2172,
+ "혹": 2173,
+ "혼": 2174,
+ "홀": 2175,
+ "홈": 2176,
+ "홉": 2177,
+ "홋": 2178,
+ "홍": 2179,
+ "홑": 2180,
+ "화": 2181,
+ "확": 2182,
+ "환": 2183,
+ "활": 2184,
+ "홥": 2185,
+ "홧": 2186,
+ "황": 2187,
+ "홱": 2188,
+ "횃": 2189,
+ "횅": 2190,
+ "회": 2191,
+ "획": 2192,
+ "횐": 2193,
+ "횝": 2194,
+ "횟": 2195,
+ "횡": 2196,
+ "효": 2197,
+ "횩": 2198,
+ "횽": 2199,
+ "후": 2200,
+ "훅": 2201,
+ "훈": 2202,
+ "훌": 2203,
+ "훑": 2204,
+ "훔": 2205,
+ "훕": 2206,
+ "훗": 2207,
+ "훙": 2208,
+ "훠": 2209,
+ "훤": 2210,
+ "훨": 2211,
+ "훼": 2212,
+ "휀": 2213,
+ "휑": 2214,
+ "휘": 2215,
+ "휙": 2216,
+ "휜": 2217,
+ "휠": 2218,
+ "휩": 2219,
+ "휭": 2220,
+ "휴": 2221,
+ "휸": 2222,
+ "휼": 2223,
+ "흄": 2224,
+ "흉": 2225,
+ "흐": 2226,
+ "흑": 2227,
+ "흔": 2228,
+ "흘": 2229,
+ "흙": 2230,
+ "흠": 2231,
+ "흡": 2232,
+ "흣": 2233,
+ "흥": 2234,
+ "흩": 2235,
+ "흫": 2236,
+ "희": 2237,
+ "흰": 2238,
+ "흴": 2239,
+ "히": 2240,
+ "힉": 2241,
+ "힌": 2242,
+ "힐": 2243,
+ "힘": 2244,
+ "힙": 2245,
+ "힛": 2246,
+ "힜": 2247,
+ "힝": 2248
+}