yesj1234 commited on
Commit
9966f94
1 Parent(s): 5a706ff

Upload folder using huggingface_hub

Browse files
Files changed (42) hide show
  1. README.md +59 -0
  2. added_tokens.json +6 -0
  3. all_results.json +8 -0
  4. checkpoint-199611/added_tokens.json +6 -0
  5. checkpoint-199611/config.json +117 -0
  6. checkpoint-199611/model.safetensors +3 -0
  7. checkpoint-199611/optimizer.pt +3 -0
  8. checkpoint-199611/preprocessor_config.json +10 -0
  9. checkpoint-199611/rng_state_0.pth +3 -0
  10. checkpoint-199611/rng_state_1.pth +3 -0
  11. checkpoint-199611/rng_state_2.pth +3 -0
  12. checkpoint-199611/rng_state_3.pth +3 -0
  13. checkpoint-199611/scheduler.pt +3 -0
  14. checkpoint-199611/special_tokens_map.json +30 -0
  15. checkpoint-199611/tokenizer_config.json +51 -0
  16. checkpoint-199611/trainer_state.json +2011 -0
  17. checkpoint-199611/training_args.bin +3 -0
  18. checkpoint-199611/vocab.json +1890 -0
  19. checkpoint-221790/added_tokens.json +6 -0
  20. checkpoint-221790/config.json +117 -0
  21. checkpoint-221790/model.safetensors +3 -0
  22. checkpoint-221790/optimizer.pt +3 -0
  23. checkpoint-221790/preprocessor_config.json +10 -0
  24. checkpoint-221790/rng_state_0.pth +3 -0
  25. checkpoint-221790/rng_state_1.pth +3 -0
  26. checkpoint-221790/rng_state_2.pth +3 -0
  27. checkpoint-221790/rng_state_3.pth +3 -0
  28. checkpoint-221790/scheduler.pt +3 -0
  29. checkpoint-221790/special_tokens_map.json +30 -0
  30. checkpoint-221790/tokenizer_config.json +51 -0
  31. checkpoint-221790/trainer_state.json +2233 -0
  32. checkpoint-221790/training_args.bin +3 -0
  33. checkpoint-221790/vocab.json +1890 -0
  34. config.json +117 -0
  35. model.safetensors +3 -0
  36. preprocessor_config.json +10 -0
  37. special_tokens_map.json +30 -0
  38. tokenizer_config.json +51 -0
  39. train_results.json +8 -0
  40. trainer_state.json +2242 -0
  41. training_args.bin +3 -0
  42. vocab.json +1890 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-large-xlsr-53
4
+ tags:
5
+ - automatic-speech-recognition
6
+ - ./sample_speech.py
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: kozh_xlsr_run1
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # kozh_xlsr_run1
17
+
18
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset.
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0003
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 2
40
+ - seed: 42
41
+ - distributed_type: multi-GPU
42
+ - num_devices: 4
43
+ - total_train_batch_size: 8
44
+ - total_eval_batch_size: 8
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 1500
48
+ - num_epochs: 10
49
+
50
+ ### Training results
51
+
52
+
53
+
54
+ ### Framework versions
55
+
56
+ - Transformers 4.35.0
57
+ - Pytorch 2.1.0+cu121
58
+ - Datasets 2.14.6
59
+ - Tokenizers 0.14.1
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 1891,
3
+ "<s>": 1890,
4
+ "[PAD]": 1889,
5
+ "[UNK]": 1888
6
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "train_loss": 0.6810670465756336,
4
+ "train_runtime": 74687.5891,
5
+ "train_samples": 177425,
6
+ "train_samples_per_second": 23.756,
7
+ "train_steps_per_second": 2.97
8
+ }
checkpoint-199611/added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 1891,
3
+ "<s>": 1890,
4
+ "[PAD]": 1889,
5
+ "[UNK]": 1888
6
+ }
checkpoint-199611/config.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForCTC"
11
+ ],
12
+ "attention_dropout": 0.05,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 768,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "mean",
46
+ "ctc_zero_infinity": false,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.05,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "gradient_checkpointing": false,
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.05,
59
+ "hidden_size": 1024,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 4096,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.05,
64
+ "mask_channel_length": 10,
65
+ "mask_channel_min_space": 1,
66
+ "mask_channel_other": 0.0,
67
+ "mask_channel_prob": 0.0,
68
+ "mask_channel_selection": "static",
69
+ "mask_feature_length": 10,
70
+ "mask_feature_min_masks": 0,
71
+ "mask_feature_prob": 0.0,
72
+ "mask_time_length": 10,
73
+ "mask_time_min_masks": 2,
74
+ "mask_time_min_space": 1,
75
+ "mask_time_other": 0.0,
76
+ "mask_time_prob": 0.05,
77
+ "mask_time_selection": "static",
78
+ "model_type": "wav2vec2",
79
+ "num_adapter_layers": 3,
80
+ "num_attention_heads": 16,
81
+ "num_codevector_groups": 2,
82
+ "num_codevectors_per_group": 320,
83
+ "num_conv_pos_embedding_groups": 16,
84
+ "num_conv_pos_embeddings": 128,
85
+ "num_feat_extract_layers": 7,
86
+ "num_hidden_layers": 24,
87
+ "num_negatives": 100,
88
+ "output_hidden_size": 1024,
89
+ "pad_token_id": 1889,
90
+ "proj_codevector_dim": 768,
91
+ "tdnn_dilation": [
92
+ 1,
93
+ 2,
94
+ 3,
95
+ 1,
96
+ 1
97
+ ],
98
+ "tdnn_dim": [
99
+ 512,
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 1500
104
+ ],
105
+ "tdnn_kernel": [
106
+ 5,
107
+ 3,
108
+ 3,
109
+ 1,
110
+ 1
111
+ ],
112
+ "torch_dtype": "float32",
113
+ "transformers_version": "4.35.0",
114
+ "use_weighted_layer_sum": false,
115
+ "vocab_size": 1890,
116
+ "xvector_output_dim": 512
117
+ }
checkpoint-199611/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6cf31c78ebdf7ec262f27949a80f121fbaed2095b983abcee52dee9675acaa3
3
+ size 1269556504
checkpoint-199611/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ace7752f062e63bd5239e1e4c7df639e9e4cb25a646b9cbb14ea1646fc5fb3db
3
+ size 2505657782
checkpoint-199611/preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
checkpoint-199611/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:175221f1a7a06e95ac126dfce02b9b888f5b91d344dc8abe15e9168412bd88f5
3
+ size 15024
checkpoint-199611/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a4bfc70a5c8c6f894f392eafac9777f1508da02b3b42e356e57d26f151c2a09
3
+ size 15088
checkpoint-199611/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:901d26b26a4932f06653d5de2c0e09ce81843ec3b0b604f9caf42ad0b2827c9b
3
+ size 15024
checkpoint-199611/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb9d1315536a26c71a8d590ca3edbaf8414bb3bad6cc19762e3f60b0535aa9bc
3
+ size 15024
checkpoint-199611/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7daa8e23994803c37c3288a6d70014b8296a7cba6f17674d2a172b700c524d45
3
+ size 1064
checkpoint-199611/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "[UNK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": true,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-199611/tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "1888": {
4
+ "content": "[UNK]",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1889": {
12
+ "content": "[PAD]",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "1890": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "1891": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": true,
38
+ "config": null,
39
+ "do_lower_case": false,
40
+ "eos_token": "</s>",
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "[PAD]",
43
+ "processor_class": "Wav2Vec2Processor",
44
+ "replace_word_delimiter_char": " ",
45
+ "target_lang": null,
46
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
47
+ "tokenizer_type": "wav2vec2",
48
+ "trust_remote_code": false,
49
+ "unk_token": "[UNK]",
50
+ "word_delimiter_token": "|"
51
+ }
checkpoint-199611/trainer_state.json ADDED
@@ -0,0 +1,2011 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.0,
5
+ "eval_steps": 500,
6
+ "global_step": 199611,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "learning_rate": 0.00011999999999999999,
14
+ "loss": 18.2932,
15
+ "step": 600
16
+ },
17
+ {
18
+ "epoch": 0.05,
19
+ "learning_rate": 0.00023999999999999998,
20
+ "loss": 4.6022,
21
+ "step": 1200
22
+ },
23
+ {
24
+ "epoch": 0.08,
25
+ "learning_rate": 0.00029959144763720545,
26
+ "loss": 2.9785,
27
+ "step": 1800
28
+ },
29
+ {
30
+ "epoch": 0.11,
31
+ "learning_rate": 0.0002987743429116165,
32
+ "loss": 2.065,
33
+ "step": 2400
34
+ },
35
+ {
36
+ "epoch": 0.14,
37
+ "learning_rate": 0.0002979572381860275,
38
+ "loss": 1.7581,
39
+ "step": 3000
40
+ },
41
+ {
42
+ "epoch": 0.16,
43
+ "learning_rate": 0.0002971401334604385,
44
+ "loss": 1.6367,
45
+ "step": 3600
46
+ },
47
+ {
48
+ "epoch": 0.19,
49
+ "learning_rate": 0.0002963230287348495,
50
+ "loss": 1.5326,
51
+ "step": 4200
52
+ },
53
+ {
54
+ "epoch": 0.22,
55
+ "learning_rate": 0.0002955059240092605,
56
+ "loss": 1.4634,
57
+ "step": 4800
58
+ },
59
+ {
60
+ "epoch": 0.24,
61
+ "learning_rate": 0.0002946888192836715,
62
+ "loss": 1.4078,
63
+ "step": 5400
64
+ },
65
+ {
66
+ "epoch": 0.27,
67
+ "learning_rate": 0.0002938717145580825,
68
+ "loss": 1.385,
69
+ "step": 6000
70
+ },
71
+ {
72
+ "epoch": 0.3,
73
+ "learning_rate": 0.0002930546098324935,
74
+ "loss": 1.3197,
75
+ "step": 6600
76
+ },
77
+ {
78
+ "epoch": 0.32,
79
+ "learning_rate": 0.00029223750510690453,
80
+ "loss": 1.3254,
81
+ "step": 7200
82
+ },
83
+ {
84
+ "epoch": 0.35,
85
+ "learning_rate": 0.00029142040038131553,
86
+ "loss": 1.3057,
87
+ "step": 7800
88
+ },
89
+ {
90
+ "epoch": 0.38,
91
+ "learning_rate": 0.0002906032956557265,
92
+ "loss": 1.2723,
93
+ "step": 8400
94
+ },
95
+ {
96
+ "epoch": 0.41,
97
+ "learning_rate": 0.0002897861909301375,
98
+ "loss": 1.2535,
99
+ "step": 9000
100
+ },
101
+ {
102
+ "epoch": 0.43,
103
+ "learning_rate": 0.0002889690862045485,
104
+ "loss": 1.2308,
105
+ "step": 9600
106
+ },
107
+ {
108
+ "epoch": 0.46,
109
+ "learning_rate": 0.0002881519814789595,
110
+ "loss": 1.2168,
111
+ "step": 10200
112
+ },
113
+ {
114
+ "epoch": 0.49,
115
+ "learning_rate": 0.0002873348767533705,
116
+ "loss": 1.2023,
117
+ "step": 10800
118
+ },
119
+ {
120
+ "epoch": 0.51,
121
+ "learning_rate": 0.00028651777202778157,
122
+ "loss": 1.2041,
123
+ "step": 11400
124
+ },
125
+ {
126
+ "epoch": 0.54,
127
+ "learning_rate": 0.00028570066730219257,
128
+ "loss": 1.1883,
129
+ "step": 12000
130
+ },
131
+ {
132
+ "epoch": 0.57,
133
+ "learning_rate": 0.0002848835625766035,
134
+ "loss": 1.1623,
135
+ "step": 12600
136
+ },
137
+ {
138
+ "epoch": 0.6,
139
+ "learning_rate": 0.00028406645785101456,
140
+ "loss": 1.1844,
141
+ "step": 13200
142
+ },
143
+ {
144
+ "epoch": 0.62,
145
+ "learning_rate": 0.00028324935312542556,
146
+ "loss": 1.1347,
147
+ "step": 13800
148
+ },
149
+ {
150
+ "epoch": 0.65,
151
+ "learning_rate": 0.00028243224839983656,
152
+ "loss": 1.1252,
153
+ "step": 14400
154
+ },
155
+ {
156
+ "epoch": 0.68,
157
+ "learning_rate": 0.00028161514367424755,
158
+ "loss": 1.1061,
159
+ "step": 15000
160
+ },
161
+ {
162
+ "epoch": 0.7,
163
+ "learning_rate": 0.00028079803894865855,
164
+ "loss": 1.1354,
165
+ "step": 15600
166
+ },
167
+ {
168
+ "epoch": 0.73,
169
+ "learning_rate": 0.00027998093422306955,
170
+ "loss": 1.1211,
171
+ "step": 16200
172
+ },
173
+ {
174
+ "epoch": 0.76,
175
+ "learning_rate": 0.00027916382949748055,
176
+ "loss": 1.0821,
177
+ "step": 16800
178
+ },
179
+ {
180
+ "epoch": 0.78,
181
+ "learning_rate": 0.00027834672477189154,
182
+ "loss": 1.0761,
183
+ "step": 17400
184
+ },
185
+ {
186
+ "epoch": 0.81,
187
+ "learning_rate": 0.0002775296200463026,
188
+ "loss": 1.0546,
189
+ "step": 18000
190
+ },
191
+ {
192
+ "epoch": 0.84,
193
+ "learning_rate": 0.0002767125153207136,
194
+ "loss": 1.0796,
195
+ "step": 18600
196
+ },
197
+ {
198
+ "epoch": 0.87,
199
+ "learning_rate": 0.0002758954105951246,
200
+ "loss": 1.0725,
201
+ "step": 19200
202
+ },
203
+ {
204
+ "epoch": 0.89,
205
+ "learning_rate": 0.0002750783058695356,
206
+ "loss": 1.0716,
207
+ "step": 19800
208
+ },
209
+ {
210
+ "epoch": 0.92,
211
+ "learning_rate": 0.0002742612011439466,
212
+ "loss": 1.0463,
213
+ "step": 20400
214
+ },
215
+ {
216
+ "epoch": 0.95,
217
+ "learning_rate": 0.0002734440964183576,
218
+ "loss": 1.0412,
219
+ "step": 21000
220
+ },
221
+ {
222
+ "epoch": 0.97,
223
+ "learning_rate": 0.0002726269916927686,
224
+ "loss": 1.0318,
225
+ "step": 21600
226
+ },
227
+ {
228
+ "epoch": 1.0,
229
+ "learning_rate": 0.00027180988696717963,
230
+ "loss": 1.0419,
231
+ "step": 22200
232
+ },
233
+ {
234
+ "epoch": 1.03,
235
+ "learning_rate": 0.00027099278224159063,
236
+ "loss": 0.9673,
237
+ "step": 22800
238
+ },
239
+ {
240
+ "epoch": 1.06,
241
+ "learning_rate": 0.0002701756775160016,
242
+ "loss": 0.9693,
243
+ "step": 23400
244
+ },
245
+ {
246
+ "epoch": 1.08,
247
+ "learning_rate": 0.0002693585727904126,
248
+ "loss": 0.9555,
249
+ "step": 24000
250
+ },
251
+ {
252
+ "epoch": 1.11,
253
+ "learning_rate": 0.0002685414680648236,
254
+ "loss": 0.9832,
255
+ "step": 24600
256
+ },
257
+ {
258
+ "epoch": 1.14,
259
+ "learning_rate": 0.0002677243633392346,
260
+ "loss": 0.9578,
261
+ "step": 25200
262
+ },
263
+ {
264
+ "epoch": 1.16,
265
+ "learning_rate": 0.0002669072586136456,
266
+ "loss": 0.9569,
267
+ "step": 25800
268
+ },
269
+ {
270
+ "epoch": 1.19,
271
+ "learning_rate": 0.00026609015388805667,
272
+ "loss": 0.9521,
273
+ "step": 26400
274
+ },
275
+ {
276
+ "epoch": 1.22,
277
+ "learning_rate": 0.0002652730491624676,
278
+ "loss": 0.953,
279
+ "step": 27000
280
+ },
281
+ {
282
+ "epoch": 1.24,
283
+ "learning_rate": 0.0002644559444368786,
284
+ "loss": 0.9757,
285
+ "step": 27600
286
+ },
287
+ {
288
+ "epoch": 1.27,
289
+ "learning_rate": 0.00026363883971128966,
290
+ "loss": 0.9517,
291
+ "step": 28200
292
+ },
293
+ {
294
+ "epoch": 1.3,
295
+ "learning_rate": 0.00026282173498570066,
296
+ "loss": 0.9552,
297
+ "step": 28800
298
+ },
299
+ {
300
+ "epoch": 1.33,
301
+ "learning_rate": 0.00026200463026011166,
302
+ "loss": 0.944,
303
+ "step": 29400
304
+ },
305
+ {
306
+ "epoch": 1.35,
307
+ "learning_rate": 0.00026118752553452266,
308
+ "loss": 0.936,
309
+ "step": 30000
310
+ },
311
+ {
312
+ "epoch": 1.38,
313
+ "learning_rate": 0.00026037042080893365,
314
+ "loss": 0.9071,
315
+ "step": 30600
316
+ },
317
+ {
318
+ "epoch": 1.41,
319
+ "learning_rate": 0.00025955331608334465,
320
+ "loss": 0.9137,
321
+ "step": 31200
322
+ },
323
+ {
324
+ "epoch": 1.43,
325
+ "learning_rate": 0.00025873621135775565,
326
+ "loss": 0.9191,
327
+ "step": 31800
328
+ },
329
+ {
330
+ "epoch": 1.46,
331
+ "learning_rate": 0.00025791910663216665,
332
+ "loss": 0.9185,
333
+ "step": 32400
334
+ },
335
+ {
336
+ "epoch": 1.49,
337
+ "learning_rate": 0.0002571020019065777,
338
+ "loss": 0.9054,
339
+ "step": 33000
340
+ },
341
+ {
342
+ "epoch": 1.51,
343
+ "learning_rate": 0.0002562848971809887,
344
+ "loss": 0.9274,
345
+ "step": 33600
346
+ },
347
+ {
348
+ "epoch": 1.54,
349
+ "learning_rate": 0.0002554677924553997,
350
+ "loss": 0.8956,
351
+ "step": 34200
352
+ },
353
+ {
354
+ "epoch": 1.57,
355
+ "learning_rate": 0.0002546506877298107,
356
+ "loss": 0.893,
357
+ "step": 34800
358
+ },
359
+ {
360
+ "epoch": 1.6,
361
+ "learning_rate": 0.0002538335830042217,
362
+ "loss": 0.9151,
363
+ "step": 35400
364
+ },
365
+ {
366
+ "epoch": 1.62,
367
+ "learning_rate": 0.0002530164782786327,
368
+ "loss": 0.8903,
369
+ "step": 36000
370
+ },
371
+ {
372
+ "epoch": 1.65,
373
+ "learning_rate": 0.0002521993735530437,
374
+ "loss": 0.8929,
375
+ "step": 36600
376
+ },
377
+ {
378
+ "epoch": 1.68,
379
+ "learning_rate": 0.0002513822688274547,
380
+ "loss": 0.8886,
381
+ "step": 37200
382
+ },
383
+ {
384
+ "epoch": 1.7,
385
+ "learning_rate": 0.0002505651641018657,
386
+ "loss": 0.8827,
387
+ "step": 37800
388
+ },
389
+ {
390
+ "epoch": 1.73,
391
+ "learning_rate": 0.0002497480593762767,
392
+ "loss": 0.8877,
393
+ "step": 38400
394
+ },
395
+ {
396
+ "epoch": 1.76,
397
+ "learning_rate": 0.00024893095465068773,
398
+ "loss": 0.868,
399
+ "step": 39000
400
+ },
401
+ {
402
+ "epoch": 1.79,
403
+ "learning_rate": 0.0002481138499250987,
404
+ "loss": 0.8731,
405
+ "step": 39600
406
+ },
407
+ {
408
+ "epoch": 1.81,
409
+ "learning_rate": 0.0002472967451995097,
410
+ "loss": 0.8649,
411
+ "step": 40200
412
+ },
413
+ {
414
+ "epoch": 1.84,
415
+ "learning_rate": 0.0002464796404739207,
416
+ "loss": 0.862,
417
+ "step": 40800
418
+ },
419
+ {
420
+ "epoch": 1.87,
421
+ "learning_rate": 0.0002456625357483317,
422
+ "loss": 0.8933,
423
+ "step": 41400
424
+ },
425
+ {
426
+ "epoch": 1.89,
427
+ "learning_rate": 0.0002448454310227427,
428
+ "loss": 0.8711,
429
+ "step": 42000
430
+ },
431
+ {
432
+ "epoch": 1.92,
433
+ "learning_rate": 0.00024402832629715374,
434
+ "loss": 0.8805,
435
+ "step": 42600
436
+ },
437
+ {
438
+ "epoch": 1.95,
439
+ "learning_rate": 0.00024321122157156474,
440
+ "loss": 0.8518,
441
+ "step": 43200
442
+ },
443
+ {
444
+ "epoch": 1.97,
445
+ "learning_rate": 0.00024239411684597576,
446
+ "loss": 0.8591,
447
+ "step": 43800
448
+ },
449
+ {
450
+ "epoch": 2.0,
451
+ "learning_rate": 0.00024157701212038673,
452
+ "loss": 0.8552,
453
+ "step": 44400
454
+ },
455
+ {
456
+ "epoch": 2.03,
457
+ "learning_rate": 0.00024075990739479773,
458
+ "loss": 0.7824,
459
+ "step": 45000
460
+ },
461
+ {
462
+ "epoch": 2.06,
463
+ "learning_rate": 0.00023994280266920876,
464
+ "loss": 0.7737,
465
+ "step": 45600
466
+ },
467
+ {
468
+ "epoch": 2.08,
469
+ "learning_rate": 0.00023912569794361975,
470
+ "loss": 0.7888,
471
+ "step": 46200
472
+ },
473
+ {
474
+ "epoch": 2.11,
475
+ "learning_rate": 0.00023830859321803075,
476
+ "loss": 0.7917,
477
+ "step": 46800
478
+ },
479
+ {
480
+ "epoch": 2.14,
481
+ "learning_rate": 0.00023749148849244178,
482
+ "loss": 0.7782,
483
+ "step": 47400
484
+ },
485
+ {
486
+ "epoch": 2.16,
487
+ "learning_rate": 0.00023667438376685275,
488
+ "loss": 0.7769,
489
+ "step": 48000
490
+ },
491
+ {
492
+ "epoch": 2.19,
493
+ "learning_rate": 0.00023585727904126377,
494
+ "loss": 0.7699,
495
+ "step": 48600
496
+ },
497
+ {
498
+ "epoch": 2.22,
499
+ "learning_rate": 0.00023504017431567477,
500
+ "loss": 0.7767,
501
+ "step": 49200
502
+ },
503
+ {
504
+ "epoch": 2.25,
505
+ "learning_rate": 0.00023422306959008577,
506
+ "loss": 0.7957,
507
+ "step": 49800
508
+ },
509
+ {
510
+ "epoch": 2.27,
511
+ "learning_rate": 0.0002334059648644968,
512
+ "loss": 0.7831,
513
+ "step": 50400
514
+ },
515
+ {
516
+ "epoch": 2.3,
517
+ "learning_rate": 0.0002325888601389078,
518
+ "loss": 0.8037,
519
+ "step": 51000
520
+ },
521
+ {
522
+ "epoch": 2.33,
523
+ "learning_rate": 0.00023177175541331876,
524
+ "loss": 0.7941,
525
+ "step": 51600
526
+ },
527
+ {
528
+ "epoch": 2.35,
529
+ "learning_rate": 0.00023095465068772978,
530
+ "loss": 0.7829,
531
+ "step": 52200
532
+ },
533
+ {
534
+ "epoch": 2.38,
535
+ "learning_rate": 0.00023013754596214078,
536
+ "loss": 0.7806,
537
+ "step": 52800
538
+ },
539
+ {
540
+ "epoch": 2.41,
541
+ "learning_rate": 0.0002293204412365518,
542
+ "loss": 0.7946,
543
+ "step": 53400
544
+ },
545
+ {
546
+ "epoch": 2.43,
547
+ "learning_rate": 0.0002285033365109628,
548
+ "loss": 0.7717,
549
+ "step": 54000
550
+ },
551
+ {
552
+ "epoch": 2.46,
553
+ "learning_rate": 0.00022768623178537383,
554
+ "loss": 0.7628,
555
+ "step": 54600
556
+ },
557
+ {
558
+ "epoch": 2.49,
559
+ "learning_rate": 0.0002268691270597848,
560
+ "loss": 0.7918,
561
+ "step": 55200
562
+ },
563
+ {
564
+ "epoch": 2.52,
565
+ "learning_rate": 0.0002260520223341958,
566
+ "loss": 0.7773,
567
+ "step": 55800
568
+ },
569
+ {
570
+ "epoch": 2.54,
571
+ "learning_rate": 0.00022523491760860682,
572
+ "loss": 0.7632,
573
+ "step": 56400
574
+ },
575
+ {
576
+ "epoch": 2.57,
577
+ "learning_rate": 0.00022441781288301782,
578
+ "loss": 0.7636,
579
+ "step": 57000
580
+ },
581
+ {
582
+ "epoch": 2.6,
583
+ "learning_rate": 0.00022360070815742884,
584
+ "loss": 0.7784,
585
+ "step": 57600
586
+ },
587
+ {
588
+ "epoch": 2.62,
589
+ "learning_rate": 0.00022278360343183984,
590
+ "loss": 0.7695,
591
+ "step": 58200
592
+ },
593
+ {
594
+ "epoch": 2.65,
595
+ "learning_rate": 0.0002219664987062508,
596
+ "loss": 0.7613,
597
+ "step": 58800
598
+ },
599
+ {
600
+ "epoch": 2.68,
601
+ "learning_rate": 0.00022114939398066184,
602
+ "loss": 0.7485,
603
+ "step": 59400
604
+ },
605
+ {
606
+ "epoch": 2.71,
607
+ "learning_rate": 0.00022033228925507283,
608
+ "loss": 0.7708,
609
+ "step": 60000
610
+ },
611
+ {
612
+ "epoch": 2.73,
613
+ "learning_rate": 0.00021951518452948386,
614
+ "loss": 0.7696,
615
+ "step": 60600
616
+ },
617
+ {
618
+ "epoch": 2.76,
619
+ "learning_rate": 0.00021869807980389486,
620
+ "loss": 0.7666,
621
+ "step": 61200
622
+ },
623
+ {
624
+ "epoch": 2.79,
625
+ "learning_rate": 0.00021788097507830585,
626
+ "loss": 0.785,
627
+ "step": 61800
628
+ },
629
+ {
630
+ "epoch": 2.81,
631
+ "learning_rate": 0.00021706387035271685,
632
+ "loss": 0.7501,
633
+ "step": 62400
634
+ },
635
+ {
636
+ "epoch": 2.84,
637
+ "learning_rate": 0.00021624676562712785,
638
+ "loss": 0.7595,
639
+ "step": 63000
640
+ },
641
+ {
642
+ "epoch": 2.87,
643
+ "learning_rate": 0.00021542966090153885,
644
+ "loss": 0.7308,
645
+ "step": 63600
646
+ },
647
+ {
648
+ "epoch": 2.89,
649
+ "learning_rate": 0.00021461255617594987,
650
+ "loss": 0.7349,
651
+ "step": 64200
652
+ },
653
+ {
654
+ "epoch": 2.92,
655
+ "learning_rate": 0.00021379545145036087,
656
+ "loss": 0.7373,
657
+ "step": 64800
658
+ },
659
+ {
660
+ "epoch": 2.95,
661
+ "learning_rate": 0.0002129783467247719,
662
+ "loss": 0.7557,
663
+ "step": 65400
664
+ },
665
+ {
666
+ "epoch": 2.98,
667
+ "learning_rate": 0.00021216124199918286,
668
+ "loss": 0.7597,
669
+ "step": 66000
670
+ },
671
+ {
672
+ "epoch": 3.0,
673
+ "learning_rate": 0.00021134413727359386,
674
+ "loss": 0.7466,
675
+ "step": 66600
676
+ },
677
+ {
678
+ "epoch": 3.03,
679
+ "learning_rate": 0.00021052703254800489,
680
+ "loss": 0.6804,
681
+ "step": 67200
682
+ },
683
+ {
684
+ "epoch": 3.06,
685
+ "learning_rate": 0.00020970992782241588,
686
+ "loss": 0.6638,
687
+ "step": 67800
688
+ },
689
+ {
690
+ "epoch": 3.08,
691
+ "learning_rate": 0.0002088928230968269,
692
+ "loss": 0.6752,
693
+ "step": 68400
694
+ },
695
+ {
696
+ "epoch": 3.11,
697
+ "learning_rate": 0.0002080757183712379,
698
+ "loss": 0.6732,
699
+ "step": 69000
700
+ },
701
+ {
702
+ "epoch": 3.14,
703
+ "learning_rate": 0.00020725861364564888,
704
+ "loss": 0.6693,
705
+ "step": 69600
706
+ },
707
+ {
708
+ "epoch": 3.17,
709
+ "learning_rate": 0.0002064415089200599,
710
+ "loss": 0.6765,
711
+ "step": 70200
712
+ },
713
+ {
714
+ "epoch": 3.19,
715
+ "learning_rate": 0.0002056244041944709,
716
+ "loss": 0.6703,
717
+ "step": 70800
718
+ },
719
+ {
720
+ "epoch": 3.22,
721
+ "learning_rate": 0.00020480729946888192,
722
+ "loss": 0.6746,
723
+ "step": 71400
724
+ },
725
+ {
726
+ "epoch": 3.25,
727
+ "learning_rate": 0.00020399019474329292,
728
+ "loss": 0.6885,
729
+ "step": 72000
730
+ },
731
+ {
732
+ "epoch": 3.27,
733
+ "learning_rate": 0.00020317309001770394,
734
+ "loss": 0.7011,
735
+ "step": 72600
736
+ },
737
+ {
738
+ "epoch": 3.3,
739
+ "learning_rate": 0.00020235598529211492,
740
+ "loss": 0.6752,
741
+ "step": 73200
742
+ },
743
+ {
744
+ "epoch": 3.33,
745
+ "learning_rate": 0.0002015388805665259,
746
+ "loss": 0.6875,
747
+ "step": 73800
748
+ },
749
+ {
750
+ "epoch": 3.35,
751
+ "learning_rate": 0.00020072177584093694,
752
+ "loss": 0.6809,
753
+ "step": 74400
754
+ },
755
+ {
756
+ "epoch": 3.38,
757
+ "learning_rate": 0.00019990467111534793,
758
+ "loss": 0.6775,
759
+ "step": 75000
760
+ },
761
+ {
762
+ "epoch": 3.41,
763
+ "learning_rate": 0.00019908756638975893,
764
+ "loss": 0.692,
765
+ "step": 75600
766
+ },
767
+ {
768
+ "epoch": 3.44,
769
+ "learning_rate": 0.00019827046166416996,
770
+ "loss": 0.68,
771
+ "step": 76200
772
+ },
773
+ {
774
+ "epoch": 3.46,
775
+ "learning_rate": 0.00019745335693858093,
776
+ "loss": 0.675,
777
+ "step": 76800
778
+ },
779
+ {
780
+ "epoch": 3.49,
781
+ "learning_rate": 0.00019663625221299195,
782
+ "loss": 0.6812,
783
+ "step": 77400
784
+ },
785
+ {
786
+ "epoch": 3.52,
787
+ "learning_rate": 0.00019581914748740295,
788
+ "loss": 0.6699,
789
+ "step": 78000
790
+ },
791
+ {
792
+ "epoch": 3.54,
793
+ "learning_rate": 0.00019500204276181395,
794
+ "loss": 0.6684,
795
+ "step": 78600
796
+ },
797
+ {
798
+ "epoch": 3.57,
799
+ "learning_rate": 0.00019418493803622497,
800
+ "loss": 0.675,
801
+ "step": 79200
802
+ },
803
+ {
804
+ "epoch": 3.6,
805
+ "learning_rate": 0.00019336783331063597,
806
+ "loss": 0.6479,
807
+ "step": 79800
808
+ },
809
+ {
810
+ "epoch": 3.63,
811
+ "learning_rate": 0.00019255072858504697,
812
+ "loss": 0.6679,
813
+ "step": 80400
814
+ },
815
+ {
816
+ "epoch": 3.65,
817
+ "learning_rate": 0.00019173362385945796,
818
+ "loss": 0.6831,
819
+ "step": 81000
820
+ },
821
+ {
822
+ "epoch": 3.68,
823
+ "learning_rate": 0.00019091651913386896,
824
+ "loss": 0.6633,
825
+ "step": 81600
826
+ },
827
+ {
828
+ "epoch": 3.71,
829
+ "learning_rate": 0.00019009941440828,
830
+ "loss": 0.6809,
831
+ "step": 82200
832
+ },
833
+ {
834
+ "epoch": 3.73,
835
+ "learning_rate": 0.00018928230968269098,
836
+ "loss": 0.6579,
837
+ "step": 82800
838
+ },
839
+ {
840
+ "epoch": 3.76,
841
+ "learning_rate": 0.000188465204957102,
842
+ "loss": 0.6539,
843
+ "step": 83400
844
+ },
845
+ {
846
+ "epoch": 3.79,
847
+ "learning_rate": 0.00018764810023151298,
848
+ "loss": 0.6607,
849
+ "step": 84000
850
+ },
851
+ {
852
+ "epoch": 3.81,
853
+ "learning_rate": 0.00018683099550592398,
854
+ "loss": 0.6615,
855
+ "step": 84600
856
+ },
857
+ {
858
+ "epoch": 3.84,
859
+ "learning_rate": 0.000186013890780335,
860
+ "loss": 0.6614,
861
+ "step": 85200
862
+ },
863
+ {
864
+ "epoch": 3.87,
865
+ "learning_rate": 0.000185196786054746,
866
+ "loss": 0.6517,
867
+ "step": 85800
868
+ },
869
+ {
870
+ "epoch": 3.9,
871
+ "learning_rate": 0.00018437968132915702,
872
+ "loss": 0.6559,
873
+ "step": 86400
874
+ },
875
+ {
876
+ "epoch": 3.92,
877
+ "learning_rate": 0.00018356257660356802,
878
+ "loss": 0.6506,
879
+ "step": 87000
880
+ },
881
+ {
882
+ "epoch": 3.95,
883
+ "learning_rate": 0.000182745471877979,
884
+ "loss": 0.6541,
885
+ "step": 87600
886
+ },
887
+ {
888
+ "epoch": 3.98,
889
+ "learning_rate": 0.00018192836715239002,
890
+ "loss": 0.6593,
891
+ "step": 88200
892
+ },
893
+ {
894
+ "epoch": 4.0,
895
+ "learning_rate": 0.00018111126242680101,
896
+ "loss": 0.6335,
897
+ "step": 88800
898
+ },
899
+ {
900
+ "epoch": 4.03,
901
+ "learning_rate": 0.00018029415770121204,
902
+ "loss": 0.5884,
903
+ "step": 89400
904
+ },
905
+ {
906
+ "epoch": 4.06,
907
+ "learning_rate": 0.00017947705297562304,
908
+ "loss": 0.5834,
909
+ "step": 90000
910
+ },
911
+ {
912
+ "epoch": 4.08,
913
+ "learning_rate": 0.00017865994825003403,
914
+ "loss": 0.596,
915
+ "step": 90600
916
+ },
917
+ {
918
+ "epoch": 4.11,
919
+ "learning_rate": 0.00017784284352444503,
920
+ "loss": 0.5839,
921
+ "step": 91200
922
+ },
923
+ {
924
+ "epoch": 4.14,
925
+ "learning_rate": 0.00017702573879885603,
926
+ "loss": 0.5738,
927
+ "step": 91800
928
+ },
929
+ {
930
+ "epoch": 4.17,
931
+ "learning_rate": 0.00017620863407326705,
932
+ "loss": 0.5835,
933
+ "step": 92400
934
+ },
935
+ {
936
+ "epoch": 4.19,
937
+ "learning_rate": 0.00017539152934767805,
938
+ "loss": 0.5738,
939
+ "step": 93000
940
+ },
941
+ {
942
+ "epoch": 4.22,
943
+ "learning_rate": 0.00017457442462208905,
944
+ "loss": 0.5773,
945
+ "step": 93600
946
+ },
947
+ {
948
+ "epoch": 4.25,
949
+ "learning_rate": 0.00017375731989650007,
950
+ "loss": 0.5866,
951
+ "step": 94200
952
+ },
953
+ {
954
+ "epoch": 4.27,
955
+ "learning_rate": 0.00017294021517091104,
956
+ "loss": 0.5843,
957
+ "step": 94800
958
+ },
959
+ {
960
+ "epoch": 4.3,
961
+ "learning_rate": 0.00017212311044532204,
962
+ "loss": 0.603,
963
+ "step": 95400
964
+ },
965
+ {
966
+ "epoch": 4.33,
967
+ "learning_rate": 0.00017130600571973307,
968
+ "loss": 0.5819,
969
+ "step": 96000
970
+ },
971
+ {
972
+ "epoch": 4.36,
973
+ "learning_rate": 0.00017048890099414406,
974
+ "loss": 0.592,
975
+ "step": 96600
976
+ },
977
+ {
978
+ "epoch": 4.38,
979
+ "learning_rate": 0.0001696717962685551,
980
+ "loss": 0.58,
981
+ "step": 97200
982
+ },
983
+ {
984
+ "epoch": 4.41,
985
+ "learning_rate": 0.0001688546915429661,
986
+ "loss": 0.5882,
987
+ "step": 97800
988
+ },
989
+ {
990
+ "epoch": 4.44,
991
+ "learning_rate": 0.00016803758681737706,
992
+ "loss": 0.5987,
993
+ "step": 98400
994
+ },
995
+ {
996
+ "epoch": 4.46,
997
+ "learning_rate": 0.00016722048209178808,
998
+ "loss": 0.585,
999
+ "step": 99000
1000
+ },
1001
+ {
1002
+ "epoch": 4.49,
1003
+ "learning_rate": 0.00016640337736619908,
1004
+ "loss": 0.5769,
1005
+ "step": 99600
1006
+ },
1007
+ {
1008
+ "epoch": 4.52,
1009
+ "learning_rate": 0.0001655862726406101,
1010
+ "loss": 0.5813,
1011
+ "step": 100200
1012
+ },
1013
+ {
1014
+ "epoch": 4.54,
1015
+ "learning_rate": 0.0001647691679150211,
1016
+ "loss": 0.6053,
1017
+ "step": 100800
1018
+ },
1019
+ {
1020
+ "epoch": 4.57,
1021
+ "learning_rate": 0.00016395206318943207,
1022
+ "loss": 0.5889,
1023
+ "step": 101400
1024
+ },
1025
+ {
1026
+ "epoch": 4.6,
1027
+ "learning_rate": 0.0001631349584638431,
1028
+ "loss": 0.5877,
1029
+ "step": 102000
1030
+ },
1031
+ {
1032
+ "epoch": 4.63,
1033
+ "learning_rate": 0.0001623178537382541,
1034
+ "loss": 0.581,
1035
+ "step": 102600
1036
+ },
1037
+ {
1038
+ "epoch": 4.65,
1039
+ "learning_rate": 0.00016150074901266512,
1040
+ "loss": 0.5699,
1041
+ "step": 103200
1042
+ },
1043
+ {
1044
+ "epoch": 4.68,
1045
+ "learning_rate": 0.00016068364428707612,
1046
+ "loss": 0.5781,
1047
+ "step": 103800
1048
+ },
1049
+ {
1050
+ "epoch": 4.71,
1051
+ "learning_rate": 0.00015986653956148714,
1052
+ "loss": 0.5812,
1053
+ "step": 104400
1054
+ },
1055
+ {
1056
+ "epoch": 4.73,
1057
+ "learning_rate": 0.0001590494348358981,
1058
+ "loss": 0.5686,
1059
+ "step": 105000
1060
+ },
1061
+ {
1062
+ "epoch": 4.76,
1063
+ "learning_rate": 0.0001582323301103091,
1064
+ "loss": 0.5724,
1065
+ "step": 105600
1066
+ },
1067
+ {
1068
+ "epoch": 4.79,
1069
+ "learning_rate": 0.00015741522538472013,
1070
+ "loss": 0.5722,
1071
+ "step": 106200
1072
+ },
1073
+ {
1074
+ "epoch": 4.82,
1075
+ "learning_rate": 0.00015659812065913113,
1076
+ "loss": 0.5834,
1077
+ "step": 106800
1078
+ },
1079
+ {
1080
+ "epoch": 4.84,
1081
+ "learning_rate": 0.00015578101593354213,
1082
+ "loss": 0.5825,
1083
+ "step": 107400
1084
+ },
1085
+ {
1086
+ "epoch": 4.87,
1087
+ "learning_rate": 0.00015496391120795315,
1088
+ "loss": 0.5783,
1089
+ "step": 108000
1090
+ },
1091
+ {
1092
+ "epoch": 4.9,
1093
+ "learning_rate": 0.00015414680648236412,
1094
+ "loss": 0.5819,
1095
+ "step": 108600
1096
+ },
1097
+ {
1098
+ "epoch": 4.92,
1099
+ "learning_rate": 0.00015332970175677515,
1100
+ "loss": 0.5823,
1101
+ "step": 109200
1102
+ },
1103
+ {
1104
+ "epoch": 4.95,
1105
+ "learning_rate": 0.00015251259703118615,
1106
+ "loss": 0.5755,
1107
+ "step": 109800
1108
+ },
1109
+ {
1110
+ "epoch": 4.98,
1111
+ "learning_rate": 0.00015169549230559714,
1112
+ "loss": 0.571,
1113
+ "step": 110400
1114
+ },
1115
+ {
1116
+ "epoch": 5.0,
1117
+ "learning_rate": 0.00015087838758000817,
1118
+ "loss": 0.5603,
1119
+ "step": 111000
1120
+ },
1121
+ {
1122
+ "epoch": 5.03,
1123
+ "learning_rate": 0.00015006128285441917,
1124
+ "loss": 0.5127,
1125
+ "step": 111600
1126
+ },
1127
+ {
1128
+ "epoch": 5.06,
1129
+ "learning_rate": 0.00014924417812883016,
1130
+ "loss": 0.52,
1131
+ "step": 112200
1132
+ },
1133
+ {
1134
+ "epoch": 5.09,
1135
+ "learning_rate": 0.0001484270734032412,
1136
+ "loss": 0.5327,
1137
+ "step": 112800
1138
+ },
1139
+ {
1140
+ "epoch": 5.11,
1141
+ "learning_rate": 0.00014760996867765216,
1142
+ "loss": 0.5081,
1143
+ "step": 113400
1144
+ },
1145
+ {
1146
+ "epoch": 5.14,
1147
+ "learning_rate": 0.00014679286395206318,
1148
+ "loss": 0.5189,
1149
+ "step": 114000
1150
+ },
1151
+ {
1152
+ "epoch": 5.17,
1153
+ "learning_rate": 0.00014597575922647418,
1154
+ "loss": 0.5178,
1155
+ "step": 114600
1156
+ },
1157
+ {
1158
+ "epoch": 5.19,
1159
+ "learning_rate": 0.00014515865450088518,
1160
+ "loss": 0.5254,
1161
+ "step": 115200
1162
+ },
1163
+ {
1164
+ "epoch": 5.22,
1165
+ "learning_rate": 0.00014434154977529618,
1166
+ "loss": 0.5171,
1167
+ "step": 115800
1168
+ },
1169
+ {
1170
+ "epoch": 5.25,
1171
+ "learning_rate": 0.0001435244450497072,
1172
+ "loss": 0.5167,
1173
+ "step": 116400
1174
+ },
1175
+ {
1176
+ "epoch": 5.28,
1177
+ "learning_rate": 0.0001427073403241182,
1178
+ "loss": 0.5286,
1179
+ "step": 117000
1180
+ },
1181
+ {
1182
+ "epoch": 5.3,
1183
+ "learning_rate": 0.0001418902355985292,
1184
+ "loss": 0.5298,
1185
+ "step": 117600
1186
+ },
1187
+ {
1188
+ "epoch": 5.33,
1189
+ "learning_rate": 0.00014107313087294022,
1190
+ "loss": 0.5295,
1191
+ "step": 118200
1192
+ },
1193
+ {
1194
+ "epoch": 5.36,
1195
+ "learning_rate": 0.0001402560261473512,
1196
+ "loss": 0.5324,
1197
+ "step": 118800
1198
+ },
1199
+ {
1200
+ "epoch": 5.38,
1201
+ "learning_rate": 0.00013943892142176222,
1202
+ "loss": 0.5155,
1203
+ "step": 119400
1204
+ },
1205
+ {
1206
+ "epoch": 5.41,
1207
+ "learning_rate": 0.0001386218166961732,
1208
+ "loss": 0.5138,
1209
+ "step": 120000
1210
+ },
1211
+ {
1212
+ "epoch": 5.44,
1213
+ "learning_rate": 0.0001378047119705842,
1214
+ "loss": 0.5215,
1215
+ "step": 120600
1216
+ },
1217
+ {
1218
+ "epoch": 5.46,
1219
+ "learning_rate": 0.00013698760724499524,
1220
+ "loss": 0.5236,
1221
+ "step": 121200
1222
+ },
1223
+ {
1224
+ "epoch": 5.49,
1225
+ "learning_rate": 0.00013617050251940623,
1226
+ "loss": 0.5249,
1227
+ "step": 121800
1228
+ },
1229
+ {
1230
+ "epoch": 5.52,
1231
+ "learning_rate": 0.00013535339779381723,
1232
+ "loss": 0.5086,
1233
+ "step": 122400
1234
+ },
1235
+ {
1236
+ "epoch": 5.55,
1237
+ "learning_rate": 0.00013453629306822823,
1238
+ "loss": 0.5271,
1239
+ "step": 123000
1240
+ },
1241
+ {
1242
+ "epoch": 5.57,
1243
+ "learning_rate": 0.00013371918834263925,
1244
+ "loss": 0.5214,
1245
+ "step": 123600
1246
+ },
1247
+ {
1248
+ "epoch": 5.6,
1249
+ "learning_rate": 0.00013290208361705022,
1250
+ "loss": 0.5257,
1251
+ "step": 124200
1252
+ },
1253
+ {
1254
+ "epoch": 5.63,
1255
+ "learning_rate": 0.00013208497889146125,
1256
+ "loss": 0.5182,
1257
+ "step": 124800
1258
+ },
1259
+ {
1260
+ "epoch": 5.65,
1261
+ "learning_rate": 0.00013126787416587225,
1262
+ "loss": 0.5128,
1263
+ "step": 125400
1264
+ },
1265
+ {
1266
+ "epoch": 5.68,
1267
+ "learning_rate": 0.00013045076944028324,
1268
+ "loss": 0.5164,
1269
+ "step": 126000
1270
+ },
1271
+ {
1272
+ "epoch": 5.71,
1273
+ "learning_rate": 0.00012963366471469427,
1274
+ "loss": 0.5142,
1275
+ "step": 126600
1276
+ },
1277
+ {
1278
+ "epoch": 5.74,
1279
+ "learning_rate": 0.00012881655998910527,
1280
+ "loss": 0.5336,
1281
+ "step": 127200
1282
+ },
1283
+ {
1284
+ "epoch": 5.76,
1285
+ "learning_rate": 0.00012799945526351626,
1286
+ "loss": 0.5216,
1287
+ "step": 127800
1288
+ },
1289
+ {
1290
+ "epoch": 5.79,
1291
+ "learning_rate": 0.00012718235053792726,
1292
+ "loss": 0.5185,
1293
+ "step": 128400
1294
+ },
1295
+ {
1296
+ "epoch": 5.82,
1297
+ "learning_rate": 0.00012636524581233829,
1298
+ "loss": 0.5134,
1299
+ "step": 129000
1300
+ },
1301
+ {
1302
+ "epoch": 5.84,
1303
+ "learning_rate": 0.00012554814108674928,
1304
+ "loss": 0.5206,
1305
+ "step": 129600
1306
+ },
1307
+ {
1308
+ "epoch": 5.87,
1309
+ "learning_rate": 0.00012473103636116028,
1310
+ "loss": 0.5056,
1311
+ "step": 130200
1312
+ },
1313
+ {
1314
+ "epoch": 5.9,
1315
+ "learning_rate": 0.00012391393163557128,
1316
+ "loss": 0.4996,
1317
+ "step": 130800
1318
+ },
1319
+ {
1320
+ "epoch": 5.92,
1321
+ "learning_rate": 0.00012309682690998228,
1322
+ "loss": 0.51,
1323
+ "step": 131400
1324
+ },
1325
+ {
1326
+ "epoch": 5.95,
1327
+ "learning_rate": 0.0001222797221843933,
1328
+ "loss": 0.499,
1329
+ "step": 132000
1330
+ },
1331
+ {
1332
+ "epoch": 5.98,
1333
+ "learning_rate": 0.0001214626174588043,
1334
+ "loss": 0.5181,
1335
+ "step": 132600
1336
+ },
1337
+ {
1338
+ "epoch": 6.01,
1339
+ "learning_rate": 0.0001206455127332153,
1340
+ "loss": 0.5164,
1341
+ "step": 133200
1342
+ },
1343
+ {
1344
+ "epoch": 6.03,
1345
+ "learning_rate": 0.0001198284080076263,
1346
+ "loss": 0.4706,
1347
+ "step": 133800
1348
+ },
1349
+ {
1350
+ "epoch": 6.06,
1351
+ "learning_rate": 0.00011901130328203729,
1352
+ "loss": 0.4552,
1353
+ "step": 134400
1354
+ },
1355
+ {
1356
+ "epoch": 6.09,
1357
+ "learning_rate": 0.0001181941985564483,
1358
+ "loss": 0.457,
1359
+ "step": 135000
1360
+ },
1361
+ {
1362
+ "epoch": 6.11,
1363
+ "learning_rate": 0.00011737709383085931,
1364
+ "loss": 0.4606,
1365
+ "step": 135600
1366
+ },
1367
+ {
1368
+ "epoch": 6.14,
1369
+ "learning_rate": 0.00011655998910527031,
1370
+ "loss": 0.4685,
1371
+ "step": 136200
1372
+ },
1373
+ {
1374
+ "epoch": 6.17,
1375
+ "learning_rate": 0.00011574288437968132,
1376
+ "loss": 0.4564,
1377
+ "step": 136800
1378
+ },
1379
+ {
1380
+ "epoch": 6.2,
1381
+ "learning_rate": 0.00011492577965409233,
1382
+ "loss": 0.4611,
1383
+ "step": 137400
1384
+ },
1385
+ {
1386
+ "epoch": 6.22,
1387
+ "learning_rate": 0.00011410867492850332,
1388
+ "loss": 0.4496,
1389
+ "step": 138000
1390
+ },
1391
+ {
1392
+ "epoch": 6.25,
1393
+ "learning_rate": 0.00011329157020291433,
1394
+ "loss": 0.4509,
1395
+ "step": 138600
1396
+ },
1397
+ {
1398
+ "epoch": 6.28,
1399
+ "learning_rate": 0.00011247446547732534,
1400
+ "loss": 0.4546,
1401
+ "step": 139200
1402
+ },
1403
+ {
1404
+ "epoch": 6.3,
1405
+ "learning_rate": 0.00011165736075173634,
1406
+ "loss": 0.4616,
1407
+ "step": 139800
1408
+ },
1409
+ {
1410
+ "epoch": 6.33,
1411
+ "learning_rate": 0.00011084025602614733,
1412
+ "loss": 0.465,
1413
+ "step": 140400
1414
+ },
1415
+ {
1416
+ "epoch": 6.36,
1417
+ "learning_rate": 0.00011002315130055835,
1418
+ "loss": 0.4639,
1419
+ "step": 141000
1420
+ },
1421
+ {
1422
+ "epoch": 6.38,
1423
+ "learning_rate": 0.00010920604657496934,
1424
+ "loss": 0.4605,
1425
+ "step": 141600
1426
+ },
1427
+ {
1428
+ "epoch": 6.41,
1429
+ "learning_rate": 0.00010838894184938035,
1430
+ "loss": 0.4592,
1431
+ "step": 142200
1432
+ },
1433
+ {
1434
+ "epoch": 6.44,
1435
+ "learning_rate": 0.00010757183712379136,
1436
+ "loss": 0.4612,
1437
+ "step": 142800
1438
+ },
1439
+ {
1440
+ "epoch": 6.47,
1441
+ "learning_rate": 0.00010675473239820235,
1442
+ "loss": 0.4538,
1443
+ "step": 143400
1444
+ },
1445
+ {
1446
+ "epoch": 6.49,
1447
+ "learning_rate": 0.00010593762767261336,
1448
+ "loss": 0.452,
1449
+ "step": 144000
1450
+ },
1451
+ {
1452
+ "epoch": 6.52,
1453
+ "learning_rate": 0.00010512052294702437,
1454
+ "loss": 0.4701,
1455
+ "step": 144600
1456
+ },
1457
+ {
1458
+ "epoch": 6.55,
1459
+ "learning_rate": 0.00010430341822143537,
1460
+ "loss": 0.4518,
1461
+ "step": 145200
1462
+ },
1463
+ {
1464
+ "epoch": 6.57,
1465
+ "learning_rate": 0.00010348631349584638,
1466
+ "loss": 0.4594,
1467
+ "step": 145800
1468
+ },
1469
+ {
1470
+ "epoch": 6.6,
1471
+ "learning_rate": 0.00010266920877025738,
1472
+ "loss": 0.4593,
1473
+ "step": 146400
1474
+ },
1475
+ {
1476
+ "epoch": 6.63,
1477
+ "learning_rate": 0.00010185210404466838,
1478
+ "loss": 0.4651,
1479
+ "step": 147000
1480
+ },
1481
+ {
1482
+ "epoch": 6.65,
1483
+ "learning_rate": 0.00010103499931907939,
1484
+ "loss": 0.4547,
1485
+ "step": 147600
1486
+ },
1487
+ {
1488
+ "epoch": 6.68,
1489
+ "learning_rate": 0.0001002178945934904,
1490
+ "loss": 0.4544,
1491
+ "step": 148200
1492
+ },
1493
+ {
1494
+ "epoch": 6.71,
1495
+ "learning_rate": 9.940078986790138e-05,
1496
+ "loss": 0.4605,
1497
+ "step": 148800
1498
+ },
1499
+ {
1500
+ "epoch": 6.74,
1501
+ "learning_rate": 9.858368514231239e-05,
1502
+ "loss": 0.4518,
1503
+ "step": 149400
1504
+ },
1505
+ {
1506
+ "epoch": 6.76,
1507
+ "learning_rate": 9.77665804167234e-05,
1508
+ "loss": 0.4625,
1509
+ "step": 150000
1510
+ },
1511
+ {
1512
+ "epoch": 6.79,
1513
+ "learning_rate": 9.69494756911344e-05,
1514
+ "loss": 0.4537,
1515
+ "step": 150600
1516
+ },
1517
+ {
1518
+ "epoch": 6.82,
1519
+ "learning_rate": 9.613237096554541e-05,
1520
+ "loss": 0.4515,
1521
+ "step": 151200
1522
+ },
1523
+ {
1524
+ "epoch": 6.84,
1525
+ "learning_rate": 9.531526623995642e-05,
1526
+ "loss": 0.4507,
1527
+ "step": 151800
1528
+ },
1529
+ {
1530
+ "epoch": 6.87,
1531
+ "learning_rate": 9.449816151436741e-05,
1532
+ "loss": 0.4617,
1533
+ "step": 152400
1534
+ },
1535
+ {
1536
+ "epoch": 6.9,
1537
+ "learning_rate": 9.368105678877842e-05,
1538
+ "loss": 0.4494,
1539
+ "step": 153000
1540
+ },
1541
+ {
1542
+ "epoch": 6.93,
1543
+ "learning_rate": 9.286395206318943e-05,
1544
+ "loss": 0.4502,
1545
+ "step": 153600
1546
+ },
1547
+ {
1548
+ "epoch": 6.95,
1549
+ "learning_rate": 9.204684733760043e-05,
1550
+ "loss": 0.4495,
1551
+ "step": 154200
1552
+ },
1553
+ {
1554
+ "epoch": 6.98,
1555
+ "learning_rate": 9.122974261201142e-05,
1556
+ "loss": 0.4569,
1557
+ "step": 154800
1558
+ },
1559
+ {
1560
+ "epoch": 7.01,
1561
+ "learning_rate": 9.041263788642244e-05,
1562
+ "loss": 0.4416,
1563
+ "step": 155400
1564
+ },
1565
+ {
1566
+ "epoch": 7.03,
1567
+ "learning_rate": 8.959553316083343e-05,
1568
+ "loss": 0.4081,
1569
+ "step": 156000
1570
+ },
1571
+ {
1572
+ "epoch": 7.06,
1573
+ "learning_rate": 8.877842843524444e-05,
1574
+ "loss": 0.4196,
1575
+ "step": 156600
1576
+ },
1577
+ {
1578
+ "epoch": 7.09,
1579
+ "learning_rate": 8.796132370965546e-05,
1580
+ "loss": 0.4135,
1581
+ "step": 157200
1582
+ },
1583
+ {
1584
+ "epoch": 7.11,
1585
+ "learning_rate": 8.714421898406644e-05,
1586
+ "loss": 0.4088,
1587
+ "step": 157800
1588
+ },
1589
+ {
1590
+ "epoch": 7.14,
1591
+ "learning_rate": 8.632711425847745e-05,
1592
+ "loss": 0.4005,
1593
+ "step": 158400
1594
+ },
1595
+ {
1596
+ "epoch": 7.17,
1597
+ "learning_rate": 8.551000953288846e-05,
1598
+ "loss": 0.3954,
1599
+ "step": 159000
1600
+ },
1601
+ {
1602
+ "epoch": 7.2,
1603
+ "learning_rate": 8.469290480729946e-05,
1604
+ "loss": 0.4093,
1605
+ "step": 159600
1606
+ },
1607
+ {
1608
+ "epoch": 7.22,
1609
+ "learning_rate": 8.387580008171047e-05,
1610
+ "loss": 0.3998,
1611
+ "step": 160200
1612
+ },
1613
+ {
1614
+ "epoch": 7.25,
1615
+ "learning_rate": 8.305869535612147e-05,
1616
+ "loss": 0.4068,
1617
+ "step": 160800
1618
+ },
1619
+ {
1620
+ "epoch": 7.28,
1621
+ "learning_rate": 8.224159063053247e-05,
1622
+ "loss": 0.3933,
1623
+ "step": 161400
1624
+ },
1625
+ {
1626
+ "epoch": 7.3,
1627
+ "learning_rate": 8.142448590494348e-05,
1628
+ "loss": 0.3957,
1629
+ "step": 162000
1630
+ },
1631
+ {
1632
+ "epoch": 7.33,
1633
+ "learning_rate": 8.060738117935449e-05,
1634
+ "loss": 0.3954,
1635
+ "step": 162600
1636
+ },
1637
+ {
1638
+ "epoch": 7.36,
1639
+ "learning_rate": 7.979027645376547e-05,
1640
+ "loss": 0.3949,
1641
+ "step": 163200
1642
+ },
1643
+ {
1644
+ "epoch": 7.39,
1645
+ "learning_rate": 7.897317172817648e-05,
1646
+ "loss": 0.4014,
1647
+ "step": 163800
1648
+ },
1649
+ {
1650
+ "epoch": 7.41,
1651
+ "learning_rate": 7.81560670025875e-05,
1652
+ "loss": 0.4007,
1653
+ "step": 164400
1654
+ },
1655
+ {
1656
+ "epoch": 7.44,
1657
+ "learning_rate": 7.733896227699849e-05,
1658
+ "loss": 0.4037,
1659
+ "step": 165000
1660
+ },
1661
+ {
1662
+ "epoch": 7.47,
1663
+ "learning_rate": 7.65218575514095e-05,
1664
+ "loss": 0.4055,
1665
+ "step": 165600
1666
+ },
1667
+ {
1668
+ "epoch": 7.49,
1669
+ "learning_rate": 7.570475282582051e-05,
1670
+ "loss": 0.3985,
1671
+ "step": 166200
1672
+ },
1673
+ {
1674
+ "epoch": 7.52,
1675
+ "learning_rate": 7.488764810023151e-05,
1676
+ "loss": 0.4022,
1677
+ "step": 166800
1678
+ },
1679
+ {
1680
+ "epoch": 7.55,
1681
+ "learning_rate": 7.407054337464251e-05,
1682
+ "loss": 0.3872,
1683
+ "step": 167400
1684
+ },
1685
+ {
1686
+ "epoch": 7.57,
1687
+ "learning_rate": 7.325343864905351e-05,
1688
+ "loss": 0.3895,
1689
+ "step": 168000
1690
+ },
1691
+ {
1692
+ "epoch": 7.6,
1693
+ "learning_rate": 7.243633392346452e-05,
1694
+ "loss": 0.3968,
1695
+ "step": 168600
1696
+ },
1697
+ {
1698
+ "epoch": 7.63,
1699
+ "learning_rate": 7.161922919787552e-05,
1700
+ "loss": 0.4051,
1701
+ "step": 169200
1702
+ },
1703
+ {
1704
+ "epoch": 7.66,
1705
+ "learning_rate": 7.080212447228653e-05,
1706
+ "loss": 0.3915,
1707
+ "step": 169800
1708
+ },
1709
+ {
1710
+ "epoch": 7.68,
1711
+ "learning_rate": 6.998501974669754e-05,
1712
+ "loss": 0.3934,
1713
+ "step": 170400
1714
+ },
1715
+ {
1716
+ "epoch": 7.71,
1717
+ "learning_rate": 6.916791502110854e-05,
1718
+ "loss": 0.3943,
1719
+ "step": 171000
1720
+ },
1721
+ {
1722
+ "epoch": 7.74,
1723
+ "learning_rate": 6.835081029551953e-05,
1724
+ "loss": 0.3932,
1725
+ "step": 171600
1726
+ },
1727
+ {
1728
+ "epoch": 7.76,
1729
+ "learning_rate": 6.753370556993054e-05,
1730
+ "loss": 0.4063,
1731
+ "step": 172200
1732
+ },
1733
+ {
1734
+ "epoch": 7.79,
1735
+ "learning_rate": 6.671660084434154e-05,
1736
+ "loss": 0.3975,
1737
+ "step": 172800
1738
+ },
1739
+ {
1740
+ "epoch": 7.82,
1741
+ "learning_rate": 6.589949611875254e-05,
1742
+ "loss": 0.3915,
1743
+ "step": 173400
1744
+ },
1745
+ {
1746
+ "epoch": 7.85,
1747
+ "learning_rate": 6.508239139316355e-05,
1748
+ "loss": 0.3892,
1749
+ "step": 174000
1750
+ },
1751
+ {
1752
+ "epoch": 7.87,
1753
+ "learning_rate": 6.426528666757456e-05,
1754
+ "loss": 0.3831,
1755
+ "step": 174600
1756
+ },
1757
+ {
1758
+ "epoch": 7.9,
1759
+ "learning_rate": 6.344818194198556e-05,
1760
+ "loss": 0.3896,
1761
+ "step": 175200
1762
+ },
1763
+ {
1764
+ "epoch": 7.93,
1765
+ "learning_rate": 6.263107721639657e-05,
1766
+ "loss": 0.3839,
1767
+ "step": 175800
1768
+ },
1769
+ {
1770
+ "epoch": 7.95,
1771
+ "learning_rate": 6.181397249080757e-05,
1772
+ "loss": 0.401,
1773
+ "step": 176400
1774
+ },
1775
+ {
1776
+ "epoch": 7.98,
1777
+ "learning_rate": 6.0996867765218565e-05,
1778
+ "loss": 0.3888,
1779
+ "step": 177000
1780
+ },
1781
+ {
1782
+ "epoch": 8.01,
1783
+ "learning_rate": 6.0179763039629576e-05,
1784
+ "loss": 0.371,
1785
+ "step": 177600
1786
+ },
1787
+ {
1788
+ "epoch": 8.03,
1789
+ "learning_rate": 5.936265831404058e-05,
1790
+ "loss": 0.3514,
1791
+ "step": 178200
1792
+ },
1793
+ {
1794
+ "epoch": 8.06,
1795
+ "learning_rate": 5.854555358845158e-05,
1796
+ "loss": 0.364,
1797
+ "step": 178800
1798
+ },
1799
+ {
1800
+ "epoch": 8.09,
1801
+ "learning_rate": 5.772844886286259e-05,
1802
+ "loss": 0.3486,
1803
+ "step": 179400
1804
+ },
1805
+ {
1806
+ "epoch": 8.12,
1807
+ "learning_rate": 5.691134413727359e-05,
1808
+ "loss": 0.3531,
1809
+ "step": 180000
1810
+ },
1811
+ {
1812
+ "epoch": 8.14,
1813
+ "learning_rate": 5.609423941168459e-05,
1814
+ "loss": 0.3584,
1815
+ "step": 180600
1816
+ },
1817
+ {
1818
+ "epoch": 8.17,
1819
+ "learning_rate": 5.52771346860956e-05,
1820
+ "loss": 0.345,
1821
+ "step": 181200
1822
+ },
1823
+ {
1824
+ "epoch": 8.2,
1825
+ "learning_rate": 5.44600299605066e-05,
1826
+ "loss": 0.3406,
1827
+ "step": 181800
1828
+ },
1829
+ {
1830
+ "epoch": 8.22,
1831
+ "learning_rate": 5.3642925234917604e-05,
1832
+ "loss": 0.3519,
1833
+ "step": 182400
1834
+ },
1835
+ {
1836
+ "epoch": 8.25,
1837
+ "learning_rate": 5.28258205093286e-05,
1838
+ "loss": 0.3607,
1839
+ "step": 183000
1840
+ },
1841
+ {
1842
+ "epoch": 8.28,
1843
+ "learning_rate": 5.200871578373961e-05,
1844
+ "loss": 0.3533,
1845
+ "step": 183600
1846
+ },
1847
+ {
1848
+ "epoch": 8.31,
1849
+ "learning_rate": 5.119161105815061e-05,
1850
+ "loss": 0.3586,
1851
+ "step": 184200
1852
+ },
1853
+ {
1854
+ "epoch": 8.33,
1855
+ "learning_rate": 5.0374506332561615e-05,
1856
+ "loss": 0.3453,
1857
+ "step": 184800
1858
+ },
1859
+ {
1860
+ "epoch": 8.36,
1861
+ "learning_rate": 4.9557401606972626e-05,
1862
+ "loss": 0.3431,
1863
+ "step": 185400
1864
+ },
1865
+ {
1866
+ "epoch": 8.39,
1867
+ "learning_rate": 4.8740296881383624e-05,
1868
+ "loss": 0.3546,
1869
+ "step": 186000
1870
+ },
1871
+ {
1872
+ "epoch": 8.41,
1873
+ "learning_rate": 4.792319215579463e-05,
1874
+ "loss": 0.3434,
1875
+ "step": 186600
1876
+ },
1877
+ {
1878
+ "epoch": 8.44,
1879
+ "learning_rate": 4.710608743020563e-05,
1880
+ "loss": 0.356,
1881
+ "step": 187200
1882
+ },
1883
+ {
1884
+ "epoch": 8.47,
1885
+ "learning_rate": 4.628898270461664e-05,
1886
+ "loss": 0.343,
1887
+ "step": 187800
1888
+ },
1889
+ {
1890
+ "epoch": 8.49,
1891
+ "learning_rate": 4.547187797902764e-05,
1892
+ "loss": 0.3501,
1893
+ "step": 188400
1894
+ },
1895
+ {
1896
+ "epoch": 8.52,
1897
+ "learning_rate": 4.4654773253438645e-05,
1898
+ "loss": 0.3384,
1899
+ "step": 189000
1900
+ },
1901
+ {
1902
+ "epoch": 8.55,
1903
+ "learning_rate": 4.383766852784965e-05,
1904
+ "loss": 0.3515,
1905
+ "step": 189600
1906
+ },
1907
+ {
1908
+ "epoch": 8.58,
1909
+ "learning_rate": 4.302056380226065e-05,
1910
+ "loss": 0.353,
1911
+ "step": 190200
1912
+ },
1913
+ {
1914
+ "epoch": 8.6,
1915
+ "learning_rate": 4.220345907667166e-05,
1916
+ "loss": 0.3448,
1917
+ "step": 190800
1918
+ },
1919
+ {
1920
+ "epoch": 8.63,
1921
+ "learning_rate": 4.138635435108266e-05,
1922
+ "loss": 0.3438,
1923
+ "step": 191400
1924
+ },
1925
+ {
1926
+ "epoch": 8.66,
1927
+ "learning_rate": 4.056924962549366e-05,
1928
+ "loss": 0.3539,
1929
+ "step": 192000
1930
+ },
1931
+ {
1932
+ "epoch": 8.68,
1933
+ "learning_rate": 3.975214489990467e-05,
1934
+ "loss": 0.3514,
1935
+ "step": 192600
1936
+ },
1937
+ {
1938
+ "epoch": 8.71,
1939
+ "learning_rate": 3.893504017431567e-05,
1940
+ "loss": 0.3514,
1941
+ "step": 193200
1942
+ },
1943
+ {
1944
+ "epoch": 8.74,
1945
+ "learning_rate": 3.811793544872667e-05,
1946
+ "loss": 0.3349,
1947
+ "step": 193800
1948
+ },
1949
+ {
1950
+ "epoch": 8.77,
1951
+ "learning_rate": 3.730083072313768e-05,
1952
+ "loss": 0.3429,
1953
+ "step": 194400
1954
+ },
1955
+ {
1956
+ "epoch": 8.79,
1957
+ "learning_rate": 3.648372599754868e-05,
1958
+ "loss": 0.3407,
1959
+ "step": 195000
1960
+ },
1961
+ {
1962
+ "epoch": 8.82,
1963
+ "learning_rate": 3.5666621271959686e-05,
1964
+ "loss": 0.3444,
1965
+ "step": 195600
1966
+ },
1967
+ {
1968
+ "epoch": 8.85,
1969
+ "learning_rate": 3.484951654637069e-05,
1970
+ "loss": 0.3434,
1971
+ "step": 196200
1972
+ },
1973
+ {
1974
+ "epoch": 8.87,
1975
+ "learning_rate": 3.4032411820781695e-05,
1976
+ "loss": 0.3423,
1977
+ "step": 196800
1978
+ },
1979
+ {
1980
+ "epoch": 8.9,
1981
+ "learning_rate": 3.32153070951927e-05,
1982
+ "loss": 0.3387,
1983
+ "step": 197400
1984
+ },
1985
+ {
1986
+ "epoch": 8.93,
1987
+ "learning_rate": 3.23982023696037e-05,
1988
+ "loss": 0.3415,
1989
+ "step": 198000
1990
+ },
1991
+ {
1992
+ "epoch": 8.95,
1993
+ "learning_rate": 3.158109764401471e-05,
1994
+ "loss": 0.3404,
1995
+ "step": 198600
1996
+ },
1997
+ {
1998
+ "epoch": 8.98,
1999
+ "learning_rate": 3.076399291842571e-05,
2000
+ "loss": 0.3303,
2001
+ "step": 199200
2002
+ }
2003
+ ],
2004
+ "logging_steps": 600,
2005
+ "max_steps": 221790,
2006
+ "num_train_epochs": 10,
2007
+ "save_steps": 500,
2008
+ "total_flos": 2.002554029520894e+20,
2009
+ "trial_name": null,
2010
+ "trial_params": null
2011
+ }
checkpoint-199611/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbe48fb494caf380988751c53bf416c9251961405d6d7abc072283944dfa068c
3
+ size 4600
checkpoint-199611/vocab.json ADDED
@@ -0,0 +1,1890 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "=": 1,
3
+ "[PAD]": 1887,
4
+ "[UNK]": 1886,
5
+ "|": 0,
6
+ "}": 2,
7
+ "è": 3,
8
+ "ㄴ": 4,
9
+ "ㅅ": 5,
10
+ "ㅋ": 6,
11
+ "ㅡ": 7,
12
+ "가": 8,
13
+ "각": 9,
14
+ "간": 10,
15
+ "갇": 11,
16
+ "갈": 12,
17
+ "갉": 13,
18
+ "감": 14,
19
+ "갑": 15,
20
+ "값": 16,
21
+ "갓": 17,
22
+ "갔": 18,
23
+ "강": 19,
24
+ "갖": 20,
25
+ "갗": 21,
26
+ "같": 22,
27
+ "갚": 23,
28
+ "갛": 24,
29
+ "개": 25,
30
+ "객": 26,
31
+ "갠": 27,
32
+ "갤": 28,
33
+ "갬": 29,
34
+ "갭": 30,
35
+ "갯": 31,
36
+ "갰": 32,
37
+ "갱": 33,
38
+ "갸": 34,
39
+ "걀": 35,
40
+ "걍": 36,
41
+ "걎": 37,
42
+ "걔": 38,
43
+ "걘": 39,
44
+ "거": 40,
45
+ "걱": 41,
46
+ "건": 42,
47
+ "걷": 43,
48
+ "걸": 44,
49
+ "검": 45,
50
+ "겁": 46,
51
+ "것": 47,
52
+ "겄": 48,
53
+ "겅": 49,
54
+ "겉": 50,
55
+ "겋": 51,
56
+ "게": 52,
57
+ "겐": 53,
58
+ "겔": 54,
59
+ "겜": 55,
60
+ "겝": 56,
61
+ "겟": 57,
62
+ "겠": 58,
63
+ "겡": 59,
64
+ "겨": 60,
65
+ "격": 61,
66
+ "겪": 62,
67
+ "견": 63,
68
+ "결": 64,
69
+ "겸": 65,
70
+ "겹": 66,
71
+ "겼": 67,
72
+ "경": 68,
73
+ "곁": 69,
74
+ "계": 70,
75
+ "곗": 71,
76
+ "곘": 72,
77
+ "고": 73,
78
+ "곡": 74,
79
+ "곤": 75,
80
+ "곧": 76,
81
+ "골": 77,
82
+ "곰": 78,
83
+ "곱": 79,
84
+ "곳": 80,
85
+ "공": 81,
86
+ "곶": 82,
87
+ "과": 83,
88
+ "곽": 84,
89
+ "관": 85,
90
+ "괄": 86,
91
+ "괌": 87,
92
+ "괍": 88,
93
+ "광": 89,
94
+ "괘": 90,
95
+ "괜": 91,
96
+ "괞": 92,
97
+ "괭": 93,
98
+ "괴": 94,
99
+ "괼": 95,
100
+ "굉": 96,
101
+ "교": 97,
102
+ "굔": 98,
103
+ "굘": 99,
104
+ "구": 100,
105
+ "국": 101,
106
+ "군": 102,
107
+ "굳": 103,
108
+ "굴": 104,
109
+ "굵": 105,
110
+ "굶": 106,
111
+ "굼": 107,
112
+ "굽": 108,
113
+ "굿": 109,
114
+ "궁": 110,
115
+ "궈": 111,
116
+ "권": 112,
117
+ "궐": 113,
118
+ "궜": 114,
119
+ "궤": 115,
120
+ "귀": 116,
121
+ "귄": 117,
122
+ "귓": 118,
123
+ "규": 119,
124
+ "귝": 120,
125
+ "균": 121,
126
+ "귤": 122,
127
+ "그": 123,
128
+ "극": 124,
129
+ "근": 125,
130
+ "귿": 126,
131
+ "글": 127,
132
+ "긁": 128,
133
+ "금": 129,
134
+ "급": 130,
135
+ "긋": 131,
136
+ "긍": 132,
137
+ "긔": 133,
138
+ "기": 134,
139
+ "긴": 135,
140
+ "길": 136,
141
+ "김": 137,
142
+ "깁": 138,
143
+ "깃": 139,
144
+ "깄": 140,
145
+ "깅": 141,
146
+ "깉": 142,
147
+ "깊": 143,
148
+ "까": 144,
149
+ "깍": 145,
150
+ "깎": 146,
151
+ "깐": 147,
152
+ "깔": 148,
153
+ "깜": 149,
154
+ "깝": 150,
155
+ "깠": 151,
156
+ "깡": 152,
157
+ "깥": 153,
158
+ "깨": 154,
159
+ "깬": 155,
160
+ "깰": 156,
161
+ "깸": 157,
162
+ "깹": 158,
163
+ "깻": 159,
164
+ "깼": 160,
165
+ "깽": 161,
166
+ "꺄": 162,
167
+ "꺅": 163,
168
+ "꺼": 164,
169
+ "꺽": 165,
170
+ "꺾": 166,
171
+ "껀": 167,
172
+ "껄": 168,
173
+ "껌": 169,
174
+ "껍": 170,
175
+ "껏": 171,
176
+ "껐": 172,
177
+ "껑": 173,
178
+ "께": 174,
179
+ "껨": 175,
180
+ "껴": 176,
181
+ "꼇": 177,
182
+ "꼈": 178,
183
+ "꼉": 179,
184
+ "꼐": 180,
185
+ "꼬": 181,
186
+ "꼭": 182,
187
+ "꼰": 183,
188
+ "꼴": 184,
189
+ "꼼": 185,
190
+ "꼽": 186,
191
+ "꽁": 187,
192
+ "꽂": 188,
193
+ "꽃": 189,
194
+ "꽈": 190,
195
+ "꽉": 191,
196
+ "꽝": 192,
197
+ "꽤": 193,
198
+ "꽥": 194,
199
+ "꾀": 195,
200
+ "꾸": 196,
201
+ "꾹": 197,
202
+ "꾼": 198,
203
+ "꿀": 199,
204
+ "꿇": 200,
205
+ "꿈": 201,
206
+ "꿉": 202,
207
+ "꿋": 203,
208
+ "꿍": 204,
209
+ "꿔": 205,
210
+ "꿨": 206,
211
+ "꿩": 207,
212
+ "꿰": 208,
213
+ "뀌": 209,
214
+ "뀐": 210,
215
+ "뀔": 211,
216
+ "뀜": 212,
217
+ "뀝": 213,
218
+ "뀠": 214,
219
+ "끄": 215,
220
+ "끈": 216,
221
+ "끊": 217,
222
+ "끌": 218,
223
+ "끓": 219,
224
+ "끔": 220,
225
+ "끕": 221,
226
+ "끗": 222,
227
+ "끙": 223,
228
+ "끝": 224,
229
+ "끼": 225,
230
+ "끽": 226,
231
+ "낀": 227,
232
+ "낄": 228,
233
+ "낌": 229,
234
+ "낍": 230,
235
+ "낑": 231,
236
+ "나": 232,
237
+ "낙": 233,
238
+ "낚": 234,
239
+ "난": 235,
240
+ "날": 236,
241
+ "낡": 237,
242
+ "남": 238,
243
+ "납": 239,
244
+ "낫": 240,
245
+ "났": 241,
246
+ "낭": 242,
247
+ "낮": 243,
248
+ "낯": 244,
249
+ "낱": 245,
250
+ "낳": 246,
251
+ "내": 247,
252
+ "낵": 248,
253
+ "낸": 249,
254
+ "낼": 250,
255
+ "냄": 251,
256
+ "냅": 252,
257
+ "냇": 253,
258
+ "냈": 254,
259
+ "냉": 255,
260
+ "냐": 256,
261
+ "냑": 257,
262
+ "냠": 258,
263
+ "냥": 259,
264
+ "냬": 260,
265
+ "너": 261,
266
+ "넉": 262,
267
+ "넋": 263,
268
+ "넌": 264,
269
+ "널": 265,
270
+ "넓": 266,
271
+ "넘": 267,
272
+ "넙": 268,
273
+ "넛": 269,
274
+ "넝": 270,
275
+ "넢": 271,
276
+ "넣": 272,
277
+ "네": 273,
278
+ "넥": 274,
279
+ "넨": 275,
280
+ "넬": 276,
281
+ "넴": 277,
282
+ "넵": 278,
283
+ "넷": 279,
284
+ "넹": 280,
285
+ "녀": 281,
286
+ "녁": 282,
287
+ "년": 283,
288
+ "념": 284,
289
+ "녑": 285,
290
+ "녔": 286,
291
+ "녕": 287,
292
+ "녘": 288,
293
+ "녜": 289,
294
+ "노": 290,
295
+ "녹": 291,
296
+ "논": 292,
297
+ "놀": 293,
298
+ "놈": 294,
299
+ "놉": 295,
300
+ "농": 296,
301
+ "높": 297,
302
+ "놓": 298,
303
+ "놔": 299,
304
+ "놧": 300,
305
+ "놨": 301,
306
+ "뇌": 302,
307
+ "뇨": 303,
308
+ "뇽": 304,
309
+ "누": 305,
310
+ "눅": 306,
311
+ "눈": 307,
312
+ "눌": 308,
313
+ "눔": 309,
314
+ "눕": 310,
315
+ "눗": 311,
316
+ "눠": 312,
317
+ "눴": 313,
318
+ "뉘": 314,
319
+ "뉜": 315,
320
+ "뉠": 316,
321
+ "뉩": 317,
322
+ "뉴": 318,
323
+ "늄": 319,
324
+ "늉": 320,
325
+ "느": 321,
326
+ "늑": 322,
327
+ "는": 323,
328
+ "늗": 324,
329
+ "늘": 325,
330
+ "늙": 326,
331
+ "늠": 327,
332
+ "늡": 328,
333
+ "능": 329,
334
+ "늦": 330,
335
+ "늪": 331,
336
+ "늫": 332,
337
+ "늬": 333,
338
+ "니": 334,
339
+ "닉": 335,
340
+ "닌": 336,
341
+ "닐": 337,
342
+ "님": 338,
343
+ "닙": 339,
344
+ "닛": 340,
345
+ "닝": 341,
346
+ "다": 342,
347
+ "닥": 343,
348
+ "닦": 344,
349
+ "단": 345,
350
+ "닫": 346,
351
+ "달": 347,
352
+ "닭": 348,
353
+ "닮": 349,
354
+ "닳": 350,
355
+ "담": 351,
356
+ "답": 352,
357
+ "닷": 353,
358
+ "당": 354,
359
+ "닿": 355,
360
+ "대": 356,
361
+ "댁": 357,
362
+ "댄": 358,
363
+ "댈": 359,
364
+ "댐": 360,
365
+ "댑": 361,
366
+ "댓": 362,
367
+ "댔": 363,
368
+ "댕": 364,
369
+ "댗": 365,
370
+ "댜": 366,
371
+ "더": 367,
372
+ "덕": 368,
373
+ "던": 369,
374
+ "덜": 370,
375
+ "덟": 371,
376
+ "덤": 372,
377
+ "덥": 373,
378
+ "덧": 374,
379
+ "덩": 375,
380
+ "덫": 376,
381
+ "덮": 377,
382
+ "데": 378,
383
+ "덱": 379,
384
+ "덴": 380,
385
+ "델": 381,
386
+ "뎀": 382,
387
+ "뎁": 383,
388
+ "뎃": 384,
389
+ "뎅": 385,
390
+ "뎌": 386,
391
+ "도": 387,
392
+ "독": 388,
393
+ "돈": 389,
394
+ "돋": 390,
395
+ "돌": 391,
396
+ "돔": 392,
397
+ "돕": 393,
398
+ "돗": 394,
399
+ "동": 395,
400
+ "돚": 396,
401
+ "돨": 397,
402
+ "돼": 398,
403
+ "됐": 399,
404
+ "됑": 400,
405
+ "되": 401,
406
+ "된": 402,
407
+ "될": 403,
408
+ "됨": 404,
409
+ "됩": 405,
410
+ "됬": 406,
411
+ "두": 407,
412
+ "둑": 408,
413
+ "둔": 409,
414
+ "둘": 410,
415
+ "둠": 411,
416
+ "둡": 412,
417
+ "둣": 413,
418
+ "둥": 414,
419
+ "둬": 415,
420
+ "뒀": 416,
421
+ "뒈": 417,
422
+ "뒤": 418,
423
+ "뒷": 419,
424
+ "뒹": 420,
425
+ "듀": 421,
426
+ "듄": 422,
427
+ "듕": 423,
428
+ "드": 424,
429
+ "득": 425,
430
+ "든": 426,
431
+ "듣": 427,
432
+ "들": 428,
433
+ "듦": 429,
434
+ "듬": 430,
435
+ "듭": 431,
436
+ "듯": 432,
437
+ "등": 433,
438
+ "디": 434,
439
+ "딕": 435,
440
+ "딘": 436,
441
+ "딛": 437,
442
+ "딜": 438,
443
+ "딣": 439,
444
+ "딤": 440,
445
+ "딥": 441,
446
+ "딧": 442,
447
+ "딨": 443,
448
+ "딩": 444,
449
+ "딪": 445,
450
+ "따": 446,
451
+ "딱": 447,
452
+ "딴": 448,
453
+ "딸": 449,
454
+ "땀": 450,
455
+ "땁": 451,
456
+ "땃": 452,
457
+ "땄": 453,
458
+ "땅": 454,
459
+ "땋": 455,
460
+ "때": 456,
461
+ "땐": 457,
462
+ "땔": 458,
463
+ "땜": 459,
464
+ "땠": 460,
465
+ "땡": 461,
466
+ "떄": 462,
467
+ "떙": 463,
468
+ "떠": 464,
469
+ "떡": 465,
470
+ "떢": 466,
471
+ "떤": 467,
472
+ "떨": 468,
473
+ "떫": 469,
474
+ "떰": 470,
475
+ "떱": 471,
476
+ "떳": 472,
477
+ "떴": 473,
478
+ "떵": 474,
479
+ "떻": 475,
480
+ "떼": 476,
481
+ "뗀": 477,
482
+ "뗄": 478,
483
+ "뗍": 479,
484
+ "뗏": 480,
485
+ "뗐": 481,
486
+ "뗘": 482,
487
+ "또": 483,
488
+ "똑": 484,
489
+ "똘": 485,
490
+ "똠": 486,
491
+ "똥": 487,
492
+ "뙤": 488,
493
+ "뚜": 489,
494
+ "뚝": 490,
495
+ "뚠": 491,
496
+ "뚤": 492,
497
+ "뚫": 493,
498
+ "뚱": 494,
499
+ "뛰": 495,
500
+ "뛴": 496,
501
+ "뛸": 497,
502
+ "뜀": 498,
503
+ "뜁": 499,
504
+ "뜨": 500,
505
+ "뜩": 501,
506
+ "뜬": 502,
507
+ "뜯": 503,
508
+ "뜰": 504,
509
+ "뜷": 505,
510
+ "뜸": 506,
511
+ "뜹": 507,
512
+ "뜻": 508,
513
+ "뜽": 509,
514
+ "띄": 510,
515
+ "띈": 511,
516
+ "띌": 512,
517
+ "띕": 513,
518
+ "띠": 514,
519
+ "띡": 515,
520
+ "띤": 516,
521
+ "띨": 517,
522
+ "띰": 518,
523
+ "띱": 519,
524
+ "띵": 520,
525
+ "라": 521,
526
+ "락": 522,
527
+ "란": 523,
528
+ "랄": 524,
529
+ "람": 525,
530
+ "랍": 526,
531
+ "랏": 527,
532
+ "랐": 528,
533
+ "랑": 529,
534
+ "랖": 530,
535
+ "랗": 531,
536
+ "래": 532,
537
+ "랙": 533,
538
+ "랜": 534,
539
+ "랠": 535,
540
+ "램": 536,
541
+ "랩": 537,
542
+ "랫": 538,
543
+ "랬": 539,
544
+ "랭": 540,
545
+ "랴": 541,
546
+ "략": 542,
547
+ "랼": 543,
548
+ "량": 544,
549
+ "러": 545,
550
+ "럭": 546,
551
+ "런": 547,
552
+ "럴": 548,
553
+ "럼": 549,
554
+ "럽": 550,
555
+ "럿": 551,
556
+ "렀": 552,
557
+ "렁": 553,
558
+ "렇": 554,
559
+ "레": 555,
560
+ "렉": 556,
561
+ "렌": 557,
562
+ "렐": 558,
563
+ "렘": 559,
564
+ "렙": 560,
565
+ "렛": 561,
566
+ "렜": 562,
567
+ "렝": 563,
568
+ "렣": 564,
569
+ "려": 565,
570
+ "력": 566,
571
+ "련": 567,
572
+ "렬": 568,
573
+ "렴": 569,
574
+ "렵": 570,
575
+ "렷": 571,
576
+ "렸": 572,
577
+ "령": 573,
578
+ "렿": 574,
579
+ "례": 575,
580
+ "로": 576,
581
+ "록": 577,
582
+ "론": 578,
583
+ "롤": 579,
584
+ "롬": 580,
585
+ "롭": 581,
586
+ "롯": 582,
587
+ "롱": 583,
588
+ "롷": 584,
589
+ "롸": 585,
590
+ "뢰": 586,
591
+ "료": 587,
592
+ "룡": 588,
593
+ "루": 589,
594
+ "룩": 590,
595
+ "룬": 591,
596
+ "룰": 592,
597
+ "룸": 593,
598
+ "룹": 594,
599
+ "룻": 595,
600
+ "룽": 596,
601
+ "뤄": 597,
602
+ "뤘": 598,
603
+ "뤼": 599,
604
+ "륑": 600,
605
+ "류": 601,
606
+ "륙": 602,
607
+ "륜": 603,
608
+ "률": 604,
609
+ "륨": 605,
610
+ "륭": 606,
611
+ "르": 607,
612
+ "륵": 608,
613
+ "른": 609,
614
+ "를": 610,
615
+ "름": 611,
616
+ "릅": 612,
617
+ "릇": 613,
618
+ "릉": 614,
619
+ "릎": 615,
620
+ "릏": 616,
621
+ "리": 617,
622
+ "릭": 618,
623
+ "린": 619,
624
+ "릴": 620,
625
+ "림": 621,
626
+ "립": 622,
627
+ "릿": 623,
628
+ "링": 624,
629
+ "마": 625,
630
+ "막": 626,
631
+ "만": 627,
632
+ "맍": 628,
633
+ "많": 629,
634
+ "맑": 630,
635
+ "맘": 631,
636
+ "맙": 632,
637
+ "맛": 633,
638
+ "맜": 634,
639
+ "망": 635,
640
+ "맞": 636,
641
+ "맡": 637,
642
+ "맣": 638,
643
+ "매": 639,
644
+ "맥": 640,
645
+ "맨": 641,
646
+ "맬": 642,
647
+ "맴": 643,
648
+ "맵": 644,
649
+ "맷": 645,
650
+ "맸": 646,
651
+ "맹": 647,
652
+ "맺": 648,
653
+ "맻": 649,
654
+ "머": 650,
655
+ "먹": 651,
656
+ "먼": 652,
657
+ "멀": 653,
658
+ "멈": 654,
659
+ "멉": 655,
660
+ "멋": 656,
661
+ "멌": 657,
662
+ "멍": 658,
663
+ "멎": 659,
664
+ "멓": 660,
665
+ "메": 661,
666
+ "멕": 662,
667
+ "멘": 663,
668
+ "멜": 664,
669
+ "멤": 665,
670
+ "멥": 666,
671
+ "멧": 667,
672
+ "멨": 668,
673
+ "멩": 669,
674
+ "며": 670,
675
+ "멱": 671,
676
+ "면": 672,
677
+ "멸": 673,
678
+ "몀": 674,
679
+ "명": 675,
680
+ "몇": 676,
681
+ "모": 677,
682
+ "목": 678,
683
+ "몫": 679,
684
+ "몬": 680,
685
+ "몰": 681,
686
+ "몸": 682,
687
+ "몹": 683,
688
+ "못": 684,
689
+ "몽": 685,
690
+ "묘": 686,
691
+ "무": 687,
692
+ "묵": 688,
693
+ "묶": 689,
694
+ "문": 690,
695
+ "묻": 691,
696
+ "물": 692,
697
+ "묽": 693,
698
+ "뭄": 694,
699
+ "뭅": 695,
700
+ "뭇": 696,
701
+ "뭉": 697,
702
+ "뭐": 698,
703
+ "뭔": 699,
704
+ "뭘": 700,
705
+ "뭠": 701,
706
+ "뭡": 702,
707
+ "뭣": 703,
708
+ "뭰": 704,
709
+ "뮌": 705,
710
+ "뮐": 706,
711
+ "뮤": 707,
712
+ "뮨": 708,
713
+ "뮬": 709,
714
+ "므": 710,
715
+ "믄": 711,
716
+ "믈": 712,
717
+ "믐": 713,
718
+ "믤": 714,
719
+ "미": 715,
720
+ "믹": 716,
721
+ "민": 717,
722
+ "믾": 718,
723
+ "믿": 719,
724
+ "밀": 720,
725
+ "밈": 721,
726
+ "밉": 722,
727
+ "밋": 723,
728
+ "밌": 724,
729
+ "밍": 725,
730
+ "및": 726,
731
+ "밑": 727,
732
+ "바": 728,
733
+ "박": 729,
734
+ "밖": 730,
735
+ "반": 731,
736
+ "받": 732,
737
+ "발": 733,
738
+ "밝": 734,
739
+ "밟": 735,
740
+ "밤": 736,
741
+ "밥": 737,
742
+ "밧": 738,
743
+ "방": 739,
744
+ "밭": 740,
745
+ "배": 741,
746
+ "백": 742,
747
+ "밴": 743,
748
+ "밸": 744,
749
+ "뱀": 745,
750
+ "뱃": 746,
751
+ "뱄": 747,
752
+ "뱅": 748,
753
+ "뱉": 749,
754
+ "뱌": 750,
755
+ "버": 751,
756
+ "벅": 752,
757
+ "번": 753,
758
+ "벋": 754,
759
+ "벌": 755,
760
+ "범": 756,
761
+ "법": 757,
762
+ "벗": 758,
763
+ "벙": 759,
764
+ "벚": 760,
765
+ "베": 761,
766
+ "벡": 762,
767
+ "벤": 763,
768
+ "벨": 764,
769
+ "벳": 765,
770
+ "벵": 766,
771
+ "벼": 767,
772
+ "벽": 768,
773
+ "변": 769,
774
+ "별": 770,
775
+ "볍": 771,
776
+ "볏": 772,
777
+ "볐": 773,
778
+ "병": 774,
779
+ "볕": 775,
780
+ "보": 776,
781
+ "복": 777,
782
+ "볶": 778,
783
+ "본": 779,
784
+ "볼": 780,
785
+ "봄": 781,
786
+ "봅": 782,
787
+ "봇": 783,
788
+ "봉": 784,
789
+ "봐": 785,
790
+ "봣": 786,
791
+ "봤": 787,
792
+ "봬": 788,
793
+ "봽": 789,
794
+ "뵀": 790,
795
+ "뵈": 791,
796
+ "뵌": 792,
797
+ "뵐": 793,
798
+ "뵙": 794,
799
+ "뵜": 795,
800
+ "뵤": 796,
801
+ "뵬": 797,
802
+ "뵹": 798,
803
+ "부": 799,
804
+ "북": 800,
805
+ "분": 801,
806
+ "불": 802,
807
+ "붉": 803,
808
+ "붐": 804,
809
+ "붑": 805,
810
+ "붓": 806,
811
+ "붕": 807,
812
+ "붙": 808,
813
+ "붚": 809,
814
+ "뷔": 810,
815
+ "뷰": 811,
816
+ "뷸": 812,
817
+ "븅": 813,
818
+ "브": 814,
819
+ "븐": 815,
820
+ "블": 816,
821
+ "븕": 817,
822
+ "븜": 818,
823
+ "븝": 819,
824
+ "븥": 820,
825
+ "비": 821,
826
+ "빅": 822,
827
+ "빈": 823,
828
+ "빋": 824,
829
+ "빌": 825,
830
+ "빔": 826,
831
+ "빕": 827,
832
+ "빗": 828,
833
+ "빙": 829,
834
+ "빚": 830,
835
+ "빛": 831,
836
+ "빠": 832,
837
+ "빡": 833,
838
+ "빤": 834,
839
+ "빨": 835,
840
+ "빰": 836,
841
+ "빳": 837,
842
+ "빴": 838,
843
+ "빵": 839,
844
+ "빼": 840,
845
+ "빽": 841,
846
+ "뺀": 842,
847
+ "뺄": 843,
848
+ "뺍": 844,
849
+ "뺏": 845,
850
+ "뺐": 846,
851
+ "뺑": 847,
852
+ "뺘": 848,
853
+ "뺨": 849,
854
+ "뺴": 850,
855
+ "뺵": 851,
856
+ "뻇": 852,
857
+ "뻈": 853,
858
+ "뻐": 854,
859
+ "뻑": 855,
860
+ "뻔": 856,
861
+ "뻗": 857,
862
+ "뻘": 858,
863
+ "뻣": 859,
864
+ "뻤": 860,
865
+ "뻥": 861,
866
+ "뻬": 862,
867
+ "뼀": 863,
868
+ "뼈": 864,
869
+ "뼉": 865,
870
+ "뼐": 866,
871
+ "뽀": 867,
872
+ "뽁": 868,
873
+ "뽂": 869,
874
+ "뽈": 870,
875
+ "뽐": 871,
876
+ "뽑": 872,
877
+ "뽓": 873,
878
+ "뽕": 874,
879
+ "뾰": 875,
880
+ "뾱": 876,
881
+ "뿅": 877,
882
+ "뿌": 878,
883
+ "뿍": 879,
884
+ "뿐": 880,
885
+ "뿔": 881,
886
+ "뿜": 882,
887
+ "뿝": 883,
888
+ "뿡": 884,
889
+ "쁘": 885,
890
+ "쁜": 886,
891
+ "쁠": 887,
892
+ "쁨": 888,
893
+ "쁩": 889,
894
+ "삐": 890,
895
+ "삑": 891,
896
+ "삘": 892,
897
+ "삥": 893,
898
+ "사": 894,
899
+ "삭": 895,
900
+ "산": 896,
901
+ "살": 897,
902
+ "삶": 898,
903
+ "삼": 899,
904
+ "삽": 900,
905
+ "삿": 901,
906
+ "샀": 902,
907
+ "상": 903,
908
+ "샅": 904,
909
+ "새": 905,
910
+ "색": 906,
911
+ "샌": 907,
912
+ "샐": 908,
913
+ "샘": 909,
914
+ "샙": 910,
915
+ "샛": 911,
916
+ "샜": 912,
917
+ "생": 913,
918
+ "샤": 914,
919
+ "샥": 915,
920
+ "샨": 916,
921
+ "샬": 917,
922
+ "샴": 918,
923
+ "샵": 919,
924
+ "샷": 920,
925
+ "샹": 921,
926
+ "샾": 922,
927
+ "섀": 923,
928
+ "서": 924,
929
+ "석": 925,
930
+ "섞": 926,
931
+ "선": 927,
932
+ "섣": 928,
933
+ "설": 929,
934
+ "섬": 930,
935
+ "섭": 931,
936
+ "섯": 932,
937
+ "섰": 933,
938
+ "성": 934,
939
+ "세": 935,
940
+ "섹": 936,
941
+ "센": 937,
942
+ "셀": 938,
943
+ "셈": 939,
944
+ "셉": 940,
945
+ "셋": 941,
946
+ "셌": 942,
947
+ "셍": 943,
948
+ "셔": 944,
949
+ "션": 945,
950
+ "셜": 946,
951
+ "셥": 947,
952
+ "셧": 948,
953
+ "셨": 949,
954
+ "셰": 950,
955
+ "셴": 951,
956
+ "셸": 952,
957
+ "솁": 953,
958
+ "소": 954,
959
+ "속": 955,
960
+ "손": 956,
961
+ "솔": 957,
962
+ "솜": 958,
963
+ "솝": 959,
964
+ "솟": 960,
965
+ "송": 961,
966
+ "솥": 962,
967
+ "솨": 963,
968
+ "솩": 964,
969
+ "쇄": 965,
970
+ "쇠": 966,
971
+ "쇼": 967,
972
+ "쇽": 968,
973
+ "숄": 969,
974
+ "숍": 970,
975
+ "숏": 971,
976
+ "숑": 972,
977
+ "숙": 973,
978
+ "순": 974,
979
+ "숟": 975,
980
+ "술": 976,
981
+ "숨": 977,
982
+ "숩": 978,
983
+ "숫": 979,
984
+ "숭": 980,
985
+ "숯": 981,
986
+ "숱": 982,
987
+ "숲": 983,
988
+ "숴": 984,
989
+ "쉈": 985,
990
+ "쉐": 986,
991
+ "쉑": 987,
992
+ "쉔": 988,
993
+ "쉘": 989,
994
+ "쉣": 990,
995
+ "쉬": 991,
996
+ "쉰": 992,
997
+ "쉴": 993,
998
+ "쉼": 994,
999
+ "쉽": 995,
1000
+ "슈": 996,
1001
+ "슉": 997,
1002
+ "슐": 998,
1003
+ "슘": 999,
1004
+ "슛": 1000,
1005
+ "슝": 1001,
1006
+ "스": 1002,
1007
+ "슥": 1003,
1008
+ "슨": 1004,
1009
+ "슬": 1005,
1010
+ "슴": 1006,
1011
+ "습": 1007,
1012
+ "슷": 1008,
1013
+ "승": 1009,
1014
+ "시": 1010,
1015
+ "식": 1011,
1016
+ "신": 1012,
1017
+ "싣": 1013,
1018
+ "싫": 1014,
1019
+ "심": 1015,
1020
+ "십": 1016,
1021
+ "싯": 1017,
1022
+ "싱": 1018,
1023
+ "싶": 1019,
1024
+ "싸": 1020,
1025
+ "싹": 1021,
1026
+ "싼": 1022,
1027
+ "쌀": 1023,
1028
+ "쌈": 1024,
1029
+ "쌉": 1025,
1030
+ "쌌": 1026,
1031
+ "쌍": 1027,
1032
+ "쌓": 1028,
1033
+ "쌔": 1029,
1034
+ "쌤": 1030,
1035
+ "쌥": 1031,
1036
+ "쌩": 1032,
1037
+ "쌰": 1033,
1038
+ "썅": 1034,
1039
+ "썜": 1035,
1040
+ "썝": 1036,
1041
+ "썡": 1037,
1042
+ "써": 1038,
1043
+ "썩": 1039,
1044
+ "썬": 1040,
1045
+ "썰": 1041,
1046
+ "썸": 1042,
1047
+ "썹": 1043,
1048
+ "썻": 1044,
1049
+ "썼": 1045,
1050
+ "썽": 1046,
1051
+ "쎄": 1047,
1052
+ "쎅": 1048,
1053
+ "쎈": 1049,
1054
+ "쎌": 1050,
1055
+ "쎕": 1051,
1056
+ "쎘": 1052,
1057
+ "쎼": 1053,
1058
+ "쏍": 1054,
1059
+ "쏘": 1055,
1060
+ "쏙": 1056,
1061
+ "쏜": 1057,
1062
+ "쏟": 1058,
1063
+ "쏠": 1059,
1064
+ "쏩": 1060,
1065
+ "쏭": 1061,
1066
+ "쏴": 1062,
1067
+ "쏵": 1063,
1068
+ "쐈": 1064,
1069
+ "쐐": 1065,
1070
+ "쐬": 1066,
1071
+ "쐰": 1067,
1072
+ "쐴": 1068,
1073
+ "쑤": 1069,
1074
+ "쑥": 1070,
1075
+ "쑨": 1071,
1076
+ "쒀": 1072,
1077
+ "쒔": 1073,
1078
+ "쒜": 1074,
1079
+ "쒝": 1075,
1080
+ "쒯": 1076,
1081
+ "쒸": 1077,
1082
+ "쓕": 1078,
1083
+ "쓰": 1079,
1084
+ "쓱": 1080,
1085
+ "쓴": 1081,
1086
+ "쓸": 1082,
1087
+ "씀": 1083,
1088
+ "씁": 1084,
1089
+ "씌": 1085,
1090
+ "씨": 1086,
1091
+ "씩": 1087,
1092
+ "씬": 1088,
1093
+ "씰": 1089,
1094
+ "씸": 1090,
1095
+ "씹": 1091,
1096
+ "씻": 1092,
1097
+ "씽": 1093,
1098
+ "아": 1094,
1099
+ "악": 1095,
1100
+ "앆": 1096,
1101
+ "안": 1097,
1102
+ "앉": 1098,
1103
+ "않": 1099,
1104
+ "알": 1100,
1105
+ "앓": 1101,
1106
+ "암": 1102,
1107
+ "압": 1103,
1108
+ "앗": 1104,
1109
+ "았": 1105,
1110
+ "앙": 1106,
1111
+ "앞": 1107,
1112
+ "애": 1108,
1113
+ "액": 1109,
1114
+ "앤": 1110,
1115
+ "앨": 1111,
1116
+ "앰": 1112,
1117
+ "앱": 1113,
1118
+ "앳": 1114,
1119
+ "앴": 1115,
1120
+ "앵": 1116,
1121
+ "야": 1117,
1122
+ "약": 1118,
1123
+ "얀": 1119,
1124
+ "얄": 1120,
1125
+ "얇": 1121,
1126
+ "얌": 1122,
1127
+ "얍": 1123,
1128
+ "얏": 1124,
1129
+ "양": 1125,
1130
+ "얓": 1126,
1131
+ "얕": 1127,
1132
+ "얗": 1128,
1133
+ "얘": 1129,
1134
+ "얜": 1130,
1135
+ "얠": 1131,
1136
+ "얫": 1132,
1137
+ "얬": 1133,
1138
+ "어": 1134,
1139
+ "억": 1135,
1140
+ "언": 1136,
1141
+ "얹": 1137,
1142
+ "얻": 1138,
1143
+ "얼": 1139,
1144
+ "얽": 1140,
1145
+ "엄": 1141,
1146
+ "업": 1142,
1147
+ "없": 1143,
1148
+ "엇": 1144,
1149
+ "었": 1145,
1150
+ "엉": 1146,
1151
+ "엊": 1147,
1152
+ "엌": 1148,
1153
+ "엍": 1149,
1154
+ "엎": 1150,
1155
+ "에": 1151,
1156
+ "엑": 1152,
1157
+ "엔": 1153,
1158
+ "엘": 1154,
1159
+ "엠": 1155,
1160
+ "엡": 1156,
1161
+ "엣": 1157,
1162
+ "엥": 1158,
1163
+ "여": 1159,
1164
+ "역": 1160,
1165
+ "엮": 1161,
1166
+ "연": 1162,
1167
+ "열": 1163,
1168
+ "엷": 1164,
1169
+ "염": 1165,
1170
+ "엽": 1166,
1171
+ "엿": 1167,
1172
+ "였": 1168,
1173
+ "영": 1169,
1174
+ "옅": 1170,
1175
+ "옆": 1171,
1176
+ "옇": 1172,
1177
+ "예": 1173,
1178
+ "옌": 1174,
1179
+ "옐": 1175,
1180
+ "옙": 1176,
1181
+ "옛": 1177,
1182
+ "옜": 1178,
1183
+ "오": 1179,
1184
+ "옥": 1180,
1185
+ "온": 1181,
1186
+ "올": 1182,
1187
+ "옮": 1183,
1188
+ "옳": 1184,
1189
+ "옴": 1185,
1190
+ "옵": 1186,
1191
+ "옷": 1187,
1192
+ "옹": 1188,
1193
+ "옻": 1189,
1194
+ "옾": 1190,
1195
+ "와": 1191,
1196
+ "완": 1192,
1197
+ "왈": 1193,
1198
+ "왐": 1194,
1199
+ "왑": 1195,
1200
+ "왓": 1196,
1201
+ "왔": 1197,
1202
+ "왕": 1198,
1203
+ "왜": 1199,
1204
+ "왠": 1200,
1205
+ "왤": 1201,
1206
+ "왬": 1202,
1207
+ "외": 1203,
1208
+ "왼": 1204,
1209
+ "욉": 1205,
1210
+ "요": 1206,
1211
+ "욕": 1207,
1212
+ "욘": 1208,
1213
+ "욜": 1209,
1214
+ "욤": 1210,
1215
+ "욥": 1211,
1216
+ "용": 1212,
1217
+ "우": 1213,
1218
+ "욱": 1214,
1219
+ "운": 1215,
1220
+ "울": 1216,
1221
+ "움": 1217,
1222
+ "웁": 1218,
1223
+ "웃": 1219,
1224
+ "웅": 1220,
1225
+ "워": 1221,
1226
+ "웍": 1222,
1227
+ "원": 1223,
1228
+ "월": 1224,
1229
+ "웜": 1225,
1230
+ "웠": 1226,
1231
+ "웡": 1227,
1232
+ "웨": 1228,
1233
+ "웬": 1229,
1234
+ "웰": 1230,
1235
+ "웹": 1231,
1236
+ "위": 1232,
1237
+ "윅": 1233,
1238
+ "윈": 1234,
1239
+ "윌": 1235,
1240
+ "윔": 1236,
1241
+ "윕": 1237,
1242
+ "윗": 1238,
1243
+ "윙": 1239,
1244
+ "유": 1240,
1245
+ "육": 1241,
1246
+ "윤": 1242,
1247
+ "율": 1243,
1248
+ "윱": 1244,
1249
+ "융": 1245,
1250
+ "윷": 1246,
1251
+ "으": 1247,
1252
+ "윽": 1248,
1253
+ "은": 1249,
1254
+ "읃": 1250,
1255
+ "을": 1251,
1256
+ "읊": 1252,
1257
+ "음": 1253,
1258
+ "읍": 1254,
1259
+ "읎": 1255,
1260
+ "읏": 1256,
1261
+ "응": 1257,
1262
+ "읒": 1258,
1263
+ "읔": 1259,
1264
+ "읗": 1260,
1265
+ "의": 1261,
1266
+ "읭": 1262,
1267
+ "이": 1263,
1268
+ "익": 1264,
1269
+ "인": 1265,
1270
+ "일": 1266,
1271
+ "읽": 1267,
1272
+ "잃": 1268,
1273
+ "임": 1269,
1274
+ "입": 1270,
1275
+ "잇": 1271,
1276
+ "있": 1272,
1277
+ "잉": 1273,
1278
+ "잊": 1274,
1279
+ "잌": 1275,
1280
+ "잍": 1276,
1281
+ "잎": 1277,
1282
+ "자": 1278,
1283
+ "작": 1279,
1284
+ "잔": 1280,
1285
+ "잖": 1281,
1286
+ "잘": 1282,
1287
+ "잠": 1283,
1288
+ "잡": 1284,
1289
+ "잣": 1285,
1290
+ "잤": 1286,
1291
+ "장": 1287,
1292
+ "잦": 1288,
1293
+ "재": 1289,
1294
+ "잭": 1290,
1295
+ "잰": 1291,
1296
+ "잴": 1292,
1297
+ "잼": 1293,
1298
+ "잽": 1294,
1299
+ "잿": 1295,
1300
+ "쟀": 1296,
1301
+ "쟁": 1297,
1302
+ "쟈": 1298,
1303
+ "쟌": 1299,
1304
+ "쟎": 1300,
1305
+ "쟤": 1301,
1306
+ "쟨": 1302,
1307
+ "쟬": 1303,
1308
+ "저": 1304,
1309
+ "적": 1305,
1310
+ "전": 1306,
1311
+ "절": 1307,
1312
+ "젊": 1308,
1313
+ "점": 1309,
1314
+ "접": 1310,
1315
+ "젓": 1311,
1316
+ "정": 1312,
1317
+ "젖": 1313,
1318
+ "제": 1314,
1319
+ "젝": 1315,
1320
+ "젠": 1316,
1321
+ "젤": 1317,
1322
+ "젬": 1318,
1323
+ "젭": 1319,
1324
+ "젯": 1320,
1325
+ "젱": 1321,
1326
+ "져": 1322,
1327
+ "젼": 1323,
1328
+ "졌": 1324,
1329
+ "조": 1325,
1330
+ "족": 1326,
1331
+ "존": 1327,
1332
+ "졸": 1328,
1333
+ "좀": 1329,
1334
+ "좁": 1330,
1335
+ "좃": 1331,
1336
+ "종": 1332,
1337
+ "좆": 1333,
1338
+ "좇": 1334,
1339
+ "좋": 1335,
1340
+ "좌": 1336,
1341
+ "좍": 1337,
1342
+ "좔": 1338,
1343
+ "좟": 1339,
1344
+ "죄": 1340,
1345
+ "죌": 1341,
1346
+ "죙": 1342,
1347
+ "죠": 1343,
1348
+ "죵": 1344,
1349
+ "주": 1345,
1350
+ "죽": 1346,
1351
+ "준": 1347,
1352
+ "줄": 1348,
1353
+ "줌": 1349,
1354
+ "줍": 1350,
1355
+ "줏": 1351,
1356
+ "중": 1352,
1357
+ "줘": 1353,
1358
+ "줬": 1354,
1359
+ "줸": 1355,
1360
+ "쥐": 1356,
1361
+ "쥔": 1357,
1362
+ "쥡": 1358,
1363
+ "쥤": 1359,
1364
+ "쥬": 1360,
1365
+ "쥴": 1361,
1366
+ "즈": 1362,
1367
+ "즉": 1363,
1368
+ "즌": 1364,
1369
+ "즐": 1365,
1370
+ "즘": 1366,
1371
+ "즙": 1367,
1372
+ "증": 1368,
1373
+ "지": 1369,
1374
+ "직": 1370,
1375
+ "진": 1371,
1376
+ "질": 1372,
1377
+ "짊": 1373,
1378
+ "짐": 1374,
1379
+ "집": 1375,
1380
+ "짓": 1376,
1381
+ "징": 1377,
1382
+ "짖": 1378,
1383
+ "짙": 1379,
1384
+ "짚": 1380,
1385
+ "짜": 1381,
1386
+ "짝": 1382,
1387
+ "짠": 1383,
1388
+ "짢": 1384,
1389
+ "짤": 1385,
1390
+ "짧": 1386,
1391
+ "짬": 1387,
1392
+ "짭": 1388,
1393
+ "짰": 1389,
1394
+ "짱": 1390,
1395
+ "째": 1391,
1396
+ "짹": 1392,
1397
+ "짼": 1393,
1398
+ "쨈": 1394,
1399
+ "쨉": 1395,
1400
+ "쨋": 1396,
1401
+ "쨌": 1397,
1402
+ "쨍": 1398,
1403
+ "쨔": 1399,
1404
+ "쨰": 1400,
1405
+ "쩃": 1401,
1406
+ "쩄": 1402,
1407
+ "쩌": 1403,
1408
+ "쩍": 1404,
1409
+ "쩐": 1405,
1410
+ "쩔": 1406,
1411
+ "쩜": 1407,
1412
+ "쩝": 1408,
1413
+ "쩡": 1409,
1414
+ "쩨": 1410,
1415
+ "쩰": 1411,
1416
+ "쪄": 1412,
1417
+ "쪘": 1413,
1418
+ "쪼": 1414,
1419
+ "쪽": 1415,
1420
+ "쫀": 1416,
1421
+ "쫄": 1417,
1422
+ "쫌": 1418,
1423
+ "쫍": 1419,
1424
+ "쫑": 1420,
1425
+ "쫒": 1421,
1426
+ "쫓": 1422,
1427
+ "쫘": 1423,
1428
+ "쫙": 1424,
1429
+ "쫜": 1425,
1430
+ "쫠": 1426,
1431
+ "쬐": 1427,
1432
+ "쭈": 1428,
1433
+ "쭉": 1429,
1434
+ "쭌": 1430,
1435
+ "쭐": 1431,
1436
+ "쭘": 1432,
1437
+ "쭤": 1433,
1438
+ "쮸": 1434,
1439
+ "쮹": 1435,
1440
+ "쯔": 1436,
1441
+ "쯜": 1437,
1442
+ "쯤": 1438,
1443
+ "쯥": 1439,
1444
+ "쯧": 1440,
1445
+ "쯩": 1441,
1446
+ "찌": 1442,
1447
+ "찍": 1443,
1448
+ "찐": 1444,
1449
+ "찔": 1445,
1450
+ "찜": 1446,
1451
+ "찝": 1447,
1452
+ "찡": 1448,
1453
+ "찢": 1449,
1454
+ "차": 1450,
1455
+ "착": 1451,
1456
+ "찬": 1452,
1457
+ "찮": 1453,
1458
+ "찰": 1454,
1459
+ "참": 1455,
1460
+ "찹": 1456,
1461
+ "찻": 1457,
1462
+ "찼": 1458,
1463
+ "창": 1459,
1464
+ "찾": 1460,
1465
+ "찿": 1461,
1466
+ "챁": 1462,
1467
+ "채": 1463,
1468
+ "책": 1464,
1469
+ "챈": 1465,
1470
+ "챌": 1466,
1471
+ "챔": 1467,
1472
+ "챕": 1468,
1473
+ "챗": 1469,
1474
+ "챘": 1470,
1475
+ "챙": 1471,
1476
+ "챠": 1472,
1477
+ "챦": 1473,
1478
+ "챱": 1474,
1479
+ "처": 1475,
1480
+ "척": 1476,
1481
+ "천": 1477,
1482
+ "철": 1478,
1483
+ "첨": 1479,
1484
+ "첩": 1480,
1485
+ "첫": 1481,
1486
+ "청": 1482,
1487
+ "체": 1483,
1488
+ "첵": 1484,
1489
+ "첸": 1485,
1490
+ "첼": 1486,
1491
+ "쳇": 1487,
1492
+ "쳌": 1488,
1493
+ "쳐": 1489,
1494
+ "쳘": 1490,
1495
+ "쳣": 1491,
1496
+ "쳤": 1492,
1497
+ "초": 1493,
1498
+ "촉": 1494,
1499
+ "촌": 1495,
1500
+ "촐": 1496,
1501
+ "촘": 1497,
1502
+ "촛": 1498,
1503
+ "총": 1499,
1504
+ "촤": 1500,
1505
+ "촥": 1501,
1506
+ "촬": 1502,
1507
+ "최": 1503,
1508
+ "쵸": 1504,
1509
+ "추": 1505,
1510
+ "축": 1506,
1511
+ "춘": 1507,
1512
+ "출": 1508,
1513
+ "춤": 1509,
1514
+ "춥": 1510,
1515
+ "춧": 1511,
1516
+ "충": 1512,
1517
+ "춰": 1513,
1518
+ "췄": 1514,
1519
+ "췌": 1515,
1520
+ "취": 1516,
1521
+ "츄": 1517,
1522
+ "츠": 1518,
1523
+ "측": 1519,
1524
+ "츤": 1520,
1525
+ "츨": 1521,
1526
+ "츰": 1522,
1527
+ "층": 1523,
1528
+ "츼": 1524,
1529
+ "치": 1525,
1530
+ "칙": 1526,
1531
+ "친": 1527,
1532
+ "칠": 1528,
1533
+ "침": 1529,
1534
+ "칩": 1530,
1535
+ "칫": 1531,
1536
+ "칬": 1532,
1537
+ "칭": 1533,
1538
+ "칲": 1534,
1539
+ "카": 1535,
1540
+ "칵": 1536,
1541
+ "칸": 1537,
1542
+ "칼": 1538,
1543
+ "캄": 1539,
1544
+ "캅": 1540,
1545
+ "캉": 1541,
1546
+ "캐": 1542,
1547
+ "캔": 1543,
1548
+ "캘": 1544,
1549
+ "캠": 1545,
1550
+ "캡": 1546,
1551
+ "캣": 1547,
1552
+ "캤": 1548,
1553
+ "캥": 1549,
1554
+ "캬": 1550,
1555
+ "커": 1551,
1556
+ "컥": 1552,
1557
+ "컨": 1553,
1558
+ "컬": 1554,
1559
+ "컴": 1555,
1560
+ "컵": 1556,
1561
+ "컷": 1557,
1562
+ "컸": 1558,
1563
+ "컹": 1559,
1564
+ "케": 1560,
1565
+ "켄": 1561,
1566
+ "켈": 1562,
1567
+ "켓": 1563,
1568
+ "켜": 1564,
1569
+ "켠": 1565,
1570
+ "켤": 1566,
1571
+ "켬": 1567,
1572
+ "켭": 1568,
1573
+ "켰": 1569,
1574
+ "켱": 1570,
1575
+ "코": 1571,
1576
+ "콕": 1572,
1577
+ "콘": 1573,
1578
+ "콜": 1574,
1579
+ "콤": 1575,
1580
+ "콥": 1576,
1581
+ "콧": 1577,
1582
+ "콩": 1578,
1583
+ "콰": 1579,
1584
+ "콱": 1580,
1585
+ "콸": 1581,
1586
+ "쾅": 1582,
1587
+ "쾌": 1583,
1588
+ "쾬": 1584,
1589
+ "쿄": 1585,
1590
+ "쿠": 1586,
1591
+ "쿡": 1587,
1592
+ "쿤": 1588,
1593
+ "쿨": 1589,
1594
+ "쿰": 1590,
1595
+ "쿱": 1591,
1596
+ "쿵": 1592,
1597
+ "쿼": 1593,
1598
+ "퀀": 1594,
1599
+ "퀄": 1595,
1600
+ "퀘": 1596,
1601
+ "퀴": 1597,
1602
+ "퀵": 1598,
1603
+ "퀸": 1599,
1604
+ "큐": 1600,
1605
+ "큔": 1601,
1606
+ "큘": 1602,
1607
+ "큠": 1603,
1608
+ "크": 1604,
1609
+ "큭": 1605,
1610
+ "큰": 1606,
1611
+ "클": 1607,
1612
+ "큼": 1608,
1613
+ "큽": 1609,
1614
+ "킁": 1610,
1615
+ "키": 1611,
1616
+ "킥": 1612,
1617
+ "킨": 1613,
1618
+ "킬": 1614,
1619
+ "킴": 1615,
1620
+ "킵": 1616,
1621
+ "킷": 1617,
1622
+ "킹": 1618,
1623
+ "타": 1619,
1624
+ "탁": 1620,
1625
+ "탄": 1621,
1626
+ "탈": 1622,
1627
+ "탐": 1623,
1628
+ "탑": 1624,
1629
+ "탓": 1625,
1630
+ "탔": 1626,
1631
+ "탕": 1627,
1632
+ "태": 1628,
1633
+ "택": 1629,
1634
+ "탠": 1630,
1635
+ "탤": 1631,
1636
+ "탬": 1632,
1637
+ "탭": 1633,
1638
+ "탯": 1634,
1639
+ "탱": 1635,
1640
+ "탶": 1636,
1641
+ "터": 1637,
1642
+ "턱": 1638,
1643
+ "턴": 1639,
1644
+ "털": 1640,
1645
+ "텀": 1641,
1646
+ "텁": 1642,
1647
+ "텃": 1643,
1648
+ "텄": 1644,
1649
+ "텅": 1645,
1650
+ "테": 1646,
1651
+ "텍": 1647,
1652
+ "텐": 1648,
1653
+ "텔": 1649,
1654
+ "템": 1650,
1655
+ "텝": 1651,
1656
+ "텟": 1652,
1657
+ "텡": 1653,
1658
+ "텨": 1654,
1659
+ "텼": 1655,
1660
+ "토": 1656,
1661
+ "톡": 1657,
1662
+ "톤": 1658,
1663
+ "톨": 1659,
1664
+ "톰": 1660,
1665
+ "톱": 1661,
1666
+ "통": 1662,
1667
+ "퇴": 1663,
1668
+ "투": 1664,
1669
+ "툭": 1665,
1670
+ "툰": 1666,
1671
+ "툴": 1667,
1672
+ "툼": 1668,
1673
+ "퉁": 1669,
1674
+ "퉈": 1670,
1675
+ "퉜": 1671,
1676
+ "퉤": 1672,
1677
+ "튀": 1673,
1678
+ "튄": 1674,
1679
+ "튈": 1675,
1680
+ "튕": 1676,
1681
+ "튜": 1677,
1682
+ "튤": 1678,
1683
+ "튬": 1679,
1684
+ "튭": 1680,
1685
+ "트": 1681,
1686
+ "특": 1682,
1687
+ "튼": 1683,
1688
+ "틀": 1684,
1689
+ "틈": 1685,
1690
+ "틉": 1686,
1691
+ "틋": 1687,
1692
+ "틔": 1688,
1693
+ "티": 1689,
1694
+ "틱": 1690,
1695
+ "틴": 1691,
1696
+ "틸": 1692,
1697
+ "팀": 1693,
1698
+ "팁": 1694,
1699
+ "팅": 1695,
1700
+ "파": 1696,
1701
+ "팍": 1697,
1702
+ "팎": 1698,
1703
+ "판": 1699,
1704
+ "팔": 1700,
1705
+ "팜": 1701,
1706
+ "팝": 1702,
1707
+ "팟": 1703,
1708
+ "팠": 1704,
1709
+ "팡": 1705,
1710
+ "팥": 1706,
1711
+ "패": 1707,
1712
+ "팩": 1708,
1713
+ "팬": 1709,
1714
+ "팰": 1710,
1715
+ "팸": 1711,
1716
+ "팹": 1712,
1717
+ "팻": 1713,
1718
+ "팼": 1714,
1719
+ "팽": 1715,
1720
+ "퍄": 1716,
1721
+ "퍼": 1717,
1722
+ "퍽": 1718,
1723
+ "펀": 1719,
1724
+ "펄": 1720,
1725
+ "펌": 1721,
1726
+ "펍": 1722,
1727
+ "펐": 1723,
1728
+ "펑": 1724,
1729
+ "페": 1725,
1730
+ "펙": 1726,
1731
+ "펜": 1727,
1732
+ "펠": 1728,
1733
+ "펩": 1729,
1734
+ "펫": 1730,
1735
+ "펭": 1731,
1736
+ "펴": 1732,
1737
+ "편": 1733,
1738
+ "펼": 1734,
1739
+ "폄": 1735,
1740
+ "폇": 1736,
1741
+ "폈": 1737,
1742
+ "평": 1738,
1743
+ "폐": 1739,
1744
+ "폣": 1740,
1745
+ "포": 1741,
1746
+ "폭": 1742,
1747
+ "폰": 1743,
1748
+ "폴": 1744,
1749
+ "폼": 1745,
1750
+ "폿": 1746,
1751
+ "퐁": 1747,
1752
+ "퐉": 1748,
1753
+ "푀": 1749,
1754
+ "표": 1750,
1755
+ "푠": 1751,
1756
+ "푸": 1752,
1757
+ "푹": 1753,
1758
+ "푼": 1754,
1759
+ "풀": 1755,
1760
+ "품": 1756,
1761
+ "풉": 1757,
1762
+ "풋": 1758,
1763
+ "풍": 1759,
1764
+ "퓌": 1760,
1765
+ "퓨": 1761,
1766
+ "프": 1762,
1767
+ "픈": 1763,
1768
+ "플": 1764,
1769
+ "픔": 1765,
1770
+ "픕": 1766,
1771
+ "피": 1767,
1772
+ "픽": 1768,
1773
+ "핀": 1769,
1774
+ "필": 1770,
1775
+ "핌": 1771,
1776
+ "핏": 1772,
1777
+ "핑": 1773,
1778
+ "하": 1774,
1779
+ "학": 1775,
1780
+ "한": 1776,
1781
+ "할": 1777,
1782
+ "핥": 1778,
1783
+ "핧": 1779,
1784
+ "함": 1780,
1785
+ "합": 1781,
1786
+ "핫": 1782,
1787
+ "핬": 1783,
1788
+ "항": 1784,
1789
+ "핰": 1785,
1790
+ "해": 1786,
1791
+ "핵": 1787,
1792
+ "핸": 1788,
1793
+ "핼": 1789,
1794
+ "햄": 1790,
1795
+ "햅": 1791,
1796
+ "햇": 1792,
1797
+ "했": 1793,
1798
+ "행": 1794,
1799
+ "햐": 1795,
1800
+ "향": 1796,
1801
+ "허": 1797,
1802
+ "헉": 1798,
1803
+ "헌": 1799,
1804
+ "헐": 1800,
1805
+ "험": 1801,
1806
+ "헙": 1802,
1807
+ "헛": 1803,
1808
+ "헝": 1804,
1809
+ "헤": 1805,
1810
+ "헥": 1806,
1811
+ "헨": 1807,
1812
+ "헬": 1808,
1813
+ "헴": 1809,
1814
+ "헷": 1810,
1815
+ "헸": 1811,
1816
+ "헹": 1812,
1817
+ "혀": 1813,
1818
+ "혁": 1814,
1819
+ "현": 1815,
1820
+ "혈": 1816,
1821
+ "혐": 1817,
1822
+ "협": 1818,
1823
+ "혓": 1819,
1824
+ "혔": 1820,
1825
+ "형": 1821,
1826
+ "혜": 1822,
1827
+ "호": 1823,
1828
+ "혹": 1824,
1829
+ "혼": 1825,
1830
+ "홀": 1826,
1831
+ "홈": 1827,
1832
+ "홉": 1828,
1833
+ "홋": 1829,
1834
+ "홍": 1830,
1835
+ "화": 1831,
1836
+ "확": 1832,
1837
+ "환": 1833,
1838
+ "활": 1834,
1839
+ "홥": 1835,
1840
+ "황": 1836,
1841
+ "횃": 1837,
1842
+ "회": 1838,
1843
+ "획": 1839,
1844
+ "횐": 1840,
1845
+ "횟": 1841,
1846
+ "횡": 1842,
1847
+ "효": 1843,
1848
+ "후": 1844,
1849
+ "훅": 1845,
1850
+ "훈": 1846,
1851
+ "훌": 1847,
1852
+ "훑": 1848,
1853
+ "훔": 1849,
1854
+ "훕": 1850,
1855
+ "훗": 1851,
1856
+ "훠": 1852,
1857
+ "훤": 1853,
1858
+ "훨": 1854,
1859
+ "훼": 1855,
1860
+ "휀": 1856,
1861
+ "휑": 1857,
1862
+ "휘": 1858,
1863
+ "휙": 1859,
1864
+ "휜": 1860,
1865
+ "휠": 1861,
1866
+ "휴": 1862,
1867
+ "휸": 1863,
1868
+ "흉": 1864,
1869
+ "흐": 1865,
1870
+ "흑": 1866,
1871
+ "흔": 1867,
1872
+ "흘": 1868,
1873
+ "흙": 1869,
1874
+ "흠": 1870,
1875
+ "흡": 1871,
1876
+ "흣": 1872,
1877
+ "흥": 1873,
1878
+ "흩": 1874,
1879
+ "희": 1875,
1880
+ "흰": 1876,
1881
+ "흴": 1877,
1882
+ "히": 1878,
1883
+ "힉": 1879,
1884
+ "힌": 1880,
1885
+ "힐": 1881,
1886
+ "힘": 1882,
1887
+ "힙": 1883,
1888
+ "힛": 1884,
1889
+ "힝": 1885
1890
+ }
checkpoint-221790/added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 1891,
3
+ "<s>": 1890,
4
+ "[PAD]": 1889,
5
+ "[UNK]": 1888
6
+ }
checkpoint-221790/config.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForCTC"
11
+ ],
12
+ "attention_dropout": 0.05,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 768,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "mean",
46
+ "ctc_zero_infinity": false,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.05,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "gradient_checkpointing": false,
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.05,
59
+ "hidden_size": 1024,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 4096,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.05,
64
+ "mask_channel_length": 10,
65
+ "mask_channel_min_space": 1,
66
+ "mask_channel_other": 0.0,
67
+ "mask_channel_prob": 0.0,
68
+ "mask_channel_selection": "static",
69
+ "mask_feature_length": 10,
70
+ "mask_feature_min_masks": 0,
71
+ "mask_feature_prob": 0.0,
72
+ "mask_time_length": 10,
73
+ "mask_time_min_masks": 2,
74
+ "mask_time_min_space": 1,
75
+ "mask_time_other": 0.0,
76
+ "mask_time_prob": 0.05,
77
+ "mask_time_selection": "static",
78
+ "model_type": "wav2vec2",
79
+ "num_adapter_layers": 3,
80
+ "num_attention_heads": 16,
81
+ "num_codevector_groups": 2,
82
+ "num_codevectors_per_group": 320,
83
+ "num_conv_pos_embedding_groups": 16,
84
+ "num_conv_pos_embeddings": 128,
85
+ "num_feat_extract_layers": 7,
86
+ "num_hidden_layers": 24,
87
+ "num_negatives": 100,
88
+ "output_hidden_size": 1024,
89
+ "pad_token_id": 1889,
90
+ "proj_codevector_dim": 768,
91
+ "tdnn_dilation": [
92
+ 1,
93
+ 2,
94
+ 3,
95
+ 1,
96
+ 1
97
+ ],
98
+ "tdnn_dim": [
99
+ 512,
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 1500
104
+ ],
105
+ "tdnn_kernel": [
106
+ 5,
107
+ 3,
108
+ 3,
109
+ 1,
110
+ 1
111
+ ],
112
+ "torch_dtype": "float32",
113
+ "transformers_version": "4.35.0",
114
+ "use_weighted_layer_sum": false,
115
+ "vocab_size": 1890,
116
+ "xvector_output_dim": 512
117
+ }
checkpoint-221790/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e77addf61693f34cc4e659ad05e482d8951bf3eccd40bb6d18438582bff8059
3
+ size 1269556504
checkpoint-221790/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4493f86144d59754d59b93966b3d06855e2718e83f5356805dfd39c7502508e4
3
+ size 2505657782
checkpoint-221790/preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
checkpoint-221790/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5e0390b5de3cc57355d753074c51011c7c58d9d9681e29f75d4788e468e3c14
3
+ size 15088
checkpoint-221790/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:954238a12c6677341dc54095bc3aca59644f6c8fdccefb0bcd0fde14c6813f39
3
+ size 15088
checkpoint-221790/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca29d6b37a590d13f2a55f5da2965bf4871c02c355ac579b7d2e118fa6a94c54
3
+ size 15024
checkpoint-221790/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dafed76c4cf59adcd6c386fc8c19ea3bd5a3fc5649ef26daad43ee47e05f4d7
3
+ size 15024
checkpoint-221790/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1530b0e6d5f7db56c8bf8b043d6c73f46795dfdc2e2c378f224fc0f1b78a3603
3
+ size 1064
checkpoint-221790/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "[UNK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": true,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-221790/tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "1888": {
4
+ "content": "[UNK]",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1889": {
12
+ "content": "[PAD]",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "1890": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "1891": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": true,
38
+ "config": null,
39
+ "do_lower_case": false,
40
+ "eos_token": "</s>",
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "[PAD]",
43
+ "processor_class": "Wav2Vec2Processor",
44
+ "replace_word_delimiter_char": " ",
45
+ "target_lang": null,
46
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
47
+ "tokenizer_type": "wav2vec2",
48
+ "trust_remote_code": false,
49
+ "unk_token": "[UNK]",
50
+ "word_delimiter_token": "|"
51
+ }
checkpoint-221790/trainer_state.json ADDED
@@ -0,0 +1,2233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 221790,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "learning_rate": 0.00011999999999999999,
14
+ "loss": 18.2932,
15
+ "step": 600
16
+ },
17
+ {
18
+ "epoch": 0.05,
19
+ "learning_rate": 0.00023999999999999998,
20
+ "loss": 4.6022,
21
+ "step": 1200
22
+ },
23
+ {
24
+ "epoch": 0.08,
25
+ "learning_rate": 0.00029959144763720545,
26
+ "loss": 2.9785,
27
+ "step": 1800
28
+ },
29
+ {
30
+ "epoch": 0.11,
31
+ "learning_rate": 0.0002987743429116165,
32
+ "loss": 2.065,
33
+ "step": 2400
34
+ },
35
+ {
36
+ "epoch": 0.14,
37
+ "learning_rate": 0.0002979572381860275,
38
+ "loss": 1.7581,
39
+ "step": 3000
40
+ },
41
+ {
42
+ "epoch": 0.16,
43
+ "learning_rate": 0.0002971401334604385,
44
+ "loss": 1.6367,
45
+ "step": 3600
46
+ },
47
+ {
48
+ "epoch": 0.19,
49
+ "learning_rate": 0.0002963230287348495,
50
+ "loss": 1.5326,
51
+ "step": 4200
52
+ },
53
+ {
54
+ "epoch": 0.22,
55
+ "learning_rate": 0.0002955059240092605,
56
+ "loss": 1.4634,
57
+ "step": 4800
58
+ },
59
+ {
60
+ "epoch": 0.24,
61
+ "learning_rate": 0.0002946888192836715,
62
+ "loss": 1.4078,
63
+ "step": 5400
64
+ },
65
+ {
66
+ "epoch": 0.27,
67
+ "learning_rate": 0.0002938717145580825,
68
+ "loss": 1.385,
69
+ "step": 6000
70
+ },
71
+ {
72
+ "epoch": 0.3,
73
+ "learning_rate": 0.0002930546098324935,
74
+ "loss": 1.3197,
75
+ "step": 6600
76
+ },
77
+ {
78
+ "epoch": 0.32,
79
+ "learning_rate": 0.00029223750510690453,
80
+ "loss": 1.3254,
81
+ "step": 7200
82
+ },
83
+ {
84
+ "epoch": 0.35,
85
+ "learning_rate": 0.00029142040038131553,
86
+ "loss": 1.3057,
87
+ "step": 7800
88
+ },
89
+ {
90
+ "epoch": 0.38,
91
+ "learning_rate": 0.0002906032956557265,
92
+ "loss": 1.2723,
93
+ "step": 8400
94
+ },
95
+ {
96
+ "epoch": 0.41,
97
+ "learning_rate": 0.0002897861909301375,
98
+ "loss": 1.2535,
99
+ "step": 9000
100
+ },
101
+ {
102
+ "epoch": 0.43,
103
+ "learning_rate": 0.0002889690862045485,
104
+ "loss": 1.2308,
105
+ "step": 9600
106
+ },
107
+ {
108
+ "epoch": 0.46,
109
+ "learning_rate": 0.0002881519814789595,
110
+ "loss": 1.2168,
111
+ "step": 10200
112
+ },
113
+ {
114
+ "epoch": 0.49,
115
+ "learning_rate": 0.0002873348767533705,
116
+ "loss": 1.2023,
117
+ "step": 10800
118
+ },
119
+ {
120
+ "epoch": 0.51,
121
+ "learning_rate": 0.00028651777202778157,
122
+ "loss": 1.2041,
123
+ "step": 11400
124
+ },
125
+ {
126
+ "epoch": 0.54,
127
+ "learning_rate": 0.00028570066730219257,
128
+ "loss": 1.1883,
129
+ "step": 12000
130
+ },
131
+ {
132
+ "epoch": 0.57,
133
+ "learning_rate": 0.0002848835625766035,
134
+ "loss": 1.1623,
135
+ "step": 12600
136
+ },
137
+ {
138
+ "epoch": 0.6,
139
+ "learning_rate": 0.00028406645785101456,
140
+ "loss": 1.1844,
141
+ "step": 13200
142
+ },
143
+ {
144
+ "epoch": 0.62,
145
+ "learning_rate": 0.00028324935312542556,
146
+ "loss": 1.1347,
147
+ "step": 13800
148
+ },
149
+ {
150
+ "epoch": 0.65,
151
+ "learning_rate": 0.00028243224839983656,
152
+ "loss": 1.1252,
153
+ "step": 14400
154
+ },
155
+ {
156
+ "epoch": 0.68,
157
+ "learning_rate": 0.00028161514367424755,
158
+ "loss": 1.1061,
159
+ "step": 15000
160
+ },
161
+ {
162
+ "epoch": 0.7,
163
+ "learning_rate": 0.00028079803894865855,
164
+ "loss": 1.1354,
165
+ "step": 15600
166
+ },
167
+ {
168
+ "epoch": 0.73,
169
+ "learning_rate": 0.00027998093422306955,
170
+ "loss": 1.1211,
171
+ "step": 16200
172
+ },
173
+ {
174
+ "epoch": 0.76,
175
+ "learning_rate": 0.00027916382949748055,
176
+ "loss": 1.0821,
177
+ "step": 16800
178
+ },
179
+ {
180
+ "epoch": 0.78,
181
+ "learning_rate": 0.00027834672477189154,
182
+ "loss": 1.0761,
183
+ "step": 17400
184
+ },
185
+ {
186
+ "epoch": 0.81,
187
+ "learning_rate": 0.0002775296200463026,
188
+ "loss": 1.0546,
189
+ "step": 18000
190
+ },
191
+ {
192
+ "epoch": 0.84,
193
+ "learning_rate": 0.0002767125153207136,
194
+ "loss": 1.0796,
195
+ "step": 18600
196
+ },
197
+ {
198
+ "epoch": 0.87,
199
+ "learning_rate": 0.0002758954105951246,
200
+ "loss": 1.0725,
201
+ "step": 19200
202
+ },
203
+ {
204
+ "epoch": 0.89,
205
+ "learning_rate": 0.0002750783058695356,
206
+ "loss": 1.0716,
207
+ "step": 19800
208
+ },
209
+ {
210
+ "epoch": 0.92,
211
+ "learning_rate": 0.0002742612011439466,
212
+ "loss": 1.0463,
213
+ "step": 20400
214
+ },
215
+ {
216
+ "epoch": 0.95,
217
+ "learning_rate": 0.0002734440964183576,
218
+ "loss": 1.0412,
219
+ "step": 21000
220
+ },
221
+ {
222
+ "epoch": 0.97,
223
+ "learning_rate": 0.0002726269916927686,
224
+ "loss": 1.0318,
225
+ "step": 21600
226
+ },
227
+ {
228
+ "epoch": 1.0,
229
+ "learning_rate": 0.00027180988696717963,
230
+ "loss": 1.0419,
231
+ "step": 22200
232
+ },
233
+ {
234
+ "epoch": 1.03,
235
+ "learning_rate": 0.00027099278224159063,
236
+ "loss": 0.9673,
237
+ "step": 22800
238
+ },
239
+ {
240
+ "epoch": 1.06,
241
+ "learning_rate": 0.0002701756775160016,
242
+ "loss": 0.9693,
243
+ "step": 23400
244
+ },
245
+ {
246
+ "epoch": 1.08,
247
+ "learning_rate": 0.0002693585727904126,
248
+ "loss": 0.9555,
249
+ "step": 24000
250
+ },
251
+ {
252
+ "epoch": 1.11,
253
+ "learning_rate": 0.0002685414680648236,
254
+ "loss": 0.9832,
255
+ "step": 24600
256
+ },
257
+ {
258
+ "epoch": 1.14,
259
+ "learning_rate": 0.0002677243633392346,
260
+ "loss": 0.9578,
261
+ "step": 25200
262
+ },
263
+ {
264
+ "epoch": 1.16,
265
+ "learning_rate": 0.0002669072586136456,
266
+ "loss": 0.9569,
267
+ "step": 25800
268
+ },
269
+ {
270
+ "epoch": 1.19,
271
+ "learning_rate": 0.00026609015388805667,
272
+ "loss": 0.9521,
273
+ "step": 26400
274
+ },
275
+ {
276
+ "epoch": 1.22,
277
+ "learning_rate": 0.0002652730491624676,
278
+ "loss": 0.953,
279
+ "step": 27000
280
+ },
281
+ {
282
+ "epoch": 1.24,
283
+ "learning_rate": 0.0002644559444368786,
284
+ "loss": 0.9757,
285
+ "step": 27600
286
+ },
287
+ {
288
+ "epoch": 1.27,
289
+ "learning_rate": 0.00026363883971128966,
290
+ "loss": 0.9517,
291
+ "step": 28200
292
+ },
293
+ {
294
+ "epoch": 1.3,
295
+ "learning_rate": 0.00026282173498570066,
296
+ "loss": 0.9552,
297
+ "step": 28800
298
+ },
299
+ {
300
+ "epoch": 1.33,
301
+ "learning_rate": 0.00026200463026011166,
302
+ "loss": 0.944,
303
+ "step": 29400
304
+ },
305
+ {
306
+ "epoch": 1.35,
307
+ "learning_rate": 0.00026118752553452266,
308
+ "loss": 0.936,
309
+ "step": 30000
310
+ },
311
+ {
312
+ "epoch": 1.38,
313
+ "learning_rate": 0.00026037042080893365,
314
+ "loss": 0.9071,
315
+ "step": 30600
316
+ },
317
+ {
318
+ "epoch": 1.41,
319
+ "learning_rate": 0.00025955331608334465,
320
+ "loss": 0.9137,
321
+ "step": 31200
322
+ },
323
+ {
324
+ "epoch": 1.43,
325
+ "learning_rate": 0.00025873621135775565,
326
+ "loss": 0.9191,
327
+ "step": 31800
328
+ },
329
+ {
330
+ "epoch": 1.46,
331
+ "learning_rate": 0.00025791910663216665,
332
+ "loss": 0.9185,
333
+ "step": 32400
334
+ },
335
+ {
336
+ "epoch": 1.49,
337
+ "learning_rate": 0.0002571020019065777,
338
+ "loss": 0.9054,
339
+ "step": 33000
340
+ },
341
+ {
342
+ "epoch": 1.51,
343
+ "learning_rate": 0.0002562848971809887,
344
+ "loss": 0.9274,
345
+ "step": 33600
346
+ },
347
+ {
348
+ "epoch": 1.54,
349
+ "learning_rate": 0.0002554677924553997,
350
+ "loss": 0.8956,
351
+ "step": 34200
352
+ },
353
+ {
354
+ "epoch": 1.57,
355
+ "learning_rate": 0.0002546506877298107,
356
+ "loss": 0.893,
357
+ "step": 34800
358
+ },
359
+ {
360
+ "epoch": 1.6,
361
+ "learning_rate": 0.0002538335830042217,
362
+ "loss": 0.9151,
363
+ "step": 35400
364
+ },
365
+ {
366
+ "epoch": 1.62,
367
+ "learning_rate": 0.0002530164782786327,
368
+ "loss": 0.8903,
369
+ "step": 36000
370
+ },
371
+ {
372
+ "epoch": 1.65,
373
+ "learning_rate": 0.0002521993735530437,
374
+ "loss": 0.8929,
375
+ "step": 36600
376
+ },
377
+ {
378
+ "epoch": 1.68,
379
+ "learning_rate": 0.0002513822688274547,
380
+ "loss": 0.8886,
381
+ "step": 37200
382
+ },
383
+ {
384
+ "epoch": 1.7,
385
+ "learning_rate": 0.0002505651641018657,
386
+ "loss": 0.8827,
387
+ "step": 37800
388
+ },
389
+ {
390
+ "epoch": 1.73,
391
+ "learning_rate": 0.0002497480593762767,
392
+ "loss": 0.8877,
393
+ "step": 38400
394
+ },
395
+ {
396
+ "epoch": 1.76,
397
+ "learning_rate": 0.00024893095465068773,
398
+ "loss": 0.868,
399
+ "step": 39000
400
+ },
401
+ {
402
+ "epoch": 1.79,
403
+ "learning_rate": 0.0002481138499250987,
404
+ "loss": 0.8731,
405
+ "step": 39600
406
+ },
407
+ {
408
+ "epoch": 1.81,
409
+ "learning_rate": 0.0002472967451995097,
410
+ "loss": 0.8649,
411
+ "step": 40200
412
+ },
413
+ {
414
+ "epoch": 1.84,
415
+ "learning_rate": 0.0002464796404739207,
416
+ "loss": 0.862,
417
+ "step": 40800
418
+ },
419
+ {
420
+ "epoch": 1.87,
421
+ "learning_rate": 0.0002456625357483317,
422
+ "loss": 0.8933,
423
+ "step": 41400
424
+ },
425
+ {
426
+ "epoch": 1.89,
427
+ "learning_rate": 0.0002448454310227427,
428
+ "loss": 0.8711,
429
+ "step": 42000
430
+ },
431
+ {
432
+ "epoch": 1.92,
433
+ "learning_rate": 0.00024402832629715374,
434
+ "loss": 0.8805,
435
+ "step": 42600
436
+ },
437
+ {
438
+ "epoch": 1.95,
439
+ "learning_rate": 0.00024321122157156474,
440
+ "loss": 0.8518,
441
+ "step": 43200
442
+ },
443
+ {
444
+ "epoch": 1.97,
445
+ "learning_rate": 0.00024239411684597576,
446
+ "loss": 0.8591,
447
+ "step": 43800
448
+ },
449
+ {
450
+ "epoch": 2.0,
451
+ "learning_rate": 0.00024157701212038673,
452
+ "loss": 0.8552,
453
+ "step": 44400
454
+ },
455
+ {
456
+ "epoch": 2.03,
457
+ "learning_rate": 0.00024075990739479773,
458
+ "loss": 0.7824,
459
+ "step": 45000
460
+ },
461
+ {
462
+ "epoch": 2.06,
463
+ "learning_rate": 0.00023994280266920876,
464
+ "loss": 0.7737,
465
+ "step": 45600
466
+ },
467
+ {
468
+ "epoch": 2.08,
469
+ "learning_rate": 0.00023912569794361975,
470
+ "loss": 0.7888,
471
+ "step": 46200
472
+ },
473
+ {
474
+ "epoch": 2.11,
475
+ "learning_rate": 0.00023830859321803075,
476
+ "loss": 0.7917,
477
+ "step": 46800
478
+ },
479
+ {
480
+ "epoch": 2.14,
481
+ "learning_rate": 0.00023749148849244178,
482
+ "loss": 0.7782,
483
+ "step": 47400
484
+ },
485
+ {
486
+ "epoch": 2.16,
487
+ "learning_rate": 0.00023667438376685275,
488
+ "loss": 0.7769,
489
+ "step": 48000
490
+ },
491
+ {
492
+ "epoch": 2.19,
493
+ "learning_rate": 0.00023585727904126377,
494
+ "loss": 0.7699,
495
+ "step": 48600
496
+ },
497
+ {
498
+ "epoch": 2.22,
499
+ "learning_rate": 0.00023504017431567477,
500
+ "loss": 0.7767,
501
+ "step": 49200
502
+ },
503
+ {
504
+ "epoch": 2.25,
505
+ "learning_rate": 0.00023422306959008577,
506
+ "loss": 0.7957,
507
+ "step": 49800
508
+ },
509
+ {
510
+ "epoch": 2.27,
511
+ "learning_rate": 0.0002334059648644968,
512
+ "loss": 0.7831,
513
+ "step": 50400
514
+ },
515
+ {
516
+ "epoch": 2.3,
517
+ "learning_rate": 0.0002325888601389078,
518
+ "loss": 0.8037,
519
+ "step": 51000
520
+ },
521
+ {
522
+ "epoch": 2.33,
523
+ "learning_rate": 0.00023177175541331876,
524
+ "loss": 0.7941,
525
+ "step": 51600
526
+ },
527
+ {
528
+ "epoch": 2.35,
529
+ "learning_rate": 0.00023095465068772978,
530
+ "loss": 0.7829,
531
+ "step": 52200
532
+ },
533
+ {
534
+ "epoch": 2.38,
535
+ "learning_rate": 0.00023013754596214078,
536
+ "loss": 0.7806,
537
+ "step": 52800
538
+ },
539
+ {
540
+ "epoch": 2.41,
541
+ "learning_rate": 0.0002293204412365518,
542
+ "loss": 0.7946,
543
+ "step": 53400
544
+ },
545
+ {
546
+ "epoch": 2.43,
547
+ "learning_rate": 0.0002285033365109628,
548
+ "loss": 0.7717,
549
+ "step": 54000
550
+ },
551
+ {
552
+ "epoch": 2.46,
553
+ "learning_rate": 0.00022768623178537383,
554
+ "loss": 0.7628,
555
+ "step": 54600
556
+ },
557
+ {
558
+ "epoch": 2.49,
559
+ "learning_rate": 0.0002268691270597848,
560
+ "loss": 0.7918,
561
+ "step": 55200
562
+ },
563
+ {
564
+ "epoch": 2.52,
565
+ "learning_rate": 0.0002260520223341958,
566
+ "loss": 0.7773,
567
+ "step": 55800
568
+ },
569
+ {
570
+ "epoch": 2.54,
571
+ "learning_rate": 0.00022523491760860682,
572
+ "loss": 0.7632,
573
+ "step": 56400
574
+ },
575
+ {
576
+ "epoch": 2.57,
577
+ "learning_rate": 0.00022441781288301782,
578
+ "loss": 0.7636,
579
+ "step": 57000
580
+ },
581
+ {
582
+ "epoch": 2.6,
583
+ "learning_rate": 0.00022360070815742884,
584
+ "loss": 0.7784,
585
+ "step": 57600
586
+ },
587
+ {
588
+ "epoch": 2.62,
589
+ "learning_rate": 0.00022278360343183984,
590
+ "loss": 0.7695,
591
+ "step": 58200
592
+ },
593
+ {
594
+ "epoch": 2.65,
595
+ "learning_rate": 0.0002219664987062508,
596
+ "loss": 0.7613,
597
+ "step": 58800
598
+ },
599
+ {
600
+ "epoch": 2.68,
601
+ "learning_rate": 0.00022114939398066184,
602
+ "loss": 0.7485,
603
+ "step": 59400
604
+ },
605
+ {
606
+ "epoch": 2.71,
607
+ "learning_rate": 0.00022033228925507283,
608
+ "loss": 0.7708,
609
+ "step": 60000
610
+ },
611
+ {
612
+ "epoch": 2.73,
613
+ "learning_rate": 0.00021951518452948386,
614
+ "loss": 0.7696,
615
+ "step": 60600
616
+ },
617
+ {
618
+ "epoch": 2.76,
619
+ "learning_rate": 0.00021869807980389486,
620
+ "loss": 0.7666,
621
+ "step": 61200
622
+ },
623
+ {
624
+ "epoch": 2.79,
625
+ "learning_rate": 0.00021788097507830585,
626
+ "loss": 0.785,
627
+ "step": 61800
628
+ },
629
+ {
630
+ "epoch": 2.81,
631
+ "learning_rate": 0.00021706387035271685,
632
+ "loss": 0.7501,
633
+ "step": 62400
634
+ },
635
+ {
636
+ "epoch": 2.84,
637
+ "learning_rate": 0.00021624676562712785,
638
+ "loss": 0.7595,
639
+ "step": 63000
640
+ },
641
+ {
642
+ "epoch": 2.87,
643
+ "learning_rate": 0.00021542966090153885,
644
+ "loss": 0.7308,
645
+ "step": 63600
646
+ },
647
+ {
648
+ "epoch": 2.89,
649
+ "learning_rate": 0.00021461255617594987,
650
+ "loss": 0.7349,
651
+ "step": 64200
652
+ },
653
+ {
654
+ "epoch": 2.92,
655
+ "learning_rate": 0.00021379545145036087,
656
+ "loss": 0.7373,
657
+ "step": 64800
658
+ },
659
+ {
660
+ "epoch": 2.95,
661
+ "learning_rate": 0.0002129783467247719,
662
+ "loss": 0.7557,
663
+ "step": 65400
664
+ },
665
+ {
666
+ "epoch": 2.98,
667
+ "learning_rate": 0.00021216124199918286,
668
+ "loss": 0.7597,
669
+ "step": 66000
670
+ },
671
+ {
672
+ "epoch": 3.0,
673
+ "learning_rate": 0.00021134413727359386,
674
+ "loss": 0.7466,
675
+ "step": 66600
676
+ },
677
+ {
678
+ "epoch": 3.03,
679
+ "learning_rate": 0.00021052703254800489,
680
+ "loss": 0.6804,
681
+ "step": 67200
682
+ },
683
+ {
684
+ "epoch": 3.06,
685
+ "learning_rate": 0.00020970992782241588,
686
+ "loss": 0.6638,
687
+ "step": 67800
688
+ },
689
+ {
690
+ "epoch": 3.08,
691
+ "learning_rate": 0.0002088928230968269,
692
+ "loss": 0.6752,
693
+ "step": 68400
694
+ },
695
+ {
696
+ "epoch": 3.11,
697
+ "learning_rate": 0.0002080757183712379,
698
+ "loss": 0.6732,
699
+ "step": 69000
700
+ },
701
+ {
702
+ "epoch": 3.14,
703
+ "learning_rate": 0.00020725861364564888,
704
+ "loss": 0.6693,
705
+ "step": 69600
706
+ },
707
+ {
708
+ "epoch": 3.17,
709
+ "learning_rate": 0.0002064415089200599,
710
+ "loss": 0.6765,
711
+ "step": 70200
712
+ },
713
+ {
714
+ "epoch": 3.19,
715
+ "learning_rate": 0.0002056244041944709,
716
+ "loss": 0.6703,
717
+ "step": 70800
718
+ },
719
+ {
720
+ "epoch": 3.22,
721
+ "learning_rate": 0.00020480729946888192,
722
+ "loss": 0.6746,
723
+ "step": 71400
724
+ },
725
+ {
726
+ "epoch": 3.25,
727
+ "learning_rate": 0.00020399019474329292,
728
+ "loss": 0.6885,
729
+ "step": 72000
730
+ },
731
+ {
732
+ "epoch": 3.27,
733
+ "learning_rate": 0.00020317309001770394,
734
+ "loss": 0.7011,
735
+ "step": 72600
736
+ },
737
+ {
738
+ "epoch": 3.3,
739
+ "learning_rate": 0.00020235598529211492,
740
+ "loss": 0.6752,
741
+ "step": 73200
742
+ },
743
+ {
744
+ "epoch": 3.33,
745
+ "learning_rate": 0.0002015388805665259,
746
+ "loss": 0.6875,
747
+ "step": 73800
748
+ },
749
+ {
750
+ "epoch": 3.35,
751
+ "learning_rate": 0.00020072177584093694,
752
+ "loss": 0.6809,
753
+ "step": 74400
754
+ },
755
+ {
756
+ "epoch": 3.38,
757
+ "learning_rate": 0.00019990467111534793,
758
+ "loss": 0.6775,
759
+ "step": 75000
760
+ },
761
+ {
762
+ "epoch": 3.41,
763
+ "learning_rate": 0.00019908756638975893,
764
+ "loss": 0.692,
765
+ "step": 75600
766
+ },
767
+ {
768
+ "epoch": 3.44,
769
+ "learning_rate": 0.00019827046166416996,
770
+ "loss": 0.68,
771
+ "step": 76200
772
+ },
773
+ {
774
+ "epoch": 3.46,
775
+ "learning_rate": 0.00019745335693858093,
776
+ "loss": 0.675,
777
+ "step": 76800
778
+ },
779
+ {
780
+ "epoch": 3.49,
781
+ "learning_rate": 0.00019663625221299195,
782
+ "loss": 0.6812,
783
+ "step": 77400
784
+ },
785
+ {
786
+ "epoch": 3.52,
787
+ "learning_rate": 0.00019581914748740295,
788
+ "loss": 0.6699,
789
+ "step": 78000
790
+ },
791
+ {
792
+ "epoch": 3.54,
793
+ "learning_rate": 0.00019500204276181395,
794
+ "loss": 0.6684,
795
+ "step": 78600
796
+ },
797
+ {
798
+ "epoch": 3.57,
799
+ "learning_rate": 0.00019418493803622497,
800
+ "loss": 0.675,
801
+ "step": 79200
802
+ },
803
+ {
804
+ "epoch": 3.6,
805
+ "learning_rate": 0.00019336783331063597,
806
+ "loss": 0.6479,
807
+ "step": 79800
808
+ },
809
+ {
810
+ "epoch": 3.63,
811
+ "learning_rate": 0.00019255072858504697,
812
+ "loss": 0.6679,
813
+ "step": 80400
814
+ },
815
+ {
816
+ "epoch": 3.65,
817
+ "learning_rate": 0.00019173362385945796,
818
+ "loss": 0.6831,
819
+ "step": 81000
820
+ },
821
+ {
822
+ "epoch": 3.68,
823
+ "learning_rate": 0.00019091651913386896,
824
+ "loss": 0.6633,
825
+ "step": 81600
826
+ },
827
+ {
828
+ "epoch": 3.71,
829
+ "learning_rate": 0.00019009941440828,
830
+ "loss": 0.6809,
831
+ "step": 82200
832
+ },
833
+ {
834
+ "epoch": 3.73,
835
+ "learning_rate": 0.00018928230968269098,
836
+ "loss": 0.6579,
837
+ "step": 82800
838
+ },
839
+ {
840
+ "epoch": 3.76,
841
+ "learning_rate": 0.000188465204957102,
842
+ "loss": 0.6539,
843
+ "step": 83400
844
+ },
845
+ {
846
+ "epoch": 3.79,
847
+ "learning_rate": 0.00018764810023151298,
848
+ "loss": 0.6607,
849
+ "step": 84000
850
+ },
851
+ {
852
+ "epoch": 3.81,
853
+ "learning_rate": 0.00018683099550592398,
854
+ "loss": 0.6615,
855
+ "step": 84600
856
+ },
857
+ {
858
+ "epoch": 3.84,
859
+ "learning_rate": 0.000186013890780335,
860
+ "loss": 0.6614,
861
+ "step": 85200
862
+ },
863
+ {
864
+ "epoch": 3.87,
865
+ "learning_rate": 0.000185196786054746,
866
+ "loss": 0.6517,
867
+ "step": 85800
868
+ },
869
+ {
870
+ "epoch": 3.9,
871
+ "learning_rate": 0.00018437968132915702,
872
+ "loss": 0.6559,
873
+ "step": 86400
874
+ },
875
+ {
876
+ "epoch": 3.92,
877
+ "learning_rate": 0.00018356257660356802,
878
+ "loss": 0.6506,
879
+ "step": 87000
880
+ },
881
+ {
882
+ "epoch": 3.95,
883
+ "learning_rate": 0.000182745471877979,
884
+ "loss": 0.6541,
885
+ "step": 87600
886
+ },
887
+ {
888
+ "epoch": 3.98,
889
+ "learning_rate": 0.00018192836715239002,
890
+ "loss": 0.6593,
891
+ "step": 88200
892
+ },
893
+ {
894
+ "epoch": 4.0,
895
+ "learning_rate": 0.00018111126242680101,
896
+ "loss": 0.6335,
897
+ "step": 88800
898
+ },
899
+ {
900
+ "epoch": 4.03,
901
+ "learning_rate": 0.00018029415770121204,
902
+ "loss": 0.5884,
903
+ "step": 89400
904
+ },
905
+ {
906
+ "epoch": 4.06,
907
+ "learning_rate": 0.00017947705297562304,
908
+ "loss": 0.5834,
909
+ "step": 90000
910
+ },
911
+ {
912
+ "epoch": 4.08,
913
+ "learning_rate": 0.00017865994825003403,
914
+ "loss": 0.596,
915
+ "step": 90600
916
+ },
917
+ {
918
+ "epoch": 4.11,
919
+ "learning_rate": 0.00017784284352444503,
920
+ "loss": 0.5839,
921
+ "step": 91200
922
+ },
923
+ {
924
+ "epoch": 4.14,
925
+ "learning_rate": 0.00017702573879885603,
926
+ "loss": 0.5738,
927
+ "step": 91800
928
+ },
929
+ {
930
+ "epoch": 4.17,
931
+ "learning_rate": 0.00017620863407326705,
932
+ "loss": 0.5835,
933
+ "step": 92400
934
+ },
935
+ {
936
+ "epoch": 4.19,
937
+ "learning_rate": 0.00017539152934767805,
938
+ "loss": 0.5738,
939
+ "step": 93000
940
+ },
941
+ {
942
+ "epoch": 4.22,
943
+ "learning_rate": 0.00017457442462208905,
944
+ "loss": 0.5773,
945
+ "step": 93600
946
+ },
947
+ {
948
+ "epoch": 4.25,
949
+ "learning_rate": 0.00017375731989650007,
950
+ "loss": 0.5866,
951
+ "step": 94200
952
+ },
953
+ {
954
+ "epoch": 4.27,
955
+ "learning_rate": 0.00017294021517091104,
956
+ "loss": 0.5843,
957
+ "step": 94800
958
+ },
959
+ {
960
+ "epoch": 4.3,
961
+ "learning_rate": 0.00017212311044532204,
962
+ "loss": 0.603,
963
+ "step": 95400
964
+ },
965
+ {
966
+ "epoch": 4.33,
967
+ "learning_rate": 0.00017130600571973307,
968
+ "loss": 0.5819,
969
+ "step": 96000
970
+ },
971
+ {
972
+ "epoch": 4.36,
973
+ "learning_rate": 0.00017048890099414406,
974
+ "loss": 0.592,
975
+ "step": 96600
976
+ },
977
+ {
978
+ "epoch": 4.38,
979
+ "learning_rate": 0.0001696717962685551,
980
+ "loss": 0.58,
981
+ "step": 97200
982
+ },
983
+ {
984
+ "epoch": 4.41,
985
+ "learning_rate": 0.0001688546915429661,
986
+ "loss": 0.5882,
987
+ "step": 97800
988
+ },
989
+ {
990
+ "epoch": 4.44,
991
+ "learning_rate": 0.00016803758681737706,
992
+ "loss": 0.5987,
993
+ "step": 98400
994
+ },
995
+ {
996
+ "epoch": 4.46,
997
+ "learning_rate": 0.00016722048209178808,
998
+ "loss": 0.585,
999
+ "step": 99000
1000
+ },
1001
+ {
1002
+ "epoch": 4.49,
1003
+ "learning_rate": 0.00016640337736619908,
1004
+ "loss": 0.5769,
1005
+ "step": 99600
1006
+ },
1007
+ {
1008
+ "epoch": 4.52,
1009
+ "learning_rate": 0.0001655862726406101,
1010
+ "loss": 0.5813,
1011
+ "step": 100200
1012
+ },
1013
+ {
1014
+ "epoch": 4.54,
1015
+ "learning_rate": 0.0001647691679150211,
1016
+ "loss": 0.6053,
1017
+ "step": 100800
1018
+ },
1019
+ {
1020
+ "epoch": 4.57,
1021
+ "learning_rate": 0.00016395206318943207,
1022
+ "loss": 0.5889,
1023
+ "step": 101400
1024
+ },
1025
+ {
1026
+ "epoch": 4.6,
1027
+ "learning_rate": 0.0001631349584638431,
1028
+ "loss": 0.5877,
1029
+ "step": 102000
1030
+ },
1031
+ {
1032
+ "epoch": 4.63,
1033
+ "learning_rate": 0.0001623178537382541,
1034
+ "loss": 0.581,
1035
+ "step": 102600
1036
+ },
1037
+ {
1038
+ "epoch": 4.65,
1039
+ "learning_rate": 0.00016150074901266512,
1040
+ "loss": 0.5699,
1041
+ "step": 103200
1042
+ },
1043
+ {
1044
+ "epoch": 4.68,
1045
+ "learning_rate": 0.00016068364428707612,
1046
+ "loss": 0.5781,
1047
+ "step": 103800
1048
+ },
1049
+ {
1050
+ "epoch": 4.71,
1051
+ "learning_rate": 0.00015986653956148714,
1052
+ "loss": 0.5812,
1053
+ "step": 104400
1054
+ },
1055
+ {
1056
+ "epoch": 4.73,
1057
+ "learning_rate": 0.0001590494348358981,
1058
+ "loss": 0.5686,
1059
+ "step": 105000
1060
+ },
1061
+ {
1062
+ "epoch": 4.76,
1063
+ "learning_rate": 0.0001582323301103091,
1064
+ "loss": 0.5724,
1065
+ "step": 105600
1066
+ },
1067
+ {
1068
+ "epoch": 4.79,
1069
+ "learning_rate": 0.00015741522538472013,
1070
+ "loss": 0.5722,
1071
+ "step": 106200
1072
+ },
1073
+ {
1074
+ "epoch": 4.82,
1075
+ "learning_rate": 0.00015659812065913113,
1076
+ "loss": 0.5834,
1077
+ "step": 106800
1078
+ },
1079
+ {
1080
+ "epoch": 4.84,
1081
+ "learning_rate": 0.00015578101593354213,
1082
+ "loss": 0.5825,
1083
+ "step": 107400
1084
+ },
1085
+ {
1086
+ "epoch": 4.87,
1087
+ "learning_rate": 0.00015496391120795315,
1088
+ "loss": 0.5783,
1089
+ "step": 108000
1090
+ },
1091
+ {
1092
+ "epoch": 4.9,
1093
+ "learning_rate": 0.00015414680648236412,
1094
+ "loss": 0.5819,
1095
+ "step": 108600
1096
+ },
1097
+ {
1098
+ "epoch": 4.92,
1099
+ "learning_rate": 0.00015332970175677515,
1100
+ "loss": 0.5823,
1101
+ "step": 109200
1102
+ },
1103
+ {
1104
+ "epoch": 4.95,
1105
+ "learning_rate": 0.00015251259703118615,
1106
+ "loss": 0.5755,
1107
+ "step": 109800
1108
+ },
1109
+ {
1110
+ "epoch": 4.98,
1111
+ "learning_rate": 0.00015169549230559714,
1112
+ "loss": 0.571,
1113
+ "step": 110400
1114
+ },
1115
+ {
1116
+ "epoch": 5.0,
1117
+ "learning_rate": 0.00015087838758000817,
1118
+ "loss": 0.5603,
1119
+ "step": 111000
1120
+ },
1121
+ {
1122
+ "epoch": 5.03,
1123
+ "learning_rate": 0.00015006128285441917,
1124
+ "loss": 0.5127,
1125
+ "step": 111600
1126
+ },
1127
+ {
1128
+ "epoch": 5.06,
1129
+ "learning_rate": 0.00014924417812883016,
1130
+ "loss": 0.52,
1131
+ "step": 112200
1132
+ },
1133
+ {
1134
+ "epoch": 5.09,
1135
+ "learning_rate": 0.0001484270734032412,
1136
+ "loss": 0.5327,
1137
+ "step": 112800
1138
+ },
1139
+ {
1140
+ "epoch": 5.11,
1141
+ "learning_rate": 0.00014760996867765216,
1142
+ "loss": 0.5081,
1143
+ "step": 113400
1144
+ },
1145
+ {
1146
+ "epoch": 5.14,
1147
+ "learning_rate": 0.00014679286395206318,
1148
+ "loss": 0.5189,
1149
+ "step": 114000
1150
+ },
1151
+ {
1152
+ "epoch": 5.17,
1153
+ "learning_rate": 0.00014597575922647418,
1154
+ "loss": 0.5178,
1155
+ "step": 114600
1156
+ },
1157
+ {
1158
+ "epoch": 5.19,
1159
+ "learning_rate": 0.00014515865450088518,
1160
+ "loss": 0.5254,
1161
+ "step": 115200
1162
+ },
1163
+ {
1164
+ "epoch": 5.22,
1165
+ "learning_rate": 0.00014434154977529618,
1166
+ "loss": 0.5171,
1167
+ "step": 115800
1168
+ },
1169
+ {
1170
+ "epoch": 5.25,
1171
+ "learning_rate": 0.0001435244450497072,
1172
+ "loss": 0.5167,
1173
+ "step": 116400
1174
+ },
1175
+ {
1176
+ "epoch": 5.28,
1177
+ "learning_rate": 0.0001427073403241182,
1178
+ "loss": 0.5286,
1179
+ "step": 117000
1180
+ },
1181
+ {
1182
+ "epoch": 5.3,
1183
+ "learning_rate": 0.0001418902355985292,
1184
+ "loss": 0.5298,
1185
+ "step": 117600
1186
+ },
1187
+ {
1188
+ "epoch": 5.33,
1189
+ "learning_rate": 0.00014107313087294022,
1190
+ "loss": 0.5295,
1191
+ "step": 118200
1192
+ },
1193
+ {
1194
+ "epoch": 5.36,
1195
+ "learning_rate": 0.0001402560261473512,
1196
+ "loss": 0.5324,
1197
+ "step": 118800
1198
+ },
1199
+ {
1200
+ "epoch": 5.38,
1201
+ "learning_rate": 0.00013943892142176222,
1202
+ "loss": 0.5155,
1203
+ "step": 119400
1204
+ },
1205
+ {
1206
+ "epoch": 5.41,
1207
+ "learning_rate": 0.0001386218166961732,
1208
+ "loss": 0.5138,
1209
+ "step": 120000
1210
+ },
1211
+ {
1212
+ "epoch": 5.44,
1213
+ "learning_rate": 0.0001378047119705842,
1214
+ "loss": 0.5215,
1215
+ "step": 120600
1216
+ },
1217
+ {
1218
+ "epoch": 5.46,
1219
+ "learning_rate": 0.00013698760724499524,
1220
+ "loss": 0.5236,
1221
+ "step": 121200
1222
+ },
1223
+ {
1224
+ "epoch": 5.49,
1225
+ "learning_rate": 0.00013617050251940623,
1226
+ "loss": 0.5249,
1227
+ "step": 121800
1228
+ },
1229
+ {
1230
+ "epoch": 5.52,
1231
+ "learning_rate": 0.00013535339779381723,
1232
+ "loss": 0.5086,
1233
+ "step": 122400
1234
+ },
1235
+ {
1236
+ "epoch": 5.55,
1237
+ "learning_rate": 0.00013453629306822823,
1238
+ "loss": 0.5271,
1239
+ "step": 123000
1240
+ },
1241
+ {
1242
+ "epoch": 5.57,
1243
+ "learning_rate": 0.00013371918834263925,
1244
+ "loss": 0.5214,
1245
+ "step": 123600
1246
+ },
1247
+ {
1248
+ "epoch": 5.6,
1249
+ "learning_rate": 0.00013290208361705022,
1250
+ "loss": 0.5257,
1251
+ "step": 124200
1252
+ },
1253
+ {
1254
+ "epoch": 5.63,
1255
+ "learning_rate": 0.00013208497889146125,
1256
+ "loss": 0.5182,
1257
+ "step": 124800
1258
+ },
1259
+ {
1260
+ "epoch": 5.65,
1261
+ "learning_rate": 0.00013126787416587225,
1262
+ "loss": 0.5128,
1263
+ "step": 125400
1264
+ },
1265
+ {
1266
+ "epoch": 5.68,
1267
+ "learning_rate": 0.00013045076944028324,
1268
+ "loss": 0.5164,
1269
+ "step": 126000
1270
+ },
1271
+ {
1272
+ "epoch": 5.71,
1273
+ "learning_rate": 0.00012963366471469427,
1274
+ "loss": 0.5142,
1275
+ "step": 126600
1276
+ },
1277
+ {
1278
+ "epoch": 5.74,
1279
+ "learning_rate": 0.00012881655998910527,
1280
+ "loss": 0.5336,
1281
+ "step": 127200
1282
+ },
1283
+ {
1284
+ "epoch": 5.76,
1285
+ "learning_rate": 0.00012799945526351626,
1286
+ "loss": 0.5216,
1287
+ "step": 127800
1288
+ },
1289
+ {
1290
+ "epoch": 5.79,
1291
+ "learning_rate": 0.00012718235053792726,
1292
+ "loss": 0.5185,
1293
+ "step": 128400
1294
+ },
1295
+ {
1296
+ "epoch": 5.82,
1297
+ "learning_rate": 0.00012636524581233829,
1298
+ "loss": 0.5134,
1299
+ "step": 129000
1300
+ },
1301
+ {
1302
+ "epoch": 5.84,
1303
+ "learning_rate": 0.00012554814108674928,
1304
+ "loss": 0.5206,
1305
+ "step": 129600
1306
+ },
1307
+ {
1308
+ "epoch": 5.87,
1309
+ "learning_rate": 0.00012473103636116028,
1310
+ "loss": 0.5056,
1311
+ "step": 130200
1312
+ },
1313
+ {
1314
+ "epoch": 5.9,
1315
+ "learning_rate": 0.00012391393163557128,
1316
+ "loss": 0.4996,
1317
+ "step": 130800
1318
+ },
1319
+ {
1320
+ "epoch": 5.92,
1321
+ "learning_rate": 0.00012309682690998228,
1322
+ "loss": 0.51,
1323
+ "step": 131400
1324
+ },
1325
+ {
1326
+ "epoch": 5.95,
1327
+ "learning_rate": 0.0001222797221843933,
1328
+ "loss": 0.499,
1329
+ "step": 132000
1330
+ },
1331
+ {
1332
+ "epoch": 5.98,
1333
+ "learning_rate": 0.0001214626174588043,
1334
+ "loss": 0.5181,
1335
+ "step": 132600
1336
+ },
1337
+ {
1338
+ "epoch": 6.01,
1339
+ "learning_rate": 0.0001206455127332153,
1340
+ "loss": 0.5164,
1341
+ "step": 133200
1342
+ },
1343
+ {
1344
+ "epoch": 6.03,
1345
+ "learning_rate": 0.0001198284080076263,
1346
+ "loss": 0.4706,
1347
+ "step": 133800
1348
+ },
1349
+ {
1350
+ "epoch": 6.06,
1351
+ "learning_rate": 0.00011901130328203729,
1352
+ "loss": 0.4552,
1353
+ "step": 134400
1354
+ },
1355
+ {
1356
+ "epoch": 6.09,
1357
+ "learning_rate": 0.0001181941985564483,
1358
+ "loss": 0.457,
1359
+ "step": 135000
1360
+ },
1361
+ {
1362
+ "epoch": 6.11,
1363
+ "learning_rate": 0.00011737709383085931,
1364
+ "loss": 0.4606,
1365
+ "step": 135600
1366
+ },
1367
+ {
1368
+ "epoch": 6.14,
1369
+ "learning_rate": 0.00011655998910527031,
1370
+ "loss": 0.4685,
1371
+ "step": 136200
1372
+ },
1373
+ {
1374
+ "epoch": 6.17,
1375
+ "learning_rate": 0.00011574288437968132,
1376
+ "loss": 0.4564,
1377
+ "step": 136800
1378
+ },
1379
+ {
1380
+ "epoch": 6.2,
1381
+ "learning_rate": 0.00011492577965409233,
1382
+ "loss": 0.4611,
1383
+ "step": 137400
1384
+ },
1385
+ {
1386
+ "epoch": 6.22,
1387
+ "learning_rate": 0.00011410867492850332,
1388
+ "loss": 0.4496,
1389
+ "step": 138000
1390
+ },
1391
+ {
1392
+ "epoch": 6.25,
1393
+ "learning_rate": 0.00011329157020291433,
1394
+ "loss": 0.4509,
1395
+ "step": 138600
1396
+ },
1397
+ {
1398
+ "epoch": 6.28,
1399
+ "learning_rate": 0.00011247446547732534,
1400
+ "loss": 0.4546,
1401
+ "step": 139200
1402
+ },
1403
+ {
1404
+ "epoch": 6.3,
1405
+ "learning_rate": 0.00011165736075173634,
1406
+ "loss": 0.4616,
1407
+ "step": 139800
1408
+ },
1409
+ {
1410
+ "epoch": 6.33,
1411
+ "learning_rate": 0.00011084025602614733,
1412
+ "loss": 0.465,
1413
+ "step": 140400
1414
+ },
1415
+ {
1416
+ "epoch": 6.36,
1417
+ "learning_rate": 0.00011002315130055835,
1418
+ "loss": 0.4639,
1419
+ "step": 141000
1420
+ },
1421
+ {
1422
+ "epoch": 6.38,
1423
+ "learning_rate": 0.00010920604657496934,
1424
+ "loss": 0.4605,
1425
+ "step": 141600
1426
+ },
1427
+ {
1428
+ "epoch": 6.41,
1429
+ "learning_rate": 0.00010838894184938035,
1430
+ "loss": 0.4592,
1431
+ "step": 142200
1432
+ },
1433
+ {
1434
+ "epoch": 6.44,
1435
+ "learning_rate": 0.00010757183712379136,
1436
+ "loss": 0.4612,
1437
+ "step": 142800
1438
+ },
1439
+ {
1440
+ "epoch": 6.47,
1441
+ "learning_rate": 0.00010675473239820235,
1442
+ "loss": 0.4538,
1443
+ "step": 143400
1444
+ },
1445
+ {
1446
+ "epoch": 6.49,
1447
+ "learning_rate": 0.00010593762767261336,
1448
+ "loss": 0.452,
1449
+ "step": 144000
1450
+ },
1451
+ {
1452
+ "epoch": 6.52,
1453
+ "learning_rate": 0.00010512052294702437,
1454
+ "loss": 0.4701,
1455
+ "step": 144600
1456
+ },
1457
+ {
1458
+ "epoch": 6.55,
1459
+ "learning_rate": 0.00010430341822143537,
1460
+ "loss": 0.4518,
1461
+ "step": 145200
1462
+ },
1463
+ {
1464
+ "epoch": 6.57,
1465
+ "learning_rate": 0.00010348631349584638,
1466
+ "loss": 0.4594,
1467
+ "step": 145800
1468
+ },
1469
+ {
1470
+ "epoch": 6.6,
1471
+ "learning_rate": 0.00010266920877025738,
1472
+ "loss": 0.4593,
1473
+ "step": 146400
1474
+ },
1475
+ {
1476
+ "epoch": 6.63,
1477
+ "learning_rate": 0.00010185210404466838,
1478
+ "loss": 0.4651,
1479
+ "step": 147000
1480
+ },
1481
+ {
1482
+ "epoch": 6.65,
1483
+ "learning_rate": 0.00010103499931907939,
1484
+ "loss": 0.4547,
1485
+ "step": 147600
1486
+ },
1487
+ {
1488
+ "epoch": 6.68,
1489
+ "learning_rate": 0.0001002178945934904,
1490
+ "loss": 0.4544,
1491
+ "step": 148200
1492
+ },
1493
+ {
1494
+ "epoch": 6.71,
1495
+ "learning_rate": 9.940078986790138e-05,
1496
+ "loss": 0.4605,
1497
+ "step": 148800
1498
+ },
1499
+ {
1500
+ "epoch": 6.74,
1501
+ "learning_rate": 9.858368514231239e-05,
1502
+ "loss": 0.4518,
1503
+ "step": 149400
1504
+ },
1505
+ {
1506
+ "epoch": 6.76,
1507
+ "learning_rate": 9.77665804167234e-05,
1508
+ "loss": 0.4625,
1509
+ "step": 150000
1510
+ },
1511
+ {
1512
+ "epoch": 6.79,
1513
+ "learning_rate": 9.69494756911344e-05,
1514
+ "loss": 0.4537,
1515
+ "step": 150600
1516
+ },
1517
+ {
1518
+ "epoch": 6.82,
1519
+ "learning_rate": 9.613237096554541e-05,
1520
+ "loss": 0.4515,
1521
+ "step": 151200
1522
+ },
1523
+ {
1524
+ "epoch": 6.84,
1525
+ "learning_rate": 9.531526623995642e-05,
1526
+ "loss": 0.4507,
1527
+ "step": 151800
1528
+ },
1529
+ {
1530
+ "epoch": 6.87,
1531
+ "learning_rate": 9.449816151436741e-05,
1532
+ "loss": 0.4617,
1533
+ "step": 152400
1534
+ },
1535
+ {
1536
+ "epoch": 6.9,
1537
+ "learning_rate": 9.368105678877842e-05,
1538
+ "loss": 0.4494,
1539
+ "step": 153000
1540
+ },
1541
+ {
1542
+ "epoch": 6.93,
1543
+ "learning_rate": 9.286395206318943e-05,
1544
+ "loss": 0.4502,
1545
+ "step": 153600
1546
+ },
1547
+ {
1548
+ "epoch": 6.95,
1549
+ "learning_rate": 9.204684733760043e-05,
1550
+ "loss": 0.4495,
1551
+ "step": 154200
1552
+ },
1553
+ {
1554
+ "epoch": 6.98,
1555
+ "learning_rate": 9.122974261201142e-05,
1556
+ "loss": 0.4569,
1557
+ "step": 154800
1558
+ },
1559
+ {
1560
+ "epoch": 7.01,
1561
+ "learning_rate": 9.041263788642244e-05,
1562
+ "loss": 0.4416,
1563
+ "step": 155400
1564
+ },
1565
+ {
1566
+ "epoch": 7.03,
1567
+ "learning_rate": 8.959553316083343e-05,
1568
+ "loss": 0.4081,
1569
+ "step": 156000
1570
+ },
1571
+ {
1572
+ "epoch": 7.06,
1573
+ "learning_rate": 8.877842843524444e-05,
1574
+ "loss": 0.4196,
1575
+ "step": 156600
1576
+ },
1577
+ {
1578
+ "epoch": 7.09,
1579
+ "learning_rate": 8.796132370965546e-05,
1580
+ "loss": 0.4135,
1581
+ "step": 157200
1582
+ },
1583
+ {
1584
+ "epoch": 7.11,
1585
+ "learning_rate": 8.714421898406644e-05,
1586
+ "loss": 0.4088,
1587
+ "step": 157800
1588
+ },
1589
+ {
1590
+ "epoch": 7.14,
1591
+ "learning_rate": 8.632711425847745e-05,
1592
+ "loss": 0.4005,
1593
+ "step": 158400
1594
+ },
1595
+ {
1596
+ "epoch": 7.17,
1597
+ "learning_rate": 8.551000953288846e-05,
1598
+ "loss": 0.3954,
1599
+ "step": 159000
1600
+ },
1601
+ {
1602
+ "epoch": 7.2,
1603
+ "learning_rate": 8.469290480729946e-05,
1604
+ "loss": 0.4093,
1605
+ "step": 159600
1606
+ },
1607
+ {
1608
+ "epoch": 7.22,
1609
+ "learning_rate": 8.387580008171047e-05,
1610
+ "loss": 0.3998,
1611
+ "step": 160200
1612
+ },
1613
+ {
1614
+ "epoch": 7.25,
1615
+ "learning_rate": 8.305869535612147e-05,
1616
+ "loss": 0.4068,
1617
+ "step": 160800
1618
+ },
1619
+ {
1620
+ "epoch": 7.28,
1621
+ "learning_rate": 8.224159063053247e-05,
1622
+ "loss": 0.3933,
1623
+ "step": 161400
1624
+ },
1625
+ {
1626
+ "epoch": 7.3,
1627
+ "learning_rate": 8.142448590494348e-05,
1628
+ "loss": 0.3957,
1629
+ "step": 162000
1630
+ },
1631
+ {
1632
+ "epoch": 7.33,
1633
+ "learning_rate": 8.060738117935449e-05,
1634
+ "loss": 0.3954,
1635
+ "step": 162600
1636
+ },
1637
+ {
1638
+ "epoch": 7.36,
1639
+ "learning_rate": 7.979027645376547e-05,
1640
+ "loss": 0.3949,
1641
+ "step": 163200
1642
+ },
1643
+ {
1644
+ "epoch": 7.39,
1645
+ "learning_rate": 7.897317172817648e-05,
1646
+ "loss": 0.4014,
1647
+ "step": 163800
1648
+ },
1649
+ {
1650
+ "epoch": 7.41,
1651
+ "learning_rate": 7.81560670025875e-05,
1652
+ "loss": 0.4007,
1653
+ "step": 164400
1654
+ },
1655
+ {
1656
+ "epoch": 7.44,
1657
+ "learning_rate": 7.733896227699849e-05,
1658
+ "loss": 0.4037,
1659
+ "step": 165000
1660
+ },
1661
+ {
1662
+ "epoch": 7.47,
1663
+ "learning_rate": 7.65218575514095e-05,
1664
+ "loss": 0.4055,
1665
+ "step": 165600
1666
+ },
1667
+ {
1668
+ "epoch": 7.49,
1669
+ "learning_rate": 7.570475282582051e-05,
1670
+ "loss": 0.3985,
1671
+ "step": 166200
1672
+ },
1673
+ {
1674
+ "epoch": 7.52,
1675
+ "learning_rate": 7.488764810023151e-05,
1676
+ "loss": 0.4022,
1677
+ "step": 166800
1678
+ },
1679
+ {
1680
+ "epoch": 7.55,
1681
+ "learning_rate": 7.407054337464251e-05,
1682
+ "loss": 0.3872,
1683
+ "step": 167400
1684
+ },
1685
+ {
1686
+ "epoch": 7.57,
1687
+ "learning_rate": 7.325343864905351e-05,
1688
+ "loss": 0.3895,
1689
+ "step": 168000
1690
+ },
1691
+ {
1692
+ "epoch": 7.6,
1693
+ "learning_rate": 7.243633392346452e-05,
1694
+ "loss": 0.3968,
1695
+ "step": 168600
1696
+ },
1697
+ {
1698
+ "epoch": 7.63,
1699
+ "learning_rate": 7.161922919787552e-05,
1700
+ "loss": 0.4051,
1701
+ "step": 169200
1702
+ },
1703
+ {
1704
+ "epoch": 7.66,
1705
+ "learning_rate": 7.080212447228653e-05,
1706
+ "loss": 0.3915,
1707
+ "step": 169800
1708
+ },
1709
+ {
1710
+ "epoch": 7.68,
1711
+ "learning_rate": 6.998501974669754e-05,
1712
+ "loss": 0.3934,
1713
+ "step": 170400
1714
+ },
1715
+ {
1716
+ "epoch": 7.71,
1717
+ "learning_rate": 6.916791502110854e-05,
1718
+ "loss": 0.3943,
1719
+ "step": 171000
1720
+ },
1721
+ {
1722
+ "epoch": 7.74,
1723
+ "learning_rate": 6.835081029551953e-05,
1724
+ "loss": 0.3932,
1725
+ "step": 171600
1726
+ },
1727
+ {
1728
+ "epoch": 7.76,
1729
+ "learning_rate": 6.753370556993054e-05,
1730
+ "loss": 0.4063,
1731
+ "step": 172200
1732
+ },
1733
+ {
1734
+ "epoch": 7.79,
1735
+ "learning_rate": 6.671660084434154e-05,
1736
+ "loss": 0.3975,
1737
+ "step": 172800
1738
+ },
1739
+ {
1740
+ "epoch": 7.82,
1741
+ "learning_rate": 6.589949611875254e-05,
1742
+ "loss": 0.3915,
1743
+ "step": 173400
1744
+ },
1745
+ {
1746
+ "epoch": 7.85,
1747
+ "learning_rate": 6.508239139316355e-05,
1748
+ "loss": 0.3892,
1749
+ "step": 174000
1750
+ },
1751
+ {
1752
+ "epoch": 7.87,
1753
+ "learning_rate": 6.426528666757456e-05,
1754
+ "loss": 0.3831,
1755
+ "step": 174600
1756
+ },
1757
+ {
1758
+ "epoch": 7.9,
1759
+ "learning_rate": 6.344818194198556e-05,
1760
+ "loss": 0.3896,
1761
+ "step": 175200
1762
+ },
1763
+ {
1764
+ "epoch": 7.93,
1765
+ "learning_rate": 6.263107721639657e-05,
1766
+ "loss": 0.3839,
1767
+ "step": 175800
1768
+ },
1769
+ {
1770
+ "epoch": 7.95,
1771
+ "learning_rate": 6.181397249080757e-05,
1772
+ "loss": 0.401,
1773
+ "step": 176400
1774
+ },
1775
+ {
1776
+ "epoch": 7.98,
1777
+ "learning_rate": 6.0996867765218565e-05,
1778
+ "loss": 0.3888,
1779
+ "step": 177000
1780
+ },
1781
+ {
1782
+ "epoch": 8.01,
1783
+ "learning_rate": 6.0179763039629576e-05,
1784
+ "loss": 0.371,
1785
+ "step": 177600
1786
+ },
1787
+ {
1788
+ "epoch": 8.03,
1789
+ "learning_rate": 5.936265831404058e-05,
1790
+ "loss": 0.3514,
1791
+ "step": 178200
1792
+ },
1793
+ {
1794
+ "epoch": 8.06,
1795
+ "learning_rate": 5.854555358845158e-05,
1796
+ "loss": 0.364,
1797
+ "step": 178800
1798
+ },
1799
+ {
1800
+ "epoch": 8.09,
1801
+ "learning_rate": 5.772844886286259e-05,
1802
+ "loss": 0.3486,
1803
+ "step": 179400
1804
+ },
1805
+ {
1806
+ "epoch": 8.12,
1807
+ "learning_rate": 5.691134413727359e-05,
1808
+ "loss": 0.3531,
1809
+ "step": 180000
1810
+ },
1811
+ {
1812
+ "epoch": 8.14,
1813
+ "learning_rate": 5.609423941168459e-05,
1814
+ "loss": 0.3584,
1815
+ "step": 180600
1816
+ },
1817
+ {
1818
+ "epoch": 8.17,
1819
+ "learning_rate": 5.52771346860956e-05,
1820
+ "loss": 0.345,
1821
+ "step": 181200
1822
+ },
1823
+ {
1824
+ "epoch": 8.2,
1825
+ "learning_rate": 5.44600299605066e-05,
1826
+ "loss": 0.3406,
1827
+ "step": 181800
1828
+ },
1829
+ {
1830
+ "epoch": 8.22,
1831
+ "learning_rate": 5.3642925234917604e-05,
1832
+ "loss": 0.3519,
1833
+ "step": 182400
1834
+ },
1835
+ {
1836
+ "epoch": 8.25,
1837
+ "learning_rate": 5.28258205093286e-05,
1838
+ "loss": 0.3607,
1839
+ "step": 183000
1840
+ },
1841
+ {
1842
+ "epoch": 8.28,
1843
+ "learning_rate": 5.200871578373961e-05,
1844
+ "loss": 0.3533,
1845
+ "step": 183600
1846
+ },
1847
+ {
1848
+ "epoch": 8.31,
1849
+ "learning_rate": 5.119161105815061e-05,
1850
+ "loss": 0.3586,
1851
+ "step": 184200
1852
+ },
1853
+ {
1854
+ "epoch": 8.33,
1855
+ "learning_rate": 5.0374506332561615e-05,
1856
+ "loss": 0.3453,
1857
+ "step": 184800
1858
+ },
1859
+ {
1860
+ "epoch": 8.36,
1861
+ "learning_rate": 4.9557401606972626e-05,
1862
+ "loss": 0.3431,
1863
+ "step": 185400
1864
+ },
1865
+ {
1866
+ "epoch": 8.39,
1867
+ "learning_rate": 4.8740296881383624e-05,
1868
+ "loss": 0.3546,
1869
+ "step": 186000
1870
+ },
1871
+ {
1872
+ "epoch": 8.41,
1873
+ "learning_rate": 4.792319215579463e-05,
1874
+ "loss": 0.3434,
1875
+ "step": 186600
1876
+ },
1877
+ {
1878
+ "epoch": 8.44,
1879
+ "learning_rate": 4.710608743020563e-05,
1880
+ "loss": 0.356,
1881
+ "step": 187200
1882
+ },
1883
+ {
1884
+ "epoch": 8.47,
1885
+ "learning_rate": 4.628898270461664e-05,
1886
+ "loss": 0.343,
1887
+ "step": 187800
1888
+ },
1889
+ {
1890
+ "epoch": 8.49,
1891
+ "learning_rate": 4.547187797902764e-05,
1892
+ "loss": 0.3501,
1893
+ "step": 188400
1894
+ },
1895
+ {
1896
+ "epoch": 8.52,
1897
+ "learning_rate": 4.4654773253438645e-05,
1898
+ "loss": 0.3384,
1899
+ "step": 189000
1900
+ },
1901
+ {
1902
+ "epoch": 8.55,
1903
+ "learning_rate": 4.383766852784965e-05,
1904
+ "loss": 0.3515,
1905
+ "step": 189600
1906
+ },
1907
+ {
1908
+ "epoch": 8.58,
1909
+ "learning_rate": 4.302056380226065e-05,
1910
+ "loss": 0.353,
1911
+ "step": 190200
1912
+ },
1913
+ {
1914
+ "epoch": 8.6,
1915
+ "learning_rate": 4.220345907667166e-05,
1916
+ "loss": 0.3448,
1917
+ "step": 190800
1918
+ },
1919
+ {
1920
+ "epoch": 8.63,
1921
+ "learning_rate": 4.138635435108266e-05,
1922
+ "loss": 0.3438,
1923
+ "step": 191400
1924
+ },
1925
+ {
1926
+ "epoch": 8.66,
1927
+ "learning_rate": 4.056924962549366e-05,
1928
+ "loss": 0.3539,
1929
+ "step": 192000
1930
+ },
1931
+ {
1932
+ "epoch": 8.68,
1933
+ "learning_rate": 3.975214489990467e-05,
1934
+ "loss": 0.3514,
1935
+ "step": 192600
1936
+ },
1937
+ {
1938
+ "epoch": 8.71,
1939
+ "learning_rate": 3.893504017431567e-05,
1940
+ "loss": 0.3514,
1941
+ "step": 193200
1942
+ },
1943
+ {
1944
+ "epoch": 8.74,
1945
+ "learning_rate": 3.811793544872667e-05,
1946
+ "loss": 0.3349,
1947
+ "step": 193800
1948
+ },
1949
+ {
1950
+ "epoch": 8.77,
1951
+ "learning_rate": 3.730083072313768e-05,
1952
+ "loss": 0.3429,
1953
+ "step": 194400
1954
+ },
1955
+ {
1956
+ "epoch": 8.79,
1957
+ "learning_rate": 3.648372599754868e-05,
1958
+ "loss": 0.3407,
1959
+ "step": 195000
1960
+ },
1961
+ {
1962
+ "epoch": 8.82,
1963
+ "learning_rate": 3.5666621271959686e-05,
1964
+ "loss": 0.3444,
1965
+ "step": 195600
1966
+ },
1967
+ {
1968
+ "epoch": 8.85,
1969
+ "learning_rate": 3.484951654637069e-05,
1970
+ "loss": 0.3434,
1971
+ "step": 196200
1972
+ },
1973
+ {
1974
+ "epoch": 8.87,
1975
+ "learning_rate": 3.4032411820781695e-05,
1976
+ "loss": 0.3423,
1977
+ "step": 196800
1978
+ },
1979
+ {
1980
+ "epoch": 8.9,
1981
+ "learning_rate": 3.32153070951927e-05,
1982
+ "loss": 0.3387,
1983
+ "step": 197400
1984
+ },
1985
+ {
1986
+ "epoch": 8.93,
1987
+ "learning_rate": 3.23982023696037e-05,
1988
+ "loss": 0.3415,
1989
+ "step": 198000
1990
+ },
1991
+ {
1992
+ "epoch": 8.95,
1993
+ "learning_rate": 3.158109764401471e-05,
1994
+ "loss": 0.3404,
1995
+ "step": 198600
1996
+ },
1997
+ {
1998
+ "epoch": 8.98,
1999
+ "learning_rate": 3.076399291842571e-05,
2000
+ "loss": 0.3303,
2001
+ "step": 199200
2002
+ },
2003
+ {
2004
+ "epoch": 9.01,
2005
+ "learning_rate": 2.994688819283671e-05,
2006
+ "loss": 0.3239,
2007
+ "step": 199800
2008
+ },
2009
+ {
2010
+ "epoch": 9.04,
2011
+ "learning_rate": 2.9129783467247718e-05,
2012
+ "loss": 0.3095,
2013
+ "step": 200400
2014
+ },
2015
+ {
2016
+ "epoch": 9.06,
2017
+ "learning_rate": 2.8312678741658722e-05,
2018
+ "loss": 0.3101,
2019
+ "step": 201000
2020
+ },
2021
+ {
2022
+ "epoch": 9.09,
2023
+ "learning_rate": 2.7495574016069723e-05,
2024
+ "loss": 0.3228,
2025
+ "step": 201600
2026
+ },
2027
+ {
2028
+ "epoch": 9.12,
2029
+ "learning_rate": 2.6678469290480727e-05,
2030
+ "loss": 0.3092,
2031
+ "step": 202200
2032
+ },
2033
+ {
2034
+ "epoch": 9.14,
2035
+ "learning_rate": 2.5861364564891732e-05,
2036
+ "loss": 0.3162,
2037
+ "step": 202800
2038
+ },
2039
+ {
2040
+ "epoch": 9.17,
2041
+ "learning_rate": 2.5044259839302733e-05,
2042
+ "loss": 0.3065,
2043
+ "step": 203400
2044
+ },
2045
+ {
2046
+ "epoch": 9.2,
2047
+ "learning_rate": 2.422715511371374e-05,
2048
+ "loss": 0.3123,
2049
+ "step": 204000
2050
+ },
2051
+ {
2052
+ "epoch": 9.22,
2053
+ "learning_rate": 2.3410050388124745e-05,
2054
+ "loss": 0.3075,
2055
+ "step": 204600
2056
+ },
2057
+ {
2058
+ "epoch": 9.25,
2059
+ "learning_rate": 2.2592945662535746e-05,
2060
+ "loss": 0.3075,
2061
+ "step": 205200
2062
+ },
2063
+ {
2064
+ "epoch": 9.28,
2065
+ "learning_rate": 2.177584093694675e-05,
2066
+ "loss": 0.3129,
2067
+ "step": 205800
2068
+ },
2069
+ {
2070
+ "epoch": 9.31,
2071
+ "learning_rate": 2.0958736211357754e-05,
2072
+ "loss": 0.3091,
2073
+ "step": 206400
2074
+ },
2075
+ {
2076
+ "epoch": 9.33,
2077
+ "learning_rate": 2.0141631485768755e-05,
2078
+ "loss": 0.3076,
2079
+ "step": 207000
2080
+ },
2081
+ {
2082
+ "epoch": 9.36,
2083
+ "learning_rate": 1.9324526760179763e-05,
2084
+ "loss": 0.31,
2085
+ "step": 207600
2086
+ },
2087
+ {
2088
+ "epoch": 9.39,
2089
+ "learning_rate": 1.8507422034590764e-05,
2090
+ "loss": 0.3169,
2091
+ "step": 208200
2092
+ },
2093
+ {
2094
+ "epoch": 9.41,
2095
+ "learning_rate": 1.769031730900177e-05,
2096
+ "loss": 0.3117,
2097
+ "step": 208800
2098
+ },
2099
+ {
2100
+ "epoch": 9.44,
2101
+ "learning_rate": 1.6873212583412773e-05,
2102
+ "loss": 0.312,
2103
+ "step": 209400
2104
+ },
2105
+ {
2106
+ "epoch": 9.47,
2107
+ "learning_rate": 1.6056107857823777e-05,
2108
+ "loss": 0.3039,
2109
+ "step": 210000
2110
+ },
2111
+ {
2112
+ "epoch": 9.5,
2113
+ "learning_rate": 1.523900313223478e-05,
2114
+ "loss": 0.3057,
2115
+ "step": 210600
2116
+ },
2117
+ {
2118
+ "epoch": 9.52,
2119
+ "learning_rate": 1.4421898406645782e-05,
2120
+ "loss": 0.318,
2121
+ "step": 211200
2122
+ },
2123
+ {
2124
+ "epoch": 9.55,
2125
+ "learning_rate": 1.3604793681056788e-05,
2126
+ "loss": 0.3094,
2127
+ "step": 211800
2128
+ },
2129
+ {
2130
+ "epoch": 9.58,
2131
+ "learning_rate": 1.2787688955467791e-05,
2132
+ "loss": 0.3057,
2133
+ "step": 212400
2134
+ },
2135
+ {
2136
+ "epoch": 9.6,
2137
+ "learning_rate": 1.1970584229878794e-05,
2138
+ "loss": 0.3001,
2139
+ "step": 213000
2140
+ },
2141
+ {
2142
+ "epoch": 9.63,
2143
+ "learning_rate": 1.11534795042898e-05,
2144
+ "loss": 0.31,
2145
+ "step": 213600
2146
+ },
2147
+ {
2148
+ "epoch": 9.66,
2149
+ "learning_rate": 1.0336374778700802e-05,
2150
+ "loss": 0.3195,
2151
+ "step": 214200
2152
+ },
2153
+ {
2154
+ "epoch": 9.68,
2155
+ "learning_rate": 9.519270053111805e-06,
2156
+ "loss": 0.3022,
2157
+ "step": 214800
2158
+ },
2159
+ {
2160
+ "epoch": 9.71,
2161
+ "learning_rate": 8.70216532752281e-06,
2162
+ "loss": 0.3081,
2163
+ "step": 215400
2164
+ },
2165
+ {
2166
+ "epoch": 9.74,
2167
+ "learning_rate": 7.885060601933814e-06,
2168
+ "loss": 0.3037,
2169
+ "step": 216000
2170
+ },
2171
+ {
2172
+ "epoch": 9.77,
2173
+ "learning_rate": 7.067955876344818e-06,
2174
+ "loss": 0.3039,
2175
+ "step": 216600
2176
+ },
2177
+ {
2178
+ "epoch": 9.79,
2179
+ "learning_rate": 6.250851150755821e-06,
2180
+ "loss": 0.2932,
2181
+ "step": 217200
2182
+ },
2183
+ {
2184
+ "epoch": 9.82,
2185
+ "learning_rate": 5.433746425166825e-06,
2186
+ "loss": 0.3038,
2187
+ "step": 217800
2188
+ },
2189
+ {
2190
+ "epoch": 9.85,
2191
+ "learning_rate": 4.616641699577829e-06,
2192
+ "loss": 0.3031,
2193
+ "step": 218400
2194
+ },
2195
+ {
2196
+ "epoch": 9.87,
2197
+ "learning_rate": 3.7995369739888326e-06,
2198
+ "loss": 0.297,
2199
+ "step": 219000
2200
+ },
2201
+ {
2202
+ "epoch": 9.9,
2203
+ "learning_rate": 2.982432248399836e-06,
2204
+ "loss": 0.3094,
2205
+ "step": 219600
2206
+ },
2207
+ {
2208
+ "epoch": 9.93,
2209
+ "learning_rate": 2.16532752281084e-06,
2210
+ "loss": 0.3106,
2211
+ "step": 220200
2212
+ },
2213
+ {
2214
+ "epoch": 9.96,
2215
+ "learning_rate": 1.348222797221844e-06,
2216
+ "loss": 0.3051,
2217
+ "step": 220800
2218
+ },
2219
+ {
2220
+ "epoch": 9.98,
2221
+ "learning_rate": 5.311180716328475e-07,
2222
+ "loss": 0.3008,
2223
+ "step": 221400
2224
+ }
2225
+ ],
2226
+ "logging_steps": 600,
2227
+ "max_steps": 221790,
2228
+ "num_train_epochs": 10,
2229
+ "save_steps": 500,
2230
+ "total_flos": 2.2250697536839877e+20,
2231
+ "trial_name": null,
2232
+ "trial_params": null
2233
+ }
checkpoint-221790/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbe48fb494caf380988751c53bf416c9251961405d6d7abc072283944dfa068c
3
+ size 4600
checkpoint-221790/vocab.json ADDED
@@ -0,0 +1,1890 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "=": 1,
3
+ "[PAD]": 1887,
4
+ "[UNK]": 1886,
5
+ "|": 0,
6
+ "}": 2,
7
+ "è": 3,
8
+ "ㄴ": 4,
9
+ "ㅅ": 5,
10
+ "ㅋ": 6,
11
+ "ㅡ": 7,
12
+ "가": 8,
13
+ "각": 9,
14
+ "간": 10,
15
+ "갇": 11,
16
+ "갈": 12,
17
+ "갉": 13,
18
+ "감": 14,
19
+ "갑": 15,
20
+ "값": 16,
21
+ "갓": 17,
22
+ "갔": 18,
23
+ "강": 19,
24
+ "갖": 20,
25
+ "갗": 21,
26
+ "같": 22,
27
+ "갚": 23,
28
+ "갛": 24,
29
+ "개": 25,
30
+ "객": 26,
31
+ "갠": 27,
32
+ "갤": 28,
33
+ "갬": 29,
34
+ "갭": 30,
35
+ "갯": 31,
36
+ "갰": 32,
37
+ "갱": 33,
38
+ "갸": 34,
39
+ "걀": 35,
40
+ "걍": 36,
41
+ "걎": 37,
42
+ "걔": 38,
43
+ "걘": 39,
44
+ "거": 40,
45
+ "걱": 41,
46
+ "건": 42,
47
+ "걷": 43,
48
+ "걸": 44,
49
+ "검": 45,
50
+ "겁": 46,
51
+ "것": 47,
52
+ "겄": 48,
53
+ "겅": 49,
54
+ "겉": 50,
55
+ "겋": 51,
56
+ "게": 52,
57
+ "겐": 53,
58
+ "겔": 54,
59
+ "겜": 55,
60
+ "겝": 56,
61
+ "겟": 57,
62
+ "겠": 58,
63
+ "겡": 59,
64
+ "겨": 60,
65
+ "격": 61,
66
+ "겪": 62,
67
+ "견": 63,
68
+ "결": 64,
69
+ "겸": 65,
70
+ "겹": 66,
71
+ "겼": 67,
72
+ "경": 68,
73
+ "곁": 69,
74
+ "계": 70,
75
+ "곗": 71,
76
+ "곘": 72,
77
+ "고": 73,
78
+ "곡": 74,
79
+ "곤": 75,
80
+ "곧": 76,
81
+ "골": 77,
82
+ "곰": 78,
83
+ "곱": 79,
84
+ "곳": 80,
85
+ "공": 81,
86
+ "곶": 82,
87
+ "과": 83,
88
+ "곽": 84,
89
+ "관": 85,
90
+ "괄": 86,
91
+ "괌": 87,
92
+ "괍": 88,
93
+ "광": 89,
94
+ "괘": 90,
95
+ "괜": 91,
96
+ "괞": 92,
97
+ "괭": 93,
98
+ "괴": 94,
99
+ "괼": 95,
100
+ "굉": 96,
101
+ "교": 97,
102
+ "굔": 98,
103
+ "굘": 99,
104
+ "구": 100,
105
+ "국": 101,
106
+ "군": 102,
107
+ "굳": 103,
108
+ "굴": 104,
109
+ "굵": 105,
110
+ "굶": 106,
111
+ "굼": 107,
112
+ "굽": 108,
113
+ "굿": 109,
114
+ "궁": 110,
115
+ "궈": 111,
116
+ "권": 112,
117
+ "궐": 113,
118
+ "궜": 114,
119
+ "궤": 115,
120
+ "귀": 116,
121
+ "귄": 117,
122
+ "귓": 118,
123
+ "규": 119,
124
+ "귝": 120,
125
+ "균": 121,
126
+ "귤": 122,
127
+ "그": 123,
128
+ "극": 124,
129
+ "근": 125,
130
+ "귿": 126,
131
+ "글": 127,
132
+ "긁": 128,
133
+ "금": 129,
134
+ "급": 130,
135
+ "긋": 131,
136
+ "긍": 132,
137
+ "긔": 133,
138
+ "기": 134,
139
+ "긴": 135,
140
+ "길": 136,
141
+ "김": 137,
142
+ "깁": 138,
143
+ "깃": 139,
144
+ "깄": 140,
145
+ "깅": 141,
146
+ "깉": 142,
147
+ "깊": 143,
148
+ "까": 144,
149
+ "깍": 145,
150
+ "깎": 146,
151
+ "깐": 147,
152
+ "깔": 148,
153
+ "깜": 149,
154
+ "깝": 150,
155
+ "깠": 151,
156
+ "깡": 152,
157
+ "깥": 153,
158
+ "깨": 154,
159
+ "깬": 155,
160
+ "깰": 156,
161
+ "깸": 157,
162
+ "깹": 158,
163
+ "깻": 159,
164
+ "깼": 160,
165
+ "깽": 161,
166
+ "꺄": 162,
167
+ "꺅": 163,
168
+ "꺼": 164,
169
+ "꺽": 165,
170
+ "꺾": 166,
171
+ "껀": 167,
172
+ "껄": 168,
173
+ "껌": 169,
174
+ "껍": 170,
175
+ "껏": 171,
176
+ "껐": 172,
177
+ "껑": 173,
178
+ "께": 174,
179
+ "껨": 175,
180
+ "껴": 176,
181
+ "꼇": 177,
182
+ "꼈": 178,
183
+ "꼉": 179,
184
+ "꼐": 180,
185
+ "꼬": 181,
186
+ "꼭": 182,
187
+ "꼰": 183,
188
+ "꼴": 184,
189
+ "꼼": 185,
190
+ "꼽": 186,
191
+ "꽁": 187,
192
+ "꽂": 188,
193
+ "꽃": 189,
194
+ "꽈": 190,
195
+ "꽉": 191,
196
+ "꽝": 192,
197
+ "꽤": 193,
198
+ "꽥": 194,
199
+ "꾀": 195,
200
+ "꾸": 196,
201
+ "꾹": 197,
202
+ "꾼": 198,
203
+ "꿀": 199,
204
+ "꿇": 200,
205
+ "꿈": 201,
206
+ "꿉": 202,
207
+ "꿋": 203,
208
+ "꿍": 204,
209
+ "꿔": 205,
210
+ "꿨": 206,
211
+ "꿩": 207,
212
+ "꿰": 208,
213
+ "뀌": 209,
214
+ "뀐": 210,
215
+ "뀔": 211,
216
+ "뀜": 212,
217
+ "뀝": 213,
218
+ "뀠": 214,
219
+ "끄": 215,
220
+ "끈": 216,
221
+ "끊": 217,
222
+ "끌": 218,
223
+ "끓": 219,
224
+ "끔": 220,
225
+ "끕": 221,
226
+ "끗": 222,
227
+ "끙": 223,
228
+ "끝": 224,
229
+ "끼": 225,
230
+ "끽": 226,
231
+ "낀": 227,
232
+ "낄": 228,
233
+ "낌": 229,
234
+ "낍": 230,
235
+ "낑": 231,
236
+ "나": 232,
237
+ "낙": 233,
238
+ "낚": 234,
239
+ "난": 235,
240
+ "날": 236,
241
+ "낡": 237,
242
+ "남": 238,
243
+ "납": 239,
244
+ "낫": 240,
245
+ "났": 241,
246
+ "낭": 242,
247
+ "낮": 243,
248
+ "낯": 244,
249
+ "낱": 245,
250
+ "낳": 246,
251
+ "내": 247,
252
+ "낵": 248,
253
+ "낸": 249,
254
+ "낼": 250,
255
+ "냄": 251,
256
+ "냅": 252,
257
+ "냇": 253,
258
+ "냈": 254,
259
+ "냉": 255,
260
+ "냐": 256,
261
+ "냑": 257,
262
+ "냠": 258,
263
+ "냥": 259,
264
+ "냬": 260,
265
+ "너": 261,
266
+ "넉": 262,
267
+ "넋": 263,
268
+ "넌": 264,
269
+ "널": 265,
270
+ "넓": 266,
271
+ "넘": 267,
272
+ "넙": 268,
273
+ "넛": 269,
274
+ "넝": 270,
275
+ "넢": 271,
276
+ "넣": 272,
277
+ "네": 273,
278
+ "넥": 274,
279
+ "넨": 275,
280
+ "넬": 276,
281
+ "넴": 277,
282
+ "넵": 278,
283
+ "넷": 279,
284
+ "넹": 280,
285
+ "녀": 281,
286
+ "녁": 282,
287
+ "년": 283,
288
+ "념": 284,
289
+ "녑": 285,
290
+ "녔": 286,
291
+ "녕": 287,
292
+ "녘": 288,
293
+ "녜": 289,
294
+ "노": 290,
295
+ "녹": 291,
296
+ "논": 292,
297
+ "놀": 293,
298
+ "놈": 294,
299
+ "놉": 295,
300
+ "농": 296,
301
+ "높": 297,
302
+ "놓": 298,
303
+ "놔": 299,
304
+ "놧": 300,
305
+ "놨": 301,
306
+ "뇌": 302,
307
+ "뇨": 303,
308
+ "뇽": 304,
309
+ "누": 305,
310
+ "눅": 306,
311
+ "눈": 307,
312
+ "눌": 308,
313
+ "눔": 309,
314
+ "눕": 310,
315
+ "눗": 311,
316
+ "눠": 312,
317
+ "눴": 313,
318
+ "뉘": 314,
319
+ "뉜": 315,
320
+ "뉠": 316,
321
+ "뉩": 317,
322
+ "뉴": 318,
323
+ "늄": 319,
324
+ "늉": 320,
325
+ "느": 321,
326
+ "늑": 322,
327
+ "는": 323,
328
+ "늗": 324,
329
+ "늘": 325,
330
+ "늙": 326,
331
+ "늠": 327,
332
+ "늡": 328,
333
+ "능": 329,
334
+ "늦": 330,
335
+ "늪": 331,
336
+ "늫": 332,
337
+ "늬": 333,
338
+ "니": 334,
339
+ "닉": 335,
340
+ "닌": 336,
341
+ "닐": 337,
342
+ "님": 338,
343
+ "닙": 339,
344
+ "닛": 340,
345
+ "닝": 341,
346
+ "다": 342,
347
+ "닥": 343,
348
+ "닦": 344,
349
+ "단": 345,
350
+ "닫": 346,
351
+ "달": 347,
352
+ "닭": 348,
353
+ "닮": 349,
354
+ "닳": 350,
355
+ "담": 351,
356
+ "답": 352,
357
+ "닷": 353,
358
+ "당": 354,
359
+ "닿": 355,
360
+ "대": 356,
361
+ "댁": 357,
362
+ "댄": 358,
363
+ "댈": 359,
364
+ "댐": 360,
365
+ "댑": 361,
366
+ "댓": 362,
367
+ "댔": 363,
368
+ "댕": 364,
369
+ "댗": 365,
370
+ "댜": 366,
371
+ "더": 367,
372
+ "덕": 368,
373
+ "던": 369,
374
+ "덜": 370,
375
+ "덟": 371,
376
+ "덤": 372,
377
+ "덥": 373,
378
+ "덧": 374,
379
+ "덩": 375,
380
+ "덫": 376,
381
+ "덮": 377,
382
+ "데": 378,
383
+ "덱": 379,
384
+ "덴": 380,
385
+ "델": 381,
386
+ "뎀": 382,
387
+ "뎁": 383,
388
+ "뎃": 384,
389
+ "뎅": 385,
390
+ "뎌": 386,
391
+ "도": 387,
392
+ "독": 388,
393
+ "돈": 389,
394
+ "돋": 390,
395
+ "돌": 391,
396
+ "돔": 392,
397
+ "돕": 393,
398
+ "돗": 394,
399
+ "동": 395,
400
+ "돚": 396,
401
+ "돨": 397,
402
+ "돼": 398,
403
+ "됐": 399,
404
+ "됑": 400,
405
+ "되": 401,
406
+ "된": 402,
407
+ "될": 403,
408
+ "됨": 404,
409
+ "됩": 405,
410
+ "됬": 406,
411
+ "두": 407,
412
+ "둑": 408,
413
+ "둔": 409,
414
+ "둘": 410,
415
+ "둠": 411,
416
+ "둡": 412,
417
+ "둣": 413,
418
+ "둥": 414,
419
+ "둬": 415,
420
+ "뒀": 416,
421
+ "뒈": 417,
422
+ "뒤": 418,
423
+ "뒷": 419,
424
+ "뒹": 420,
425
+ "듀": 421,
426
+ "듄": 422,
427
+ "듕": 423,
428
+ "드": 424,
429
+ "득": 425,
430
+ "든": 426,
431
+ "듣": 427,
432
+ "들": 428,
433
+ "듦": 429,
434
+ "듬": 430,
435
+ "듭": 431,
436
+ "듯": 432,
437
+ "등": 433,
438
+ "디": 434,
439
+ "딕": 435,
440
+ "딘": 436,
441
+ "딛": 437,
442
+ "딜": 438,
443
+ "딣": 439,
444
+ "딤": 440,
445
+ "딥": 441,
446
+ "딧": 442,
447
+ "딨": 443,
448
+ "딩": 444,
449
+ "딪": 445,
450
+ "따": 446,
451
+ "딱": 447,
452
+ "딴": 448,
453
+ "딸": 449,
454
+ "땀": 450,
455
+ "땁": 451,
456
+ "땃": 452,
457
+ "땄": 453,
458
+ "땅": 454,
459
+ "땋": 455,
460
+ "때": 456,
461
+ "땐": 457,
462
+ "땔": 458,
463
+ "땜": 459,
464
+ "땠": 460,
465
+ "땡": 461,
466
+ "떄": 462,
467
+ "떙": 463,
468
+ "떠": 464,
469
+ "떡": 465,
470
+ "떢": 466,
471
+ "떤": 467,
472
+ "떨": 468,
473
+ "떫": 469,
474
+ "떰": 470,
475
+ "떱": 471,
476
+ "떳": 472,
477
+ "떴": 473,
478
+ "떵": 474,
479
+ "떻": 475,
480
+ "떼": 476,
481
+ "뗀": 477,
482
+ "뗄": 478,
483
+ "뗍": 479,
484
+ "뗏": 480,
485
+ "뗐": 481,
486
+ "뗘": 482,
487
+ "또": 483,
488
+ "똑": 484,
489
+ "똘": 485,
490
+ "똠": 486,
491
+ "똥": 487,
492
+ "뙤": 488,
493
+ "뚜": 489,
494
+ "뚝": 490,
495
+ "뚠": 491,
496
+ "뚤": 492,
497
+ "뚫": 493,
498
+ "뚱": 494,
499
+ "뛰": 495,
500
+ "뛴": 496,
501
+ "뛸": 497,
502
+ "뜀": 498,
503
+ "뜁": 499,
504
+ "뜨": 500,
505
+ "뜩": 501,
506
+ "뜬": 502,
507
+ "뜯": 503,
508
+ "뜰": 504,
509
+ "뜷": 505,
510
+ "뜸": 506,
511
+ "뜹": 507,
512
+ "뜻": 508,
513
+ "뜽": 509,
514
+ "띄": 510,
515
+ "띈": 511,
516
+ "띌": 512,
517
+ "띕": 513,
518
+ "띠": 514,
519
+ "띡": 515,
520
+ "띤": 516,
521
+ "띨": 517,
522
+ "띰": 518,
523
+ "띱": 519,
524
+ "띵": 520,
525
+ "라": 521,
526
+ "락": 522,
527
+ "란": 523,
528
+ "랄": 524,
529
+ "람": 525,
530
+ "랍": 526,
531
+ "랏": 527,
532
+ "랐": 528,
533
+ "랑": 529,
534
+ "랖": 530,
535
+ "랗": 531,
536
+ "래": 532,
537
+ "랙": 533,
538
+ "랜": 534,
539
+ "랠": 535,
540
+ "램": 536,
541
+ "랩": 537,
542
+ "랫": 538,
543
+ "랬": 539,
544
+ "랭": 540,
545
+ "랴": 541,
546
+ "략": 542,
547
+ "랼": 543,
548
+ "량": 544,
549
+ "러": 545,
550
+ "럭": 546,
551
+ "런": 547,
552
+ "럴": 548,
553
+ "럼": 549,
554
+ "럽": 550,
555
+ "럿": 551,
556
+ "렀": 552,
557
+ "렁": 553,
558
+ "렇": 554,
559
+ "레": 555,
560
+ "렉": 556,
561
+ "렌": 557,
562
+ "렐": 558,
563
+ "렘": 559,
564
+ "렙": 560,
565
+ "렛": 561,
566
+ "렜": 562,
567
+ "렝": 563,
568
+ "렣": 564,
569
+ "려": 565,
570
+ "력": 566,
571
+ "련": 567,
572
+ "렬": 568,
573
+ "렴": 569,
574
+ "렵": 570,
575
+ "렷": 571,
576
+ "렸": 572,
577
+ "령": 573,
578
+ "렿": 574,
579
+ "례": 575,
580
+ "로": 576,
581
+ "록": 577,
582
+ "론": 578,
583
+ "롤": 579,
584
+ "롬": 580,
585
+ "롭": 581,
586
+ "롯": 582,
587
+ "롱": 583,
588
+ "롷": 584,
589
+ "롸": 585,
590
+ "뢰": 586,
591
+ "료": 587,
592
+ "룡": 588,
593
+ "루": 589,
594
+ "룩": 590,
595
+ "룬": 591,
596
+ "룰": 592,
597
+ "룸": 593,
598
+ "룹": 594,
599
+ "룻": 595,
600
+ "룽": 596,
601
+ "뤄": 597,
602
+ "뤘": 598,
603
+ "뤼": 599,
604
+ "륑": 600,
605
+ "류": 601,
606
+ "륙": 602,
607
+ "륜": 603,
608
+ "률": 604,
609
+ "륨": 605,
610
+ "륭": 606,
611
+ "르": 607,
612
+ "륵": 608,
613
+ "른": 609,
614
+ "를": 610,
615
+ "름": 611,
616
+ "릅": 612,
617
+ "릇": 613,
618
+ "릉": 614,
619
+ "릎": 615,
620
+ "릏": 616,
621
+ "리": 617,
622
+ "릭": 618,
623
+ "린": 619,
624
+ "릴": 620,
625
+ "림": 621,
626
+ "립": 622,
627
+ "릿": 623,
628
+ "링": 624,
629
+ "마": 625,
630
+ "막": 626,
631
+ "만": 627,
632
+ "맍": 628,
633
+ "많": 629,
634
+ "맑": 630,
635
+ "맘": 631,
636
+ "맙": 632,
637
+ "맛": 633,
638
+ "맜": 634,
639
+ "망": 635,
640
+ "맞": 636,
641
+ "맡": 637,
642
+ "맣": 638,
643
+ "매": 639,
644
+ "맥": 640,
645
+ "맨": 641,
646
+ "맬": 642,
647
+ "맴": 643,
648
+ "맵": 644,
649
+ "맷": 645,
650
+ "맸": 646,
651
+ "맹": 647,
652
+ "맺": 648,
653
+ "맻": 649,
654
+ "머": 650,
655
+ "먹": 651,
656
+ "먼": 652,
657
+ "멀": 653,
658
+ "멈": 654,
659
+ "멉": 655,
660
+ "멋": 656,
661
+ "멌": 657,
662
+ "멍": 658,
663
+ "멎": 659,
664
+ "멓": 660,
665
+ "메": 661,
666
+ "멕": 662,
667
+ "멘": 663,
668
+ "멜": 664,
669
+ "멤": 665,
670
+ "멥": 666,
671
+ "멧": 667,
672
+ "멨": 668,
673
+ "멩": 669,
674
+ "며": 670,
675
+ "멱": 671,
676
+ "면": 672,
677
+ "멸": 673,
678
+ "몀": 674,
679
+ "명": 675,
680
+ "몇": 676,
681
+ "모": 677,
682
+ "목": 678,
683
+ "몫": 679,
684
+ "몬": 680,
685
+ "몰": 681,
686
+ "몸": 682,
687
+ "몹": 683,
688
+ "못": 684,
689
+ "몽": 685,
690
+ "묘": 686,
691
+ "무": 687,
692
+ "묵": 688,
693
+ "묶": 689,
694
+ "문": 690,
695
+ "묻": 691,
696
+ "물": 692,
697
+ "묽": 693,
698
+ "뭄": 694,
699
+ "뭅": 695,
700
+ "뭇": 696,
701
+ "뭉": 697,
702
+ "뭐": 698,
703
+ "뭔": 699,
704
+ "뭘": 700,
705
+ "뭠": 701,
706
+ "뭡": 702,
707
+ "뭣": 703,
708
+ "뭰": 704,
709
+ "뮌": 705,
710
+ "뮐": 706,
711
+ "뮤": 707,
712
+ "뮨": 708,
713
+ "뮬": 709,
714
+ "므": 710,
715
+ "믄": 711,
716
+ "믈": 712,
717
+ "믐": 713,
718
+ "믤": 714,
719
+ "미": 715,
720
+ "믹": 716,
721
+ "민": 717,
722
+ "믾": 718,
723
+ "믿": 719,
724
+ "밀": 720,
725
+ "밈": 721,
726
+ "밉": 722,
727
+ "밋": 723,
728
+ "밌": 724,
729
+ "밍": 725,
730
+ "및": 726,
731
+ "밑": 727,
732
+ "바": 728,
733
+ "박": 729,
734
+ "밖": 730,
735
+ "반": 731,
736
+ "받": 732,
737
+ "발": 733,
738
+ "밝": 734,
739
+ "밟": 735,
740
+ "밤": 736,
741
+ "밥": 737,
742
+ "밧": 738,
743
+ "방": 739,
744
+ "밭": 740,
745
+ "배": 741,
746
+ "백": 742,
747
+ "밴": 743,
748
+ "밸": 744,
749
+ "뱀": 745,
750
+ "뱃": 746,
751
+ "뱄": 747,
752
+ "뱅": 748,
753
+ "뱉": 749,
754
+ "뱌": 750,
755
+ "버": 751,
756
+ "벅": 752,
757
+ "번": 753,
758
+ "벋": 754,
759
+ "벌": 755,
760
+ "범": 756,
761
+ "법": 757,
762
+ "벗": 758,
763
+ "벙": 759,
764
+ "벚": 760,
765
+ "베": 761,
766
+ "벡": 762,
767
+ "벤": 763,
768
+ "벨": 764,
769
+ "벳": 765,
770
+ "벵": 766,
771
+ "벼": 767,
772
+ "벽": 768,
773
+ "변": 769,
774
+ "별": 770,
775
+ "볍": 771,
776
+ "볏": 772,
777
+ "볐": 773,
778
+ "병": 774,
779
+ "볕": 775,
780
+ "보": 776,
781
+ "복": 777,
782
+ "볶": 778,
783
+ "본": 779,
784
+ "볼": 780,
785
+ "봄": 781,
786
+ "봅": 782,
787
+ "봇": 783,
788
+ "봉": 784,
789
+ "봐": 785,
790
+ "봣": 786,
791
+ "봤": 787,
792
+ "봬": 788,
793
+ "봽": 789,
794
+ "뵀": 790,
795
+ "뵈": 791,
796
+ "뵌": 792,
797
+ "뵐": 793,
798
+ "뵙": 794,
799
+ "뵜": 795,
800
+ "뵤": 796,
801
+ "뵬": 797,
802
+ "뵹": 798,
803
+ "부": 799,
804
+ "북": 800,
805
+ "분": 801,
806
+ "불": 802,
807
+ "붉": 803,
808
+ "붐": 804,
809
+ "붑": 805,
810
+ "붓": 806,
811
+ "붕": 807,
812
+ "붙": 808,
813
+ "붚": 809,
814
+ "뷔": 810,
815
+ "뷰": 811,
816
+ "뷸": 812,
817
+ "븅": 813,
818
+ "브": 814,
819
+ "븐": 815,
820
+ "블": 816,
821
+ "븕": 817,
822
+ "븜": 818,
823
+ "븝": 819,
824
+ "븥": 820,
825
+ "비": 821,
826
+ "빅": 822,
827
+ "빈": 823,
828
+ "빋": 824,
829
+ "빌": 825,
830
+ "빔": 826,
831
+ "빕": 827,
832
+ "빗": 828,
833
+ "빙": 829,
834
+ "빚": 830,
835
+ "빛": 831,
836
+ "빠": 832,
837
+ "빡": 833,
838
+ "빤": 834,
839
+ "빨": 835,
840
+ "빰": 836,
841
+ "빳": 837,
842
+ "빴": 838,
843
+ "빵": 839,
844
+ "빼": 840,
845
+ "빽": 841,
846
+ "뺀": 842,
847
+ "뺄": 843,
848
+ "뺍": 844,
849
+ "뺏": 845,
850
+ "뺐": 846,
851
+ "뺑": 847,
852
+ "뺘": 848,
853
+ "뺨": 849,
854
+ "뺴": 850,
855
+ "뺵": 851,
856
+ "뻇": 852,
857
+ "뻈": 853,
858
+ "뻐": 854,
859
+ "뻑": 855,
860
+ "뻔": 856,
861
+ "뻗": 857,
862
+ "뻘": 858,
863
+ "뻣": 859,
864
+ "뻤": 860,
865
+ "뻥": 861,
866
+ "뻬": 862,
867
+ "뼀": 863,
868
+ "뼈": 864,
869
+ "뼉": 865,
870
+ "뼐": 866,
871
+ "뽀": 867,
872
+ "뽁": 868,
873
+ "뽂": 869,
874
+ "뽈": 870,
875
+ "뽐": 871,
876
+ "뽑": 872,
877
+ "뽓": 873,
878
+ "뽕": 874,
879
+ "뾰": 875,
880
+ "뾱": 876,
881
+ "뿅": 877,
882
+ "뿌": 878,
883
+ "뿍": 879,
884
+ "뿐": 880,
885
+ "뿔": 881,
886
+ "뿜": 882,
887
+ "뿝": 883,
888
+ "뿡": 884,
889
+ "쁘": 885,
890
+ "쁜": 886,
891
+ "쁠": 887,
892
+ "쁨": 888,
893
+ "쁩": 889,
894
+ "삐": 890,
895
+ "삑": 891,
896
+ "삘": 892,
897
+ "삥": 893,
898
+ "사": 894,
899
+ "삭": 895,
900
+ "산": 896,
901
+ "살": 897,
902
+ "삶": 898,
903
+ "삼": 899,
904
+ "삽": 900,
905
+ "삿": 901,
906
+ "샀": 902,
907
+ "상": 903,
908
+ "샅": 904,
909
+ "새": 905,
910
+ "색": 906,
911
+ "샌": 907,
912
+ "샐": 908,
913
+ "샘": 909,
914
+ "샙": 910,
915
+ "샛": 911,
916
+ "샜": 912,
917
+ "생": 913,
918
+ "샤": 914,
919
+ "샥": 915,
920
+ "샨": 916,
921
+ "샬": 917,
922
+ "샴": 918,
923
+ "샵": 919,
924
+ "샷": 920,
925
+ "샹": 921,
926
+ "샾": 922,
927
+ "섀": 923,
928
+ "서": 924,
929
+ "석": 925,
930
+ "섞": 926,
931
+ "선": 927,
932
+ "섣": 928,
933
+ "설": 929,
934
+ "섬": 930,
935
+ "섭": 931,
936
+ "섯": 932,
937
+ "섰": 933,
938
+ "성": 934,
939
+ "세": 935,
940
+ "섹": 936,
941
+ "센": 937,
942
+ "셀": 938,
943
+ "셈": 939,
944
+ "셉": 940,
945
+ "셋": 941,
946
+ "셌": 942,
947
+ "셍": 943,
948
+ "셔": 944,
949
+ "션": 945,
950
+ "셜": 946,
951
+ "셥": 947,
952
+ "셧": 948,
953
+ "셨": 949,
954
+ "셰": 950,
955
+ "셴": 951,
956
+ "셸": 952,
957
+ "솁": 953,
958
+ "소": 954,
959
+ "속": 955,
960
+ "손": 956,
961
+ "솔": 957,
962
+ "솜": 958,
963
+ "솝": 959,
964
+ "솟": 960,
965
+ "송": 961,
966
+ "솥": 962,
967
+ "솨": 963,
968
+ "솩": 964,
969
+ "쇄": 965,
970
+ "쇠": 966,
971
+ "쇼": 967,
972
+ "쇽": 968,
973
+ "숄": 969,
974
+ "숍": 970,
975
+ "숏": 971,
976
+ "숑": 972,
977
+ "숙": 973,
978
+ "순": 974,
979
+ "숟": 975,
980
+ "술": 976,
981
+ "숨": 977,
982
+ "숩": 978,
983
+ "숫": 979,
984
+ "숭": 980,
985
+ "숯": 981,
986
+ "숱": 982,
987
+ "숲": 983,
988
+ "숴": 984,
989
+ "쉈": 985,
990
+ "쉐": 986,
991
+ "쉑": 987,
992
+ "쉔": 988,
993
+ "쉘": 989,
994
+ "쉣": 990,
995
+ "쉬": 991,
996
+ "쉰": 992,
997
+ "쉴": 993,
998
+ "쉼": 994,
999
+ "쉽": 995,
1000
+ "슈": 996,
1001
+ "슉": 997,
1002
+ "슐": 998,
1003
+ "슘": 999,
1004
+ "슛": 1000,
1005
+ "슝": 1001,
1006
+ "스": 1002,
1007
+ "슥": 1003,
1008
+ "슨": 1004,
1009
+ "슬": 1005,
1010
+ "슴": 1006,
1011
+ "습": 1007,
1012
+ "슷": 1008,
1013
+ "승": 1009,
1014
+ "시": 1010,
1015
+ "식": 1011,
1016
+ "신": 1012,
1017
+ "싣": 1013,
1018
+ "싫": 1014,
1019
+ "심": 1015,
1020
+ "십": 1016,
1021
+ "싯": 1017,
1022
+ "싱": 1018,
1023
+ "싶": 1019,
1024
+ "싸": 1020,
1025
+ "싹": 1021,
1026
+ "싼": 1022,
1027
+ "쌀": 1023,
1028
+ "쌈": 1024,
1029
+ "쌉": 1025,
1030
+ "쌌": 1026,
1031
+ "쌍": 1027,
1032
+ "쌓": 1028,
1033
+ "쌔": 1029,
1034
+ "쌤": 1030,
1035
+ "쌥": 1031,
1036
+ "쌩": 1032,
1037
+ "쌰": 1033,
1038
+ "썅": 1034,
1039
+ "썜": 1035,
1040
+ "썝": 1036,
1041
+ "썡": 1037,
1042
+ "써": 1038,
1043
+ "썩": 1039,
1044
+ "썬": 1040,
1045
+ "썰": 1041,
1046
+ "썸": 1042,
1047
+ "썹": 1043,
1048
+ "썻": 1044,
1049
+ "썼": 1045,
1050
+ "썽": 1046,
1051
+ "쎄": 1047,
1052
+ "쎅": 1048,
1053
+ "쎈": 1049,
1054
+ "쎌": 1050,
1055
+ "쎕": 1051,
1056
+ "쎘": 1052,
1057
+ "쎼": 1053,
1058
+ "쏍": 1054,
1059
+ "쏘": 1055,
1060
+ "쏙": 1056,
1061
+ "쏜": 1057,
1062
+ "쏟": 1058,
1063
+ "쏠": 1059,
1064
+ "쏩": 1060,
1065
+ "쏭": 1061,
1066
+ "쏴": 1062,
1067
+ "쏵": 1063,
1068
+ "쐈": 1064,
1069
+ "쐐": 1065,
1070
+ "쐬": 1066,
1071
+ "쐰": 1067,
1072
+ "쐴": 1068,
1073
+ "쑤": 1069,
1074
+ "쑥": 1070,
1075
+ "쑨": 1071,
1076
+ "쒀": 1072,
1077
+ "쒔": 1073,
1078
+ "쒜": 1074,
1079
+ "쒝": 1075,
1080
+ "쒯": 1076,
1081
+ "쒸": 1077,
1082
+ "쓕": 1078,
1083
+ "쓰": 1079,
1084
+ "쓱": 1080,
1085
+ "쓴": 1081,
1086
+ "쓸": 1082,
1087
+ "씀": 1083,
1088
+ "씁": 1084,
1089
+ "씌": 1085,
1090
+ "씨": 1086,
1091
+ "씩": 1087,
1092
+ "씬": 1088,
1093
+ "씰": 1089,
1094
+ "씸": 1090,
1095
+ "씹": 1091,
1096
+ "씻": 1092,
1097
+ "씽": 1093,
1098
+ "아": 1094,
1099
+ "악": 1095,
1100
+ "앆": 1096,
1101
+ "안": 1097,
1102
+ "앉": 1098,
1103
+ "않": 1099,
1104
+ "알": 1100,
1105
+ "앓": 1101,
1106
+ "암": 1102,
1107
+ "압": 1103,
1108
+ "앗": 1104,
1109
+ "았": 1105,
1110
+ "앙": 1106,
1111
+ "앞": 1107,
1112
+ "애": 1108,
1113
+ "액": 1109,
1114
+ "앤": 1110,
1115
+ "앨": 1111,
1116
+ "앰": 1112,
1117
+ "앱": 1113,
1118
+ "앳": 1114,
1119
+ "앴": 1115,
1120
+ "앵": 1116,
1121
+ "야": 1117,
1122
+ "약": 1118,
1123
+ "얀": 1119,
1124
+ "얄": 1120,
1125
+ "얇": 1121,
1126
+ "얌": 1122,
1127
+ "얍": 1123,
1128
+ "얏": 1124,
1129
+ "양": 1125,
1130
+ "얓": 1126,
1131
+ "얕": 1127,
1132
+ "얗": 1128,
1133
+ "얘": 1129,
1134
+ "얜": 1130,
1135
+ "얠": 1131,
1136
+ "얫": 1132,
1137
+ "얬": 1133,
1138
+ "어": 1134,
1139
+ "억": 1135,
1140
+ "언": 1136,
1141
+ "얹": 1137,
1142
+ "얻": 1138,
1143
+ "얼": 1139,
1144
+ "얽": 1140,
1145
+ "엄": 1141,
1146
+ "업": 1142,
1147
+ "없": 1143,
1148
+ "엇": 1144,
1149
+ "었": 1145,
1150
+ "엉": 1146,
1151
+ "엊": 1147,
1152
+ "엌": 1148,
1153
+ "엍": 1149,
1154
+ "엎": 1150,
1155
+ "에": 1151,
1156
+ "엑": 1152,
1157
+ "엔": 1153,
1158
+ "엘": 1154,
1159
+ "엠": 1155,
1160
+ "엡": 1156,
1161
+ "엣": 1157,
1162
+ "엥": 1158,
1163
+ "여": 1159,
1164
+ "역": 1160,
1165
+ "엮": 1161,
1166
+ "연": 1162,
1167
+ "열": 1163,
1168
+ "엷": 1164,
1169
+ "염": 1165,
1170
+ "엽": 1166,
1171
+ "엿": 1167,
1172
+ "였": 1168,
1173
+ "영": 1169,
1174
+ "옅": 1170,
1175
+ "옆": 1171,
1176
+ "옇": 1172,
1177
+ "예": 1173,
1178
+ "옌": 1174,
1179
+ "옐": 1175,
1180
+ "옙": 1176,
1181
+ "옛": 1177,
1182
+ "옜": 1178,
1183
+ "오": 1179,
1184
+ "옥": 1180,
1185
+ "온": 1181,
1186
+ "올": 1182,
1187
+ "옮": 1183,
1188
+ "옳": 1184,
1189
+ "옴": 1185,
1190
+ "옵": 1186,
1191
+ "옷": 1187,
1192
+ "옹": 1188,
1193
+ "옻": 1189,
1194
+ "옾": 1190,
1195
+ "와": 1191,
1196
+ "완": 1192,
1197
+ "왈": 1193,
1198
+ "왐": 1194,
1199
+ "왑": 1195,
1200
+ "왓": 1196,
1201
+ "왔": 1197,
1202
+ "왕": 1198,
1203
+ "왜": 1199,
1204
+ "왠": 1200,
1205
+ "왤": 1201,
1206
+ "왬": 1202,
1207
+ "외": 1203,
1208
+ "왼": 1204,
1209
+ "욉": 1205,
1210
+ "요": 1206,
1211
+ "욕": 1207,
1212
+ "욘": 1208,
1213
+ "욜": 1209,
1214
+ "욤": 1210,
1215
+ "욥": 1211,
1216
+ "용": 1212,
1217
+ "우": 1213,
1218
+ "욱": 1214,
1219
+ "운": 1215,
1220
+ "울": 1216,
1221
+ "움": 1217,
1222
+ "웁": 1218,
1223
+ "웃": 1219,
1224
+ "웅": 1220,
1225
+ "워": 1221,
1226
+ "웍": 1222,
1227
+ "원": 1223,
1228
+ "월": 1224,
1229
+ "웜": 1225,
1230
+ "웠": 1226,
1231
+ "웡": 1227,
1232
+ "웨": 1228,
1233
+ "웬": 1229,
1234
+ "웰": 1230,
1235
+ "웹": 1231,
1236
+ "위": 1232,
1237
+ "윅": 1233,
1238
+ "윈": 1234,
1239
+ "윌": 1235,
1240
+ "윔": 1236,
1241
+ "윕": 1237,
1242
+ "윗": 1238,
1243
+ "윙": 1239,
1244
+ "유": 1240,
1245
+ "육": 1241,
1246
+ "윤": 1242,
1247
+ "율": 1243,
1248
+ "윱": 1244,
1249
+ "융": 1245,
1250
+ "윷": 1246,
1251
+ "으": 1247,
1252
+ "윽": 1248,
1253
+ "은": 1249,
1254
+ "읃": 1250,
1255
+ "을": 1251,
1256
+ "읊": 1252,
1257
+ "음": 1253,
1258
+ "읍": 1254,
1259
+ "읎": 1255,
1260
+ "읏": 1256,
1261
+ "응": 1257,
1262
+ "읒": 1258,
1263
+ "읔": 1259,
1264
+ "읗": 1260,
1265
+ "의": 1261,
1266
+ "읭": 1262,
1267
+ "이": 1263,
1268
+ "익": 1264,
1269
+ "인": 1265,
1270
+ "일": 1266,
1271
+ "읽": 1267,
1272
+ "잃": 1268,
1273
+ "임": 1269,
1274
+ "입": 1270,
1275
+ "잇": 1271,
1276
+ "있": 1272,
1277
+ "잉": 1273,
1278
+ "잊": 1274,
1279
+ "잌": 1275,
1280
+ "잍": 1276,
1281
+ "잎": 1277,
1282
+ "자": 1278,
1283
+ "작": 1279,
1284
+ "잔": 1280,
1285
+ "잖": 1281,
1286
+ "잘": 1282,
1287
+ "잠": 1283,
1288
+ "잡": 1284,
1289
+ "잣": 1285,
1290
+ "잤": 1286,
1291
+ "장": 1287,
1292
+ "잦": 1288,
1293
+ "재": 1289,
1294
+ "잭": 1290,
1295
+ "잰": 1291,
1296
+ "잴": 1292,
1297
+ "잼": 1293,
1298
+ "잽": 1294,
1299
+ "잿": 1295,
1300
+ "쟀": 1296,
1301
+ "쟁": 1297,
1302
+ "쟈": 1298,
1303
+ "쟌": 1299,
1304
+ "쟎": 1300,
1305
+ "쟤": 1301,
1306
+ "쟨": 1302,
1307
+ "쟬": 1303,
1308
+ "저": 1304,
1309
+ "적": 1305,
1310
+ "전": 1306,
1311
+ "절": 1307,
1312
+ "젊": 1308,
1313
+ "점": 1309,
1314
+ "접": 1310,
1315
+ "젓": 1311,
1316
+ "정": 1312,
1317
+ "젖": 1313,
1318
+ "제": 1314,
1319
+ "젝": 1315,
1320
+ "젠": 1316,
1321
+ "젤": 1317,
1322
+ "젬": 1318,
1323
+ "젭": 1319,
1324
+ "젯": 1320,
1325
+ "젱": 1321,
1326
+ "져": 1322,
1327
+ "젼": 1323,
1328
+ "졌": 1324,
1329
+ "조": 1325,
1330
+ "족": 1326,
1331
+ "존": 1327,
1332
+ "졸": 1328,
1333
+ "좀": 1329,
1334
+ "좁": 1330,
1335
+ "좃": 1331,
1336
+ "종": 1332,
1337
+ "좆": 1333,
1338
+ "좇": 1334,
1339
+ "좋": 1335,
1340
+ "좌": 1336,
1341
+ "좍": 1337,
1342
+ "좔": 1338,
1343
+ "좟": 1339,
1344
+ "죄": 1340,
1345
+ "죌": 1341,
1346
+ "죙": 1342,
1347
+ "죠": 1343,
1348
+ "죵": 1344,
1349
+ "주": 1345,
1350
+ "죽": 1346,
1351
+ "준": 1347,
1352
+ "줄": 1348,
1353
+ "줌": 1349,
1354
+ "줍": 1350,
1355
+ "줏": 1351,
1356
+ "중": 1352,
1357
+ "줘": 1353,
1358
+ "줬": 1354,
1359
+ "줸": 1355,
1360
+ "쥐": 1356,
1361
+ "쥔": 1357,
1362
+ "쥡": 1358,
1363
+ "쥤": 1359,
1364
+ "쥬": 1360,
1365
+ "쥴": 1361,
1366
+ "즈": 1362,
1367
+ "즉": 1363,
1368
+ "즌": 1364,
1369
+ "즐": 1365,
1370
+ "즘": 1366,
1371
+ "즙": 1367,
1372
+ "증": 1368,
1373
+ "지": 1369,
1374
+ "직": 1370,
1375
+ "진": 1371,
1376
+ "질": 1372,
1377
+ "짊": 1373,
1378
+ "짐": 1374,
1379
+ "집": 1375,
1380
+ "짓": 1376,
1381
+ "징": 1377,
1382
+ "짖": 1378,
1383
+ "짙": 1379,
1384
+ "짚": 1380,
1385
+ "짜": 1381,
1386
+ "짝": 1382,
1387
+ "짠": 1383,
1388
+ "짢": 1384,
1389
+ "짤": 1385,
1390
+ "짧": 1386,
1391
+ "짬": 1387,
1392
+ "짭": 1388,
1393
+ "짰": 1389,
1394
+ "짱": 1390,
1395
+ "째": 1391,
1396
+ "짹": 1392,
1397
+ "짼": 1393,
1398
+ "쨈": 1394,
1399
+ "쨉": 1395,
1400
+ "쨋": 1396,
1401
+ "쨌": 1397,
1402
+ "쨍": 1398,
1403
+ "쨔": 1399,
1404
+ "쨰": 1400,
1405
+ "쩃": 1401,
1406
+ "쩄": 1402,
1407
+ "쩌": 1403,
1408
+ "쩍": 1404,
1409
+ "쩐": 1405,
1410
+ "쩔": 1406,
1411
+ "쩜": 1407,
1412
+ "쩝": 1408,
1413
+ "쩡": 1409,
1414
+ "쩨": 1410,
1415
+ "쩰": 1411,
1416
+ "쪄": 1412,
1417
+ "쪘": 1413,
1418
+ "쪼": 1414,
1419
+ "쪽": 1415,
1420
+ "쫀": 1416,
1421
+ "쫄": 1417,
1422
+ "쫌": 1418,
1423
+ "쫍": 1419,
1424
+ "쫑": 1420,
1425
+ "쫒": 1421,
1426
+ "쫓": 1422,
1427
+ "쫘": 1423,
1428
+ "쫙": 1424,
1429
+ "쫜": 1425,
1430
+ "쫠": 1426,
1431
+ "쬐": 1427,
1432
+ "쭈": 1428,
1433
+ "쭉": 1429,
1434
+ "쭌": 1430,
1435
+ "쭐": 1431,
1436
+ "쭘": 1432,
1437
+ "쭤": 1433,
1438
+ "쮸": 1434,
1439
+ "쮹": 1435,
1440
+ "쯔": 1436,
1441
+ "쯜": 1437,
1442
+ "쯤": 1438,
1443
+ "쯥": 1439,
1444
+ "쯧": 1440,
1445
+ "쯩": 1441,
1446
+ "찌": 1442,
1447
+ "찍": 1443,
1448
+ "찐": 1444,
1449
+ "찔": 1445,
1450
+ "찜": 1446,
1451
+ "찝": 1447,
1452
+ "찡": 1448,
1453
+ "찢": 1449,
1454
+ "차": 1450,
1455
+ "착": 1451,
1456
+ "찬": 1452,
1457
+ "찮": 1453,
1458
+ "찰": 1454,
1459
+ "참": 1455,
1460
+ "찹": 1456,
1461
+ "찻": 1457,
1462
+ "찼": 1458,
1463
+ "창": 1459,
1464
+ "찾": 1460,
1465
+ "찿": 1461,
1466
+ "챁": 1462,
1467
+ "채": 1463,
1468
+ "책": 1464,
1469
+ "챈": 1465,
1470
+ "챌": 1466,
1471
+ "챔": 1467,
1472
+ "챕": 1468,
1473
+ "챗": 1469,
1474
+ "챘": 1470,
1475
+ "챙": 1471,
1476
+ "챠": 1472,
1477
+ "챦": 1473,
1478
+ "챱": 1474,
1479
+ "처": 1475,
1480
+ "척": 1476,
1481
+ "천": 1477,
1482
+ "철": 1478,
1483
+ "첨": 1479,
1484
+ "첩": 1480,
1485
+ "첫": 1481,
1486
+ "청": 1482,
1487
+ "체": 1483,
1488
+ "첵": 1484,
1489
+ "첸": 1485,
1490
+ "첼": 1486,
1491
+ "쳇": 1487,
1492
+ "쳌": 1488,
1493
+ "쳐": 1489,
1494
+ "쳘": 1490,
1495
+ "쳣": 1491,
1496
+ "쳤": 1492,
1497
+ "초": 1493,
1498
+ "촉": 1494,
1499
+ "촌": 1495,
1500
+ "촐": 1496,
1501
+ "촘": 1497,
1502
+ "촛": 1498,
1503
+ "총": 1499,
1504
+ "촤": 1500,
1505
+ "촥": 1501,
1506
+ "촬": 1502,
1507
+ "최": 1503,
1508
+ "쵸": 1504,
1509
+ "추": 1505,
1510
+ "축": 1506,
1511
+ "춘": 1507,
1512
+ "출": 1508,
1513
+ "춤": 1509,
1514
+ "춥": 1510,
1515
+ "춧": 1511,
1516
+ "충": 1512,
1517
+ "춰": 1513,
1518
+ "췄": 1514,
1519
+ "췌": 1515,
1520
+ "취": 1516,
1521
+ "츄": 1517,
1522
+ "츠": 1518,
1523
+ "측": 1519,
1524
+ "츤": 1520,
1525
+ "츨": 1521,
1526
+ "츰": 1522,
1527
+ "층": 1523,
1528
+ "츼": 1524,
1529
+ "치": 1525,
1530
+ "칙": 1526,
1531
+ "친": 1527,
1532
+ "칠": 1528,
1533
+ "침": 1529,
1534
+ "칩": 1530,
1535
+ "칫": 1531,
1536
+ "칬": 1532,
1537
+ "칭": 1533,
1538
+ "칲": 1534,
1539
+ "카": 1535,
1540
+ "칵": 1536,
1541
+ "칸": 1537,
1542
+ "칼": 1538,
1543
+ "캄": 1539,
1544
+ "캅": 1540,
1545
+ "캉": 1541,
1546
+ "캐": 1542,
1547
+ "캔": 1543,
1548
+ "캘": 1544,
1549
+ "캠": 1545,
1550
+ "캡": 1546,
1551
+ "캣": 1547,
1552
+ "캤": 1548,
1553
+ "캥": 1549,
1554
+ "캬": 1550,
1555
+ "커": 1551,
1556
+ "컥": 1552,
1557
+ "컨": 1553,
1558
+ "컬": 1554,
1559
+ "컴": 1555,
1560
+ "컵": 1556,
1561
+ "컷": 1557,
1562
+ "컸": 1558,
1563
+ "컹": 1559,
1564
+ "케": 1560,
1565
+ "켄": 1561,
1566
+ "켈": 1562,
1567
+ "켓": 1563,
1568
+ "켜": 1564,
1569
+ "켠": 1565,
1570
+ "켤": 1566,
1571
+ "켬": 1567,
1572
+ "켭": 1568,
1573
+ "켰": 1569,
1574
+ "켱": 1570,
1575
+ "코": 1571,
1576
+ "콕": 1572,
1577
+ "콘": 1573,
1578
+ "콜": 1574,
1579
+ "콤": 1575,
1580
+ "콥": 1576,
1581
+ "콧": 1577,
1582
+ "콩": 1578,
1583
+ "콰": 1579,
1584
+ "콱": 1580,
1585
+ "콸": 1581,
1586
+ "쾅": 1582,
1587
+ "쾌": 1583,
1588
+ "쾬": 1584,
1589
+ "쿄": 1585,
1590
+ "쿠": 1586,
1591
+ "쿡": 1587,
1592
+ "쿤": 1588,
1593
+ "쿨": 1589,
1594
+ "쿰": 1590,
1595
+ "쿱": 1591,
1596
+ "쿵": 1592,
1597
+ "쿼": 1593,
1598
+ "퀀": 1594,
1599
+ "퀄": 1595,
1600
+ "퀘": 1596,
1601
+ "퀴": 1597,
1602
+ "퀵": 1598,
1603
+ "퀸": 1599,
1604
+ "큐": 1600,
1605
+ "큔": 1601,
1606
+ "큘": 1602,
1607
+ "큠": 1603,
1608
+ "크": 1604,
1609
+ "큭": 1605,
1610
+ "큰": 1606,
1611
+ "클": 1607,
1612
+ "큼": 1608,
1613
+ "큽": 1609,
1614
+ "킁": 1610,
1615
+ "키": 1611,
1616
+ "킥": 1612,
1617
+ "킨": 1613,
1618
+ "킬": 1614,
1619
+ "킴": 1615,
1620
+ "킵": 1616,
1621
+ "킷": 1617,
1622
+ "킹": 1618,
1623
+ "타": 1619,
1624
+ "탁": 1620,
1625
+ "탄": 1621,
1626
+ "탈": 1622,
1627
+ "탐": 1623,
1628
+ "탑": 1624,
1629
+ "탓": 1625,
1630
+ "탔": 1626,
1631
+ "탕": 1627,
1632
+ "태": 1628,
1633
+ "택": 1629,
1634
+ "탠": 1630,
1635
+ "탤": 1631,
1636
+ "탬": 1632,
1637
+ "탭": 1633,
1638
+ "탯": 1634,
1639
+ "탱": 1635,
1640
+ "탶": 1636,
1641
+ "터": 1637,
1642
+ "턱": 1638,
1643
+ "턴": 1639,
1644
+ "털": 1640,
1645
+ "텀": 1641,
1646
+ "텁": 1642,
1647
+ "텃": 1643,
1648
+ "텄": 1644,
1649
+ "텅": 1645,
1650
+ "테": 1646,
1651
+ "텍": 1647,
1652
+ "텐": 1648,
1653
+ "텔": 1649,
1654
+ "템": 1650,
1655
+ "텝": 1651,
1656
+ "텟": 1652,
1657
+ "텡": 1653,
1658
+ "텨": 1654,
1659
+ "텼": 1655,
1660
+ "토": 1656,
1661
+ "톡": 1657,
1662
+ "톤": 1658,
1663
+ "톨": 1659,
1664
+ "톰": 1660,
1665
+ "톱": 1661,
1666
+ "통": 1662,
1667
+ "퇴": 1663,
1668
+ "투": 1664,
1669
+ "툭": 1665,
1670
+ "툰": 1666,
1671
+ "툴": 1667,
1672
+ "툼": 1668,
1673
+ "퉁": 1669,
1674
+ "퉈": 1670,
1675
+ "퉜": 1671,
1676
+ "퉤": 1672,
1677
+ "튀": 1673,
1678
+ "튄": 1674,
1679
+ "튈": 1675,
1680
+ "튕": 1676,
1681
+ "튜": 1677,
1682
+ "튤": 1678,
1683
+ "튬": 1679,
1684
+ "튭": 1680,
1685
+ "트": 1681,
1686
+ "특": 1682,
1687
+ "튼": 1683,
1688
+ "틀": 1684,
1689
+ "틈": 1685,
1690
+ "틉": 1686,
1691
+ "틋": 1687,
1692
+ "틔": 1688,
1693
+ "티": 1689,
1694
+ "틱": 1690,
1695
+ "틴": 1691,
1696
+ "틸": 1692,
1697
+ "팀": 1693,
1698
+ "팁": 1694,
1699
+ "팅": 1695,
1700
+ "파": 1696,
1701
+ "팍": 1697,
1702
+ "팎": 1698,
1703
+ "판": 1699,
1704
+ "팔": 1700,
1705
+ "팜": 1701,
1706
+ "팝": 1702,
1707
+ "팟": 1703,
1708
+ "팠": 1704,
1709
+ "팡": 1705,
1710
+ "팥": 1706,
1711
+ "패": 1707,
1712
+ "팩": 1708,
1713
+ "팬": 1709,
1714
+ "팰": 1710,
1715
+ "팸": 1711,
1716
+ "팹": 1712,
1717
+ "팻": 1713,
1718
+ "팼": 1714,
1719
+ "팽": 1715,
1720
+ "퍄": 1716,
1721
+ "퍼": 1717,
1722
+ "퍽": 1718,
1723
+ "펀": 1719,
1724
+ "펄": 1720,
1725
+ "펌": 1721,
1726
+ "펍": 1722,
1727
+ "펐": 1723,
1728
+ "펑": 1724,
1729
+ "페": 1725,
1730
+ "펙": 1726,
1731
+ "펜": 1727,
1732
+ "펠": 1728,
1733
+ "펩": 1729,
1734
+ "펫": 1730,
1735
+ "펭": 1731,
1736
+ "펴": 1732,
1737
+ "편": 1733,
1738
+ "펼": 1734,
1739
+ "폄": 1735,
1740
+ "폇": 1736,
1741
+ "폈": 1737,
1742
+ "평": 1738,
1743
+ "폐": 1739,
1744
+ "폣": 1740,
1745
+ "포": 1741,
1746
+ "폭": 1742,
1747
+ "폰": 1743,
1748
+ "폴": 1744,
1749
+ "폼": 1745,
1750
+ "폿": 1746,
1751
+ "퐁": 1747,
1752
+ "퐉": 1748,
1753
+ "푀": 1749,
1754
+ "표": 1750,
1755
+ "푠": 1751,
1756
+ "푸": 1752,
1757
+ "푹": 1753,
1758
+ "푼": 1754,
1759
+ "풀": 1755,
1760
+ "품": 1756,
1761
+ "풉": 1757,
1762
+ "풋": 1758,
1763
+ "풍": 1759,
1764
+ "퓌": 1760,
1765
+ "퓨": 1761,
1766
+ "프": 1762,
1767
+ "픈": 1763,
1768
+ "플": 1764,
1769
+ "픔": 1765,
1770
+ "픕": 1766,
1771
+ "피": 1767,
1772
+ "픽": 1768,
1773
+ "핀": 1769,
1774
+ "필": 1770,
1775
+ "핌": 1771,
1776
+ "핏": 1772,
1777
+ "핑": 1773,
1778
+ "하": 1774,
1779
+ "학": 1775,
1780
+ "한": 1776,
1781
+ "할": 1777,
1782
+ "핥": 1778,
1783
+ "핧": 1779,
1784
+ "함": 1780,
1785
+ "합": 1781,
1786
+ "핫": 1782,
1787
+ "핬": 1783,
1788
+ "항": 1784,
1789
+ "핰": 1785,
1790
+ "해": 1786,
1791
+ "핵": 1787,
1792
+ "핸": 1788,
1793
+ "핼": 1789,
1794
+ "햄": 1790,
1795
+ "햅": 1791,
1796
+ "햇": 1792,
1797
+ "했": 1793,
1798
+ "행": 1794,
1799
+ "햐": 1795,
1800
+ "향": 1796,
1801
+ "허": 1797,
1802
+ "헉": 1798,
1803
+ "헌": 1799,
1804
+ "헐": 1800,
1805
+ "험": 1801,
1806
+ "헙": 1802,
1807
+ "헛": 1803,
1808
+ "헝": 1804,
1809
+ "헤": 1805,
1810
+ "헥": 1806,
1811
+ "헨": 1807,
1812
+ "헬": 1808,
1813
+ "헴": 1809,
1814
+ "헷": 1810,
1815
+ "헸": 1811,
1816
+ "헹": 1812,
1817
+ "혀": 1813,
1818
+ "혁": 1814,
1819
+ "현": 1815,
1820
+ "혈": 1816,
1821
+ "혐": 1817,
1822
+ "협": 1818,
1823
+ "혓": 1819,
1824
+ "혔": 1820,
1825
+ "형": 1821,
1826
+ "혜": 1822,
1827
+ "호": 1823,
1828
+ "혹": 1824,
1829
+ "혼": 1825,
1830
+ "홀": 1826,
1831
+ "홈": 1827,
1832
+ "홉": 1828,
1833
+ "홋": 1829,
1834
+ "홍": 1830,
1835
+ "화": 1831,
1836
+ "확": 1832,
1837
+ "환": 1833,
1838
+ "활": 1834,
1839
+ "홥": 1835,
1840
+ "황": 1836,
1841
+ "횃": 1837,
1842
+ "회": 1838,
1843
+ "획": 1839,
1844
+ "횐": 1840,
1845
+ "횟": 1841,
1846
+ "횡": 1842,
1847
+ "효": 1843,
1848
+ "후": 1844,
1849
+ "훅": 1845,
1850
+ "훈": 1846,
1851
+ "훌": 1847,
1852
+ "훑": 1848,
1853
+ "훔": 1849,
1854
+ "훕": 1850,
1855
+ "훗": 1851,
1856
+ "훠": 1852,
1857
+ "훤": 1853,
1858
+ "훨": 1854,
1859
+ "훼": 1855,
1860
+ "휀": 1856,
1861
+ "휑": 1857,
1862
+ "휘": 1858,
1863
+ "휙": 1859,
1864
+ "휜": 1860,
1865
+ "휠": 1861,
1866
+ "휴": 1862,
1867
+ "휸": 1863,
1868
+ "흉": 1864,
1869
+ "흐": 1865,
1870
+ "흑": 1866,
1871
+ "흔": 1867,
1872
+ "흘": 1868,
1873
+ "흙": 1869,
1874
+ "흠": 1870,
1875
+ "흡": 1871,
1876
+ "흣": 1872,
1877
+ "흥": 1873,
1878
+ "흩": 1874,
1879
+ "희": 1875,
1880
+ "흰": 1876,
1881
+ "흴": 1877,
1882
+ "히": 1878,
1883
+ "힉": 1879,
1884
+ "힌": 1880,
1885
+ "힐": 1881,
1886
+ "힘": 1882,
1887
+ "힙": 1883,
1888
+ "힛": 1884,
1889
+ "힝": 1885
1890
+ }
config.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForCTC"
11
+ ],
12
+ "attention_dropout": 0.05,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 768,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "mean",
46
+ "ctc_zero_infinity": false,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.05,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "gradient_checkpointing": false,
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.05,
59
+ "hidden_size": 1024,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 4096,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.05,
64
+ "mask_channel_length": 10,
65
+ "mask_channel_min_space": 1,
66
+ "mask_channel_other": 0.0,
67
+ "mask_channel_prob": 0.0,
68
+ "mask_channel_selection": "static",
69
+ "mask_feature_length": 10,
70
+ "mask_feature_min_masks": 0,
71
+ "mask_feature_prob": 0.0,
72
+ "mask_time_length": 10,
73
+ "mask_time_min_masks": 2,
74
+ "mask_time_min_space": 1,
75
+ "mask_time_other": 0.0,
76
+ "mask_time_prob": 0.05,
77
+ "mask_time_selection": "static",
78
+ "model_type": "wav2vec2",
79
+ "num_adapter_layers": 3,
80
+ "num_attention_heads": 16,
81
+ "num_codevector_groups": 2,
82
+ "num_codevectors_per_group": 320,
83
+ "num_conv_pos_embedding_groups": 16,
84
+ "num_conv_pos_embeddings": 128,
85
+ "num_feat_extract_layers": 7,
86
+ "num_hidden_layers": 24,
87
+ "num_negatives": 100,
88
+ "output_hidden_size": 1024,
89
+ "pad_token_id": 1889,
90
+ "proj_codevector_dim": 768,
91
+ "tdnn_dilation": [
92
+ 1,
93
+ 2,
94
+ 3,
95
+ 1,
96
+ 1
97
+ ],
98
+ "tdnn_dim": [
99
+ 512,
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 1500
104
+ ],
105
+ "tdnn_kernel": [
106
+ 5,
107
+ 3,
108
+ 3,
109
+ 1,
110
+ 1
111
+ ],
112
+ "torch_dtype": "float32",
113
+ "transformers_version": "4.35.0",
114
+ "use_weighted_layer_sum": false,
115
+ "vocab_size": 1890,
116
+ "xvector_output_dim": 512
117
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e77addf61693f34cc4e659ad05e482d8951bf3eccd40bb6d18438582bff8059
3
+ size 1269556504
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "[UNK]",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": true,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "1888": {
4
+ "content": "[UNK]",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1889": {
12
+ "content": "[PAD]",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "1890": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "1891": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": true,
38
+ "config": null,
39
+ "do_lower_case": false,
40
+ "eos_token": "</s>",
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "[PAD]",
43
+ "processor_class": "Wav2Vec2Processor",
44
+ "replace_word_delimiter_char": " ",
45
+ "target_lang": null,
46
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
47
+ "tokenizer_type": "wav2vec2",
48
+ "trust_remote_code": false,
49
+ "unk_token": "[UNK]",
50
+ "word_delimiter_token": "|"
51
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "train_loss": 0.6810670465756336,
4
+ "train_runtime": 74687.5891,
5
+ "train_samples": 177425,
6
+ "train_samples_per_second": 23.756,
7
+ "train_steps_per_second": 2.97
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,2242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 221790,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "learning_rate": 0.00011999999999999999,
14
+ "loss": 18.2932,
15
+ "step": 600
16
+ },
17
+ {
18
+ "epoch": 0.05,
19
+ "learning_rate": 0.00023999999999999998,
20
+ "loss": 4.6022,
21
+ "step": 1200
22
+ },
23
+ {
24
+ "epoch": 0.08,
25
+ "learning_rate": 0.00029959144763720545,
26
+ "loss": 2.9785,
27
+ "step": 1800
28
+ },
29
+ {
30
+ "epoch": 0.11,
31
+ "learning_rate": 0.0002987743429116165,
32
+ "loss": 2.065,
33
+ "step": 2400
34
+ },
35
+ {
36
+ "epoch": 0.14,
37
+ "learning_rate": 0.0002979572381860275,
38
+ "loss": 1.7581,
39
+ "step": 3000
40
+ },
41
+ {
42
+ "epoch": 0.16,
43
+ "learning_rate": 0.0002971401334604385,
44
+ "loss": 1.6367,
45
+ "step": 3600
46
+ },
47
+ {
48
+ "epoch": 0.19,
49
+ "learning_rate": 0.0002963230287348495,
50
+ "loss": 1.5326,
51
+ "step": 4200
52
+ },
53
+ {
54
+ "epoch": 0.22,
55
+ "learning_rate": 0.0002955059240092605,
56
+ "loss": 1.4634,
57
+ "step": 4800
58
+ },
59
+ {
60
+ "epoch": 0.24,
61
+ "learning_rate": 0.0002946888192836715,
62
+ "loss": 1.4078,
63
+ "step": 5400
64
+ },
65
+ {
66
+ "epoch": 0.27,
67
+ "learning_rate": 0.0002938717145580825,
68
+ "loss": 1.385,
69
+ "step": 6000
70
+ },
71
+ {
72
+ "epoch": 0.3,
73
+ "learning_rate": 0.0002930546098324935,
74
+ "loss": 1.3197,
75
+ "step": 6600
76
+ },
77
+ {
78
+ "epoch": 0.32,
79
+ "learning_rate": 0.00029223750510690453,
80
+ "loss": 1.3254,
81
+ "step": 7200
82
+ },
83
+ {
84
+ "epoch": 0.35,
85
+ "learning_rate": 0.00029142040038131553,
86
+ "loss": 1.3057,
87
+ "step": 7800
88
+ },
89
+ {
90
+ "epoch": 0.38,
91
+ "learning_rate": 0.0002906032956557265,
92
+ "loss": 1.2723,
93
+ "step": 8400
94
+ },
95
+ {
96
+ "epoch": 0.41,
97
+ "learning_rate": 0.0002897861909301375,
98
+ "loss": 1.2535,
99
+ "step": 9000
100
+ },
101
+ {
102
+ "epoch": 0.43,
103
+ "learning_rate": 0.0002889690862045485,
104
+ "loss": 1.2308,
105
+ "step": 9600
106
+ },
107
+ {
108
+ "epoch": 0.46,
109
+ "learning_rate": 0.0002881519814789595,
110
+ "loss": 1.2168,
111
+ "step": 10200
112
+ },
113
+ {
114
+ "epoch": 0.49,
115
+ "learning_rate": 0.0002873348767533705,
116
+ "loss": 1.2023,
117
+ "step": 10800
118
+ },
119
+ {
120
+ "epoch": 0.51,
121
+ "learning_rate": 0.00028651777202778157,
122
+ "loss": 1.2041,
123
+ "step": 11400
124
+ },
125
+ {
126
+ "epoch": 0.54,
127
+ "learning_rate": 0.00028570066730219257,
128
+ "loss": 1.1883,
129
+ "step": 12000
130
+ },
131
+ {
132
+ "epoch": 0.57,
133
+ "learning_rate": 0.0002848835625766035,
134
+ "loss": 1.1623,
135
+ "step": 12600
136
+ },
137
+ {
138
+ "epoch": 0.6,
139
+ "learning_rate": 0.00028406645785101456,
140
+ "loss": 1.1844,
141
+ "step": 13200
142
+ },
143
+ {
144
+ "epoch": 0.62,
145
+ "learning_rate": 0.00028324935312542556,
146
+ "loss": 1.1347,
147
+ "step": 13800
148
+ },
149
+ {
150
+ "epoch": 0.65,
151
+ "learning_rate": 0.00028243224839983656,
152
+ "loss": 1.1252,
153
+ "step": 14400
154
+ },
155
+ {
156
+ "epoch": 0.68,
157
+ "learning_rate": 0.00028161514367424755,
158
+ "loss": 1.1061,
159
+ "step": 15000
160
+ },
161
+ {
162
+ "epoch": 0.7,
163
+ "learning_rate": 0.00028079803894865855,
164
+ "loss": 1.1354,
165
+ "step": 15600
166
+ },
167
+ {
168
+ "epoch": 0.73,
169
+ "learning_rate": 0.00027998093422306955,
170
+ "loss": 1.1211,
171
+ "step": 16200
172
+ },
173
+ {
174
+ "epoch": 0.76,
175
+ "learning_rate": 0.00027916382949748055,
176
+ "loss": 1.0821,
177
+ "step": 16800
178
+ },
179
+ {
180
+ "epoch": 0.78,
181
+ "learning_rate": 0.00027834672477189154,
182
+ "loss": 1.0761,
183
+ "step": 17400
184
+ },
185
+ {
186
+ "epoch": 0.81,
187
+ "learning_rate": 0.0002775296200463026,
188
+ "loss": 1.0546,
189
+ "step": 18000
190
+ },
191
+ {
192
+ "epoch": 0.84,
193
+ "learning_rate": 0.0002767125153207136,
194
+ "loss": 1.0796,
195
+ "step": 18600
196
+ },
197
+ {
198
+ "epoch": 0.87,
199
+ "learning_rate": 0.0002758954105951246,
200
+ "loss": 1.0725,
201
+ "step": 19200
202
+ },
203
+ {
204
+ "epoch": 0.89,
205
+ "learning_rate": 0.0002750783058695356,
206
+ "loss": 1.0716,
207
+ "step": 19800
208
+ },
209
+ {
210
+ "epoch": 0.92,
211
+ "learning_rate": 0.0002742612011439466,
212
+ "loss": 1.0463,
213
+ "step": 20400
214
+ },
215
+ {
216
+ "epoch": 0.95,
217
+ "learning_rate": 0.0002734440964183576,
218
+ "loss": 1.0412,
219
+ "step": 21000
220
+ },
221
+ {
222
+ "epoch": 0.97,
223
+ "learning_rate": 0.0002726269916927686,
224
+ "loss": 1.0318,
225
+ "step": 21600
226
+ },
227
+ {
228
+ "epoch": 1.0,
229
+ "learning_rate": 0.00027180988696717963,
230
+ "loss": 1.0419,
231
+ "step": 22200
232
+ },
233
+ {
234
+ "epoch": 1.03,
235
+ "learning_rate": 0.00027099278224159063,
236
+ "loss": 0.9673,
237
+ "step": 22800
238
+ },
239
+ {
240
+ "epoch": 1.06,
241
+ "learning_rate": 0.0002701756775160016,
242
+ "loss": 0.9693,
243
+ "step": 23400
244
+ },
245
+ {
246
+ "epoch": 1.08,
247
+ "learning_rate": 0.0002693585727904126,
248
+ "loss": 0.9555,
249
+ "step": 24000
250
+ },
251
+ {
252
+ "epoch": 1.11,
253
+ "learning_rate": 0.0002685414680648236,
254
+ "loss": 0.9832,
255
+ "step": 24600
256
+ },
257
+ {
258
+ "epoch": 1.14,
259
+ "learning_rate": 0.0002677243633392346,
260
+ "loss": 0.9578,
261
+ "step": 25200
262
+ },
263
+ {
264
+ "epoch": 1.16,
265
+ "learning_rate": 0.0002669072586136456,
266
+ "loss": 0.9569,
267
+ "step": 25800
268
+ },
269
+ {
270
+ "epoch": 1.19,
271
+ "learning_rate": 0.00026609015388805667,
272
+ "loss": 0.9521,
273
+ "step": 26400
274
+ },
275
+ {
276
+ "epoch": 1.22,
277
+ "learning_rate": 0.0002652730491624676,
278
+ "loss": 0.953,
279
+ "step": 27000
280
+ },
281
+ {
282
+ "epoch": 1.24,
283
+ "learning_rate": 0.0002644559444368786,
284
+ "loss": 0.9757,
285
+ "step": 27600
286
+ },
287
+ {
288
+ "epoch": 1.27,
289
+ "learning_rate": 0.00026363883971128966,
290
+ "loss": 0.9517,
291
+ "step": 28200
292
+ },
293
+ {
294
+ "epoch": 1.3,
295
+ "learning_rate": 0.00026282173498570066,
296
+ "loss": 0.9552,
297
+ "step": 28800
298
+ },
299
+ {
300
+ "epoch": 1.33,
301
+ "learning_rate": 0.00026200463026011166,
302
+ "loss": 0.944,
303
+ "step": 29400
304
+ },
305
+ {
306
+ "epoch": 1.35,
307
+ "learning_rate": 0.00026118752553452266,
308
+ "loss": 0.936,
309
+ "step": 30000
310
+ },
311
+ {
312
+ "epoch": 1.38,
313
+ "learning_rate": 0.00026037042080893365,
314
+ "loss": 0.9071,
315
+ "step": 30600
316
+ },
317
+ {
318
+ "epoch": 1.41,
319
+ "learning_rate": 0.00025955331608334465,
320
+ "loss": 0.9137,
321
+ "step": 31200
322
+ },
323
+ {
324
+ "epoch": 1.43,
325
+ "learning_rate": 0.00025873621135775565,
326
+ "loss": 0.9191,
327
+ "step": 31800
328
+ },
329
+ {
330
+ "epoch": 1.46,
331
+ "learning_rate": 0.00025791910663216665,
332
+ "loss": 0.9185,
333
+ "step": 32400
334
+ },
335
+ {
336
+ "epoch": 1.49,
337
+ "learning_rate": 0.0002571020019065777,
338
+ "loss": 0.9054,
339
+ "step": 33000
340
+ },
341
+ {
342
+ "epoch": 1.51,
343
+ "learning_rate": 0.0002562848971809887,
344
+ "loss": 0.9274,
345
+ "step": 33600
346
+ },
347
+ {
348
+ "epoch": 1.54,
349
+ "learning_rate": 0.0002554677924553997,
350
+ "loss": 0.8956,
351
+ "step": 34200
352
+ },
353
+ {
354
+ "epoch": 1.57,
355
+ "learning_rate": 0.0002546506877298107,
356
+ "loss": 0.893,
357
+ "step": 34800
358
+ },
359
+ {
360
+ "epoch": 1.6,
361
+ "learning_rate": 0.0002538335830042217,
362
+ "loss": 0.9151,
363
+ "step": 35400
364
+ },
365
+ {
366
+ "epoch": 1.62,
367
+ "learning_rate": 0.0002530164782786327,
368
+ "loss": 0.8903,
369
+ "step": 36000
370
+ },
371
+ {
372
+ "epoch": 1.65,
373
+ "learning_rate": 0.0002521993735530437,
374
+ "loss": 0.8929,
375
+ "step": 36600
376
+ },
377
+ {
378
+ "epoch": 1.68,
379
+ "learning_rate": 0.0002513822688274547,
380
+ "loss": 0.8886,
381
+ "step": 37200
382
+ },
383
+ {
384
+ "epoch": 1.7,
385
+ "learning_rate": 0.0002505651641018657,
386
+ "loss": 0.8827,
387
+ "step": 37800
388
+ },
389
+ {
390
+ "epoch": 1.73,
391
+ "learning_rate": 0.0002497480593762767,
392
+ "loss": 0.8877,
393
+ "step": 38400
394
+ },
395
+ {
396
+ "epoch": 1.76,
397
+ "learning_rate": 0.00024893095465068773,
398
+ "loss": 0.868,
399
+ "step": 39000
400
+ },
401
+ {
402
+ "epoch": 1.79,
403
+ "learning_rate": 0.0002481138499250987,
404
+ "loss": 0.8731,
405
+ "step": 39600
406
+ },
407
+ {
408
+ "epoch": 1.81,
409
+ "learning_rate": 0.0002472967451995097,
410
+ "loss": 0.8649,
411
+ "step": 40200
412
+ },
413
+ {
414
+ "epoch": 1.84,
415
+ "learning_rate": 0.0002464796404739207,
416
+ "loss": 0.862,
417
+ "step": 40800
418
+ },
419
+ {
420
+ "epoch": 1.87,
421
+ "learning_rate": 0.0002456625357483317,
422
+ "loss": 0.8933,
423
+ "step": 41400
424
+ },
425
+ {
426
+ "epoch": 1.89,
427
+ "learning_rate": 0.0002448454310227427,
428
+ "loss": 0.8711,
429
+ "step": 42000
430
+ },
431
+ {
432
+ "epoch": 1.92,
433
+ "learning_rate": 0.00024402832629715374,
434
+ "loss": 0.8805,
435
+ "step": 42600
436
+ },
437
+ {
438
+ "epoch": 1.95,
439
+ "learning_rate": 0.00024321122157156474,
440
+ "loss": 0.8518,
441
+ "step": 43200
442
+ },
443
+ {
444
+ "epoch": 1.97,
445
+ "learning_rate": 0.00024239411684597576,
446
+ "loss": 0.8591,
447
+ "step": 43800
448
+ },
449
+ {
450
+ "epoch": 2.0,
451
+ "learning_rate": 0.00024157701212038673,
452
+ "loss": 0.8552,
453
+ "step": 44400
454
+ },
455
+ {
456
+ "epoch": 2.03,
457
+ "learning_rate": 0.00024075990739479773,
458
+ "loss": 0.7824,
459
+ "step": 45000
460
+ },
461
+ {
462
+ "epoch": 2.06,
463
+ "learning_rate": 0.00023994280266920876,
464
+ "loss": 0.7737,
465
+ "step": 45600
466
+ },
467
+ {
468
+ "epoch": 2.08,
469
+ "learning_rate": 0.00023912569794361975,
470
+ "loss": 0.7888,
471
+ "step": 46200
472
+ },
473
+ {
474
+ "epoch": 2.11,
475
+ "learning_rate": 0.00023830859321803075,
476
+ "loss": 0.7917,
477
+ "step": 46800
478
+ },
479
+ {
480
+ "epoch": 2.14,
481
+ "learning_rate": 0.00023749148849244178,
482
+ "loss": 0.7782,
483
+ "step": 47400
484
+ },
485
+ {
486
+ "epoch": 2.16,
487
+ "learning_rate": 0.00023667438376685275,
488
+ "loss": 0.7769,
489
+ "step": 48000
490
+ },
491
+ {
492
+ "epoch": 2.19,
493
+ "learning_rate": 0.00023585727904126377,
494
+ "loss": 0.7699,
495
+ "step": 48600
496
+ },
497
+ {
498
+ "epoch": 2.22,
499
+ "learning_rate": 0.00023504017431567477,
500
+ "loss": 0.7767,
501
+ "step": 49200
502
+ },
503
+ {
504
+ "epoch": 2.25,
505
+ "learning_rate": 0.00023422306959008577,
506
+ "loss": 0.7957,
507
+ "step": 49800
508
+ },
509
+ {
510
+ "epoch": 2.27,
511
+ "learning_rate": 0.0002334059648644968,
512
+ "loss": 0.7831,
513
+ "step": 50400
514
+ },
515
+ {
516
+ "epoch": 2.3,
517
+ "learning_rate": 0.0002325888601389078,
518
+ "loss": 0.8037,
519
+ "step": 51000
520
+ },
521
+ {
522
+ "epoch": 2.33,
523
+ "learning_rate": 0.00023177175541331876,
524
+ "loss": 0.7941,
525
+ "step": 51600
526
+ },
527
+ {
528
+ "epoch": 2.35,
529
+ "learning_rate": 0.00023095465068772978,
530
+ "loss": 0.7829,
531
+ "step": 52200
532
+ },
533
+ {
534
+ "epoch": 2.38,
535
+ "learning_rate": 0.00023013754596214078,
536
+ "loss": 0.7806,
537
+ "step": 52800
538
+ },
539
+ {
540
+ "epoch": 2.41,
541
+ "learning_rate": 0.0002293204412365518,
542
+ "loss": 0.7946,
543
+ "step": 53400
544
+ },
545
+ {
546
+ "epoch": 2.43,
547
+ "learning_rate": 0.0002285033365109628,
548
+ "loss": 0.7717,
549
+ "step": 54000
550
+ },
551
+ {
552
+ "epoch": 2.46,
553
+ "learning_rate": 0.00022768623178537383,
554
+ "loss": 0.7628,
555
+ "step": 54600
556
+ },
557
+ {
558
+ "epoch": 2.49,
559
+ "learning_rate": 0.0002268691270597848,
560
+ "loss": 0.7918,
561
+ "step": 55200
562
+ },
563
+ {
564
+ "epoch": 2.52,
565
+ "learning_rate": 0.0002260520223341958,
566
+ "loss": 0.7773,
567
+ "step": 55800
568
+ },
569
+ {
570
+ "epoch": 2.54,
571
+ "learning_rate": 0.00022523491760860682,
572
+ "loss": 0.7632,
573
+ "step": 56400
574
+ },
575
+ {
576
+ "epoch": 2.57,
577
+ "learning_rate": 0.00022441781288301782,
578
+ "loss": 0.7636,
579
+ "step": 57000
580
+ },
581
+ {
582
+ "epoch": 2.6,
583
+ "learning_rate": 0.00022360070815742884,
584
+ "loss": 0.7784,
585
+ "step": 57600
586
+ },
587
+ {
588
+ "epoch": 2.62,
589
+ "learning_rate": 0.00022278360343183984,
590
+ "loss": 0.7695,
591
+ "step": 58200
592
+ },
593
+ {
594
+ "epoch": 2.65,
595
+ "learning_rate": 0.0002219664987062508,
596
+ "loss": 0.7613,
597
+ "step": 58800
598
+ },
599
+ {
600
+ "epoch": 2.68,
601
+ "learning_rate": 0.00022114939398066184,
602
+ "loss": 0.7485,
603
+ "step": 59400
604
+ },
605
+ {
606
+ "epoch": 2.71,
607
+ "learning_rate": 0.00022033228925507283,
608
+ "loss": 0.7708,
609
+ "step": 60000
610
+ },
611
+ {
612
+ "epoch": 2.73,
613
+ "learning_rate": 0.00021951518452948386,
614
+ "loss": 0.7696,
615
+ "step": 60600
616
+ },
617
+ {
618
+ "epoch": 2.76,
619
+ "learning_rate": 0.00021869807980389486,
620
+ "loss": 0.7666,
621
+ "step": 61200
622
+ },
623
+ {
624
+ "epoch": 2.79,
625
+ "learning_rate": 0.00021788097507830585,
626
+ "loss": 0.785,
627
+ "step": 61800
628
+ },
629
+ {
630
+ "epoch": 2.81,
631
+ "learning_rate": 0.00021706387035271685,
632
+ "loss": 0.7501,
633
+ "step": 62400
634
+ },
635
+ {
636
+ "epoch": 2.84,
637
+ "learning_rate": 0.00021624676562712785,
638
+ "loss": 0.7595,
639
+ "step": 63000
640
+ },
641
+ {
642
+ "epoch": 2.87,
643
+ "learning_rate": 0.00021542966090153885,
644
+ "loss": 0.7308,
645
+ "step": 63600
646
+ },
647
+ {
648
+ "epoch": 2.89,
649
+ "learning_rate": 0.00021461255617594987,
650
+ "loss": 0.7349,
651
+ "step": 64200
652
+ },
653
+ {
654
+ "epoch": 2.92,
655
+ "learning_rate": 0.00021379545145036087,
656
+ "loss": 0.7373,
657
+ "step": 64800
658
+ },
659
+ {
660
+ "epoch": 2.95,
661
+ "learning_rate": 0.0002129783467247719,
662
+ "loss": 0.7557,
663
+ "step": 65400
664
+ },
665
+ {
666
+ "epoch": 2.98,
667
+ "learning_rate": 0.00021216124199918286,
668
+ "loss": 0.7597,
669
+ "step": 66000
670
+ },
671
+ {
672
+ "epoch": 3.0,
673
+ "learning_rate": 0.00021134413727359386,
674
+ "loss": 0.7466,
675
+ "step": 66600
676
+ },
677
+ {
678
+ "epoch": 3.03,
679
+ "learning_rate": 0.00021052703254800489,
680
+ "loss": 0.6804,
681
+ "step": 67200
682
+ },
683
+ {
684
+ "epoch": 3.06,
685
+ "learning_rate": 0.00020970992782241588,
686
+ "loss": 0.6638,
687
+ "step": 67800
688
+ },
689
+ {
690
+ "epoch": 3.08,
691
+ "learning_rate": 0.0002088928230968269,
692
+ "loss": 0.6752,
693
+ "step": 68400
694
+ },
695
+ {
696
+ "epoch": 3.11,
697
+ "learning_rate": 0.0002080757183712379,
698
+ "loss": 0.6732,
699
+ "step": 69000
700
+ },
701
+ {
702
+ "epoch": 3.14,
703
+ "learning_rate": 0.00020725861364564888,
704
+ "loss": 0.6693,
705
+ "step": 69600
706
+ },
707
+ {
708
+ "epoch": 3.17,
709
+ "learning_rate": 0.0002064415089200599,
710
+ "loss": 0.6765,
711
+ "step": 70200
712
+ },
713
+ {
714
+ "epoch": 3.19,
715
+ "learning_rate": 0.0002056244041944709,
716
+ "loss": 0.6703,
717
+ "step": 70800
718
+ },
719
+ {
720
+ "epoch": 3.22,
721
+ "learning_rate": 0.00020480729946888192,
722
+ "loss": 0.6746,
723
+ "step": 71400
724
+ },
725
+ {
726
+ "epoch": 3.25,
727
+ "learning_rate": 0.00020399019474329292,
728
+ "loss": 0.6885,
729
+ "step": 72000
730
+ },
731
+ {
732
+ "epoch": 3.27,
733
+ "learning_rate": 0.00020317309001770394,
734
+ "loss": 0.7011,
735
+ "step": 72600
736
+ },
737
+ {
738
+ "epoch": 3.3,
739
+ "learning_rate": 0.00020235598529211492,
740
+ "loss": 0.6752,
741
+ "step": 73200
742
+ },
743
+ {
744
+ "epoch": 3.33,
745
+ "learning_rate": 0.0002015388805665259,
746
+ "loss": 0.6875,
747
+ "step": 73800
748
+ },
749
+ {
750
+ "epoch": 3.35,
751
+ "learning_rate": 0.00020072177584093694,
752
+ "loss": 0.6809,
753
+ "step": 74400
754
+ },
755
+ {
756
+ "epoch": 3.38,
757
+ "learning_rate": 0.00019990467111534793,
758
+ "loss": 0.6775,
759
+ "step": 75000
760
+ },
761
+ {
762
+ "epoch": 3.41,
763
+ "learning_rate": 0.00019908756638975893,
764
+ "loss": 0.692,
765
+ "step": 75600
766
+ },
767
+ {
768
+ "epoch": 3.44,
769
+ "learning_rate": 0.00019827046166416996,
770
+ "loss": 0.68,
771
+ "step": 76200
772
+ },
773
+ {
774
+ "epoch": 3.46,
775
+ "learning_rate": 0.00019745335693858093,
776
+ "loss": 0.675,
777
+ "step": 76800
778
+ },
779
+ {
780
+ "epoch": 3.49,
781
+ "learning_rate": 0.00019663625221299195,
782
+ "loss": 0.6812,
783
+ "step": 77400
784
+ },
785
+ {
786
+ "epoch": 3.52,
787
+ "learning_rate": 0.00019581914748740295,
788
+ "loss": 0.6699,
789
+ "step": 78000
790
+ },
791
+ {
792
+ "epoch": 3.54,
793
+ "learning_rate": 0.00019500204276181395,
794
+ "loss": 0.6684,
795
+ "step": 78600
796
+ },
797
+ {
798
+ "epoch": 3.57,
799
+ "learning_rate": 0.00019418493803622497,
800
+ "loss": 0.675,
801
+ "step": 79200
802
+ },
803
+ {
804
+ "epoch": 3.6,
805
+ "learning_rate": 0.00019336783331063597,
806
+ "loss": 0.6479,
807
+ "step": 79800
808
+ },
809
+ {
810
+ "epoch": 3.63,
811
+ "learning_rate": 0.00019255072858504697,
812
+ "loss": 0.6679,
813
+ "step": 80400
814
+ },
815
+ {
816
+ "epoch": 3.65,
817
+ "learning_rate": 0.00019173362385945796,
818
+ "loss": 0.6831,
819
+ "step": 81000
820
+ },
821
+ {
822
+ "epoch": 3.68,
823
+ "learning_rate": 0.00019091651913386896,
824
+ "loss": 0.6633,
825
+ "step": 81600
826
+ },
827
+ {
828
+ "epoch": 3.71,
829
+ "learning_rate": 0.00019009941440828,
830
+ "loss": 0.6809,
831
+ "step": 82200
832
+ },
833
+ {
834
+ "epoch": 3.73,
835
+ "learning_rate": 0.00018928230968269098,
836
+ "loss": 0.6579,
837
+ "step": 82800
838
+ },
839
+ {
840
+ "epoch": 3.76,
841
+ "learning_rate": 0.000188465204957102,
842
+ "loss": 0.6539,
843
+ "step": 83400
844
+ },
845
+ {
846
+ "epoch": 3.79,
847
+ "learning_rate": 0.00018764810023151298,
848
+ "loss": 0.6607,
849
+ "step": 84000
850
+ },
851
+ {
852
+ "epoch": 3.81,
853
+ "learning_rate": 0.00018683099550592398,
854
+ "loss": 0.6615,
855
+ "step": 84600
856
+ },
857
+ {
858
+ "epoch": 3.84,
859
+ "learning_rate": 0.000186013890780335,
860
+ "loss": 0.6614,
861
+ "step": 85200
862
+ },
863
+ {
864
+ "epoch": 3.87,
865
+ "learning_rate": 0.000185196786054746,
866
+ "loss": 0.6517,
867
+ "step": 85800
868
+ },
869
+ {
870
+ "epoch": 3.9,
871
+ "learning_rate": 0.00018437968132915702,
872
+ "loss": 0.6559,
873
+ "step": 86400
874
+ },
875
+ {
876
+ "epoch": 3.92,
877
+ "learning_rate": 0.00018356257660356802,
878
+ "loss": 0.6506,
879
+ "step": 87000
880
+ },
881
+ {
882
+ "epoch": 3.95,
883
+ "learning_rate": 0.000182745471877979,
884
+ "loss": 0.6541,
885
+ "step": 87600
886
+ },
887
+ {
888
+ "epoch": 3.98,
889
+ "learning_rate": 0.00018192836715239002,
890
+ "loss": 0.6593,
891
+ "step": 88200
892
+ },
893
+ {
894
+ "epoch": 4.0,
895
+ "learning_rate": 0.00018111126242680101,
896
+ "loss": 0.6335,
897
+ "step": 88800
898
+ },
899
+ {
900
+ "epoch": 4.03,
901
+ "learning_rate": 0.00018029415770121204,
902
+ "loss": 0.5884,
903
+ "step": 89400
904
+ },
905
+ {
906
+ "epoch": 4.06,
907
+ "learning_rate": 0.00017947705297562304,
908
+ "loss": 0.5834,
909
+ "step": 90000
910
+ },
911
+ {
912
+ "epoch": 4.08,
913
+ "learning_rate": 0.00017865994825003403,
914
+ "loss": 0.596,
915
+ "step": 90600
916
+ },
917
+ {
918
+ "epoch": 4.11,
919
+ "learning_rate": 0.00017784284352444503,
920
+ "loss": 0.5839,
921
+ "step": 91200
922
+ },
923
+ {
924
+ "epoch": 4.14,
925
+ "learning_rate": 0.00017702573879885603,
926
+ "loss": 0.5738,
927
+ "step": 91800
928
+ },
929
+ {
930
+ "epoch": 4.17,
931
+ "learning_rate": 0.00017620863407326705,
932
+ "loss": 0.5835,
933
+ "step": 92400
934
+ },
935
+ {
936
+ "epoch": 4.19,
937
+ "learning_rate": 0.00017539152934767805,
938
+ "loss": 0.5738,
939
+ "step": 93000
940
+ },
941
+ {
942
+ "epoch": 4.22,
943
+ "learning_rate": 0.00017457442462208905,
944
+ "loss": 0.5773,
945
+ "step": 93600
946
+ },
947
+ {
948
+ "epoch": 4.25,
949
+ "learning_rate": 0.00017375731989650007,
950
+ "loss": 0.5866,
951
+ "step": 94200
952
+ },
953
+ {
954
+ "epoch": 4.27,
955
+ "learning_rate": 0.00017294021517091104,
956
+ "loss": 0.5843,
957
+ "step": 94800
958
+ },
959
+ {
960
+ "epoch": 4.3,
961
+ "learning_rate": 0.00017212311044532204,
962
+ "loss": 0.603,
963
+ "step": 95400
964
+ },
965
+ {
966
+ "epoch": 4.33,
967
+ "learning_rate": 0.00017130600571973307,
968
+ "loss": 0.5819,
969
+ "step": 96000
970
+ },
971
+ {
972
+ "epoch": 4.36,
973
+ "learning_rate": 0.00017048890099414406,
974
+ "loss": 0.592,
975
+ "step": 96600
976
+ },
977
+ {
978
+ "epoch": 4.38,
979
+ "learning_rate": 0.0001696717962685551,
980
+ "loss": 0.58,
981
+ "step": 97200
982
+ },
983
+ {
984
+ "epoch": 4.41,
985
+ "learning_rate": 0.0001688546915429661,
986
+ "loss": 0.5882,
987
+ "step": 97800
988
+ },
989
+ {
990
+ "epoch": 4.44,
991
+ "learning_rate": 0.00016803758681737706,
992
+ "loss": 0.5987,
993
+ "step": 98400
994
+ },
995
+ {
996
+ "epoch": 4.46,
997
+ "learning_rate": 0.00016722048209178808,
998
+ "loss": 0.585,
999
+ "step": 99000
1000
+ },
1001
+ {
1002
+ "epoch": 4.49,
1003
+ "learning_rate": 0.00016640337736619908,
1004
+ "loss": 0.5769,
1005
+ "step": 99600
1006
+ },
1007
+ {
1008
+ "epoch": 4.52,
1009
+ "learning_rate": 0.0001655862726406101,
1010
+ "loss": 0.5813,
1011
+ "step": 100200
1012
+ },
1013
+ {
1014
+ "epoch": 4.54,
1015
+ "learning_rate": 0.0001647691679150211,
1016
+ "loss": 0.6053,
1017
+ "step": 100800
1018
+ },
1019
+ {
1020
+ "epoch": 4.57,
1021
+ "learning_rate": 0.00016395206318943207,
1022
+ "loss": 0.5889,
1023
+ "step": 101400
1024
+ },
1025
+ {
1026
+ "epoch": 4.6,
1027
+ "learning_rate": 0.0001631349584638431,
1028
+ "loss": 0.5877,
1029
+ "step": 102000
1030
+ },
1031
+ {
1032
+ "epoch": 4.63,
1033
+ "learning_rate": 0.0001623178537382541,
1034
+ "loss": 0.581,
1035
+ "step": 102600
1036
+ },
1037
+ {
1038
+ "epoch": 4.65,
1039
+ "learning_rate": 0.00016150074901266512,
1040
+ "loss": 0.5699,
1041
+ "step": 103200
1042
+ },
1043
+ {
1044
+ "epoch": 4.68,
1045
+ "learning_rate": 0.00016068364428707612,
1046
+ "loss": 0.5781,
1047
+ "step": 103800
1048
+ },
1049
+ {
1050
+ "epoch": 4.71,
1051
+ "learning_rate": 0.00015986653956148714,
1052
+ "loss": 0.5812,
1053
+ "step": 104400
1054
+ },
1055
+ {
1056
+ "epoch": 4.73,
1057
+ "learning_rate": 0.0001590494348358981,
1058
+ "loss": 0.5686,
1059
+ "step": 105000
1060
+ },
1061
+ {
1062
+ "epoch": 4.76,
1063
+ "learning_rate": 0.0001582323301103091,
1064
+ "loss": 0.5724,
1065
+ "step": 105600
1066
+ },
1067
+ {
1068
+ "epoch": 4.79,
1069
+ "learning_rate": 0.00015741522538472013,
1070
+ "loss": 0.5722,
1071
+ "step": 106200
1072
+ },
1073
+ {
1074
+ "epoch": 4.82,
1075
+ "learning_rate": 0.00015659812065913113,
1076
+ "loss": 0.5834,
1077
+ "step": 106800
1078
+ },
1079
+ {
1080
+ "epoch": 4.84,
1081
+ "learning_rate": 0.00015578101593354213,
1082
+ "loss": 0.5825,
1083
+ "step": 107400
1084
+ },
1085
+ {
1086
+ "epoch": 4.87,
1087
+ "learning_rate": 0.00015496391120795315,
1088
+ "loss": 0.5783,
1089
+ "step": 108000
1090
+ },
1091
+ {
1092
+ "epoch": 4.9,
1093
+ "learning_rate": 0.00015414680648236412,
1094
+ "loss": 0.5819,
1095
+ "step": 108600
1096
+ },
1097
+ {
1098
+ "epoch": 4.92,
1099
+ "learning_rate": 0.00015332970175677515,
1100
+ "loss": 0.5823,
1101
+ "step": 109200
1102
+ },
1103
+ {
1104
+ "epoch": 4.95,
1105
+ "learning_rate": 0.00015251259703118615,
1106
+ "loss": 0.5755,
1107
+ "step": 109800
1108
+ },
1109
+ {
1110
+ "epoch": 4.98,
1111
+ "learning_rate": 0.00015169549230559714,
1112
+ "loss": 0.571,
1113
+ "step": 110400
1114
+ },
1115
+ {
1116
+ "epoch": 5.0,
1117
+ "learning_rate": 0.00015087838758000817,
1118
+ "loss": 0.5603,
1119
+ "step": 111000
1120
+ },
1121
+ {
1122
+ "epoch": 5.03,
1123
+ "learning_rate": 0.00015006128285441917,
1124
+ "loss": 0.5127,
1125
+ "step": 111600
1126
+ },
1127
+ {
1128
+ "epoch": 5.06,
1129
+ "learning_rate": 0.00014924417812883016,
1130
+ "loss": 0.52,
1131
+ "step": 112200
1132
+ },
1133
+ {
1134
+ "epoch": 5.09,
1135
+ "learning_rate": 0.0001484270734032412,
1136
+ "loss": 0.5327,
1137
+ "step": 112800
1138
+ },
1139
+ {
1140
+ "epoch": 5.11,
1141
+ "learning_rate": 0.00014760996867765216,
1142
+ "loss": 0.5081,
1143
+ "step": 113400
1144
+ },
1145
+ {
1146
+ "epoch": 5.14,
1147
+ "learning_rate": 0.00014679286395206318,
1148
+ "loss": 0.5189,
1149
+ "step": 114000
1150
+ },
1151
+ {
1152
+ "epoch": 5.17,
1153
+ "learning_rate": 0.00014597575922647418,
1154
+ "loss": 0.5178,
1155
+ "step": 114600
1156
+ },
1157
+ {
1158
+ "epoch": 5.19,
1159
+ "learning_rate": 0.00014515865450088518,
1160
+ "loss": 0.5254,
1161
+ "step": 115200
1162
+ },
1163
+ {
1164
+ "epoch": 5.22,
1165
+ "learning_rate": 0.00014434154977529618,
1166
+ "loss": 0.5171,
1167
+ "step": 115800
1168
+ },
1169
+ {
1170
+ "epoch": 5.25,
1171
+ "learning_rate": 0.0001435244450497072,
1172
+ "loss": 0.5167,
1173
+ "step": 116400
1174
+ },
1175
+ {
1176
+ "epoch": 5.28,
1177
+ "learning_rate": 0.0001427073403241182,
1178
+ "loss": 0.5286,
1179
+ "step": 117000
1180
+ },
1181
+ {
1182
+ "epoch": 5.3,
1183
+ "learning_rate": 0.0001418902355985292,
1184
+ "loss": 0.5298,
1185
+ "step": 117600
1186
+ },
1187
+ {
1188
+ "epoch": 5.33,
1189
+ "learning_rate": 0.00014107313087294022,
1190
+ "loss": 0.5295,
1191
+ "step": 118200
1192
+ },
1193
+ {
1194
+ "epoch": 5.36,
1195
+ "learning_rate": 0.0001402560261473512,
1196
+ "loss": 0.5324,
1197
+ "step": 118800
1198
+ },
1199
+ {
1200
+ "epoch": 5.38,
1201
+ "learning_rate": 0.00013943892142176222,
1202
+ "loss": 0.5155,
1203
+ "step": 119400
1204
+ },
1205
+ {
1206
+ "epoch": 5.41,
1207
+ "learning_rate": 0.0001386218166961732,
1208
+ "loss": 0.5138,
1209
+ "step": 120000
1210
+ },
1211
+ {
1212
+ "epoch": 5.44,
1213
+ "learning_rate": 0.0001378047119705842,
1214
+ "loss": 0.5215,
1215
+ "step": 120600
1216
+ },
1217
+ {
1218
+ "epoch": 5.46,
1219
+ "learning_rate": 0.00013698760724499524,
1220
+ "loss": 0.5236,
1221
+ "step": 121200
1222
+ },
1223
+ {
1224
+ "epoch": 5.49,
1225
+ "learning_rate": 0.00013617050251940623,
1226
+ "loss": 0.5249,
1227
+ "step": 121800
1228
+ },
1229
+ {
1230
+ "epoch": 5.52,
1231
+ "learning_rate": 0.00013535339779381723,
1232
+ "loss": 0.5086,
1233
+ "step": 122400
1234
+ },
1235
+ {
1236
+ "epoch": 5.55,
1237
+ "learning_rate": 0.00013453629306822823,
1238
+ "loss": 0.5271,
1239
+ "step": 123000
1240
+ },
1241
+ {
1242
+ "epoch": 5.57,
1243
+ "learning_rate": 0.00013371918834263925,
1244
+ "loss": 0.5214,
1245
+ "step": 123600
1246
+ },
1247
+ {
1248
+ "epoch": 5.6,
1249
+ "learning_rate": 0.00013290208361705022,
1250
+ "loss": 0.5257,
1251
+ "step": 124200
1252
+ },
1253
+ {
1254
+ "epoch": 5.63,
1255
+ "learning_rate": 0.00013208497889146125,
1256
+ "loss": 0.5182,
1257
+ "step": 124800
1258
+ },
1259
+ {
1260
+ "epoch": 5.65,
1261
+ "learning_rate": 0.00013126787416587225,
1262
+ "loss": 0.5128,
1263
+ "step": 125400
1264
+ },
1265
+ {
1266
+ "epoch": 5.68,
1267
+ "learning_rate": 0.00013045076944028324,
1268
+ "loss": 0.5164,
1269
+ "step": 126000
1270
+ },
1271
+ {
1272
+ "epoch": 5.71,
1273
+ "learning_rate": 0.00012963366471469427,
1274
+ "loss": 0.5142,
1275
+ "step": 126600
1276
+ },
1277
+ {
1278
+ "epoch": 5.74,
1279
+ "learning_rate": 0.00012881655998910527,
1280
+ "loss": 0.5336,
1281
+ "step": 127200
1282
+ },
1283
+ {
1284
+ "epoch": 5.76,
1285
+ "learning_rate": 0.00012799945526351626,
1286
+ "loss": 0.5216,
1287
+ "step": 127800
1288
+ },
1289
+ {
1290
+ "epoch": 5.79,
1291
+ "learning_rate": 0.00012718235053792726,
1292
+ "loss": 0.5185,
1293
+ "step": 128400
1294
+ },
1295
+ {
1296
+ "epoch": 5.82,
1297
+ "learning_rate": 0.00012636524581233829,
1298
+ "loss": 0.5134,
1299
+ "step": 129000
1300
+ },
1301
+ {
1302
+ "epoch": 5.84,
1303
+ "learning_rate": 0.00012554814108674928,
1304
+ "loss": 0.5206,
1305
+ "step": 129600
1306
+ },
1307
+ {
1308
+ "epoch": 5.87,
1309
+ "learning_rate": 0.00012473103636116028,
1310
+ "loss": 0.5056,
1311
+ "step": 130200
1312
+ },
1313
+ {
1314
+ "epoch": 5.9,
1315
+ "learning_rate": 0.00012391393163557128,
1316
+ "loss": 0.4996,
1317
+ "step": 130800
1318
+ },
1319
+ {
1320
+ "epoch": 5.92,
1321
+ "learning_rate": 0.00012309682690998228,
1322
+ "loss": 0.51,
1323
+ "step": 131400
1324
+ },
1325
+ {
1326
+ "epoch": 5.95,
1327
+ "learning_rate": 0.0001222797221843933,
1328
+ "loss": 0.499,
1329
+ "step": 132000
1330
+ },
1331
+ {
1332
+ "epoch": 5.98,
1333
+ "learning_rate": 0.0001214626174588043,
1334
+ "loss": 0.5181,
1335
+ "step": 132600
1336
+ },
1337
+ {
1338
+ "epoch": 6.01,
1339
+ "learning_rate": 0.0001206455127332153,
1340
+ "loss": 0.5164,
1341
+ "step": 133200
1342
+ },
1343
+ {
1344
+ "epoch": 6.03,
1345
+ "learning_rate": 0.0001198284080076263,
1346
+ "loss": 0.4706,
1347
+ "step": 133800
1348
+ },
1349
+ {
1350
+ "epoch": 6.06,
1351
+ "learning_rate": 0.00011901130328203729,
1352
+ "loss": 0.4552,
1353
+ "step": 134400
1354
+ },
1355
+ {
1356
+ "epoch": 6.09,
1357
+ "learning_rate": 0.0001181941985564483,
1358
+ "loss": 0.457,
1359
+ "step": 135000
1360
+ },
1361
+ {
1362
+ "epoch": 6.11,
1363
+ "learning_rate": 0.00011737709383085931,
1364
+ "loss": 0.4606,
1365
+ "step": 135600
1366
+ },
1367
+ {
1368
+ "epoch": 6.14,
1369
+ "learning_rate": 0.00011655998910527031,
1370
+ "loss": 0.4685,
1371
+ "step": 136200
1372
+ },
1373
+ {
1374
+ "epoch": 6.17,
1375
+ "learning_rate": 0.00011574288437968132,
1376
+ "loss": 0.4564,
1377
+ "step": 136800
1378
+ },
1379
+ {
1380
+ "epoch": 6.2,
1381
+ "learning_rate": 0.00011492577965409233,
1382
+ "loss": 0.4611,
1383
+ "step": 137400
1384
+ },
1385
+ {
1386
+ "epoch": 6.22,
1387
+ "learning_rate": 0.00011410867492850332,
1388
+ "loss": 0.4496,
1389
+ "step": 138000
1390
+ },
1391
+ {
1392
+ "epoch": 6.25,
1393
+ "learning_rate": 0.00011329157020291433,
1394
+ "loss": 0.4509,
1395
+ "step": 138600
1396
+ },
1397
+ {
1398
+ "epoch": 6.28,
1399
+ "learning_rate": 0.00011247446547732534,
1400
+ "loss": 0.4546,
1401
+ "step": 139200
1402
+ },
1403
+ {
1404
+ "epoch": 6.3,
1405
+ "learning_rate": 0.00011165736075173634,
1406
+ "loss": 0.4616,
1407
+ "step": 139800
1408
+ },
1409
+ {
1410
+ "epoch": 6.33,
1411
+ "learning_rate": 0.00011084025602614733,
1412
+ "loss": 0.465,
1413
+ "step": 140400
1414
+ },
1415
+ {
1416
+ "epoch": 6.36,
1417
+ "learning_rate": 0.00011002315130055835,
1418
+ "loss": 0.4639,
1419
+ "step": 141000
1420
+ },
1421
+ {
1422
+ "epoch": 6.38,
1423
+ "learning_rate": 0.00010920604657496934,
1424
+ "loss": 0.4605,
1425
+ "step": 141600
1426
+ },
1427
+ {
1428
+ "epoch": 6.41,
1429
+ "learning_rate": 0.00010838894184938035,
1430
+ "loss": 0.4592,
1431
+ "step": 142200
1432
+ },
1433
+ {
1434
+ "epoch": 6.44,
1435
+ "learning_rate": 0.00010757183712379136,
1436
+ "loss": 0.4612,
1437
+ "step": 142800
1438
+ },
1439
+ {
1440
+ "epoch": 6.47,
1441
+ "learning_rate": 0.00010675473239820235,
1442
+ "loss": 0.4538,
1443
+ "step": 143400
1444
+ },
1445
+ {
1446
+ "epoch": 6.49,
1447
+ "learning_rate": 0.00010593762767261336,
1448
+ "loss": 0.452,
1449
+ "step": 144000
1450
+ },
1451
+ {
1452
+ "epoch": 6.52,
1453
+ "learning_rate": 0.00010512052294702437,
1454
+ "loss": 0.4701,
1455
+ "step": 144600
1456
+ },
1457
+ {
1458
+ "epoch": 6.55,
1459
+ "learning_rate": 0.00010430341822143537,
1460
+ "loss": 0.4518,
1461
+ "step": 145200
1462
+ },
1463
+ {
1464
+ "epoch": 6.57,
1465
+ "learning_rate": 0.00010348631349584638,
1466
+ "loss": 0.4594,
1467
+ "step": 145800
1468
+ },
1469
+ {
1470
+ "epoch": 6.6,
1471
+ "learning_rate": 0.00010266920877025738,
1472
+ "loss": 0.4593,
1473
+ "step": 146400
1474
+ },
1475
+ {
1476
+ "epoch": 6.63,
1477
+ "learning_rate": 0.00010185210404466838,
1478
+ "loss": 0.4651,
1479
+ "step": 147000
1480
+ },
1481
+ {
1482
+ "epoch": 6.65,
1483
+ "learning_rate": 0.00010103499931907939,
1484
+ "loss": 0.4547,
1485
+ "step": 147600
1486
+ },
1487
+ {
1488
+ "epoch": 6.68,
1489
+ "learning_rate": 0.0001002178945934904,
1490
+ "loss": 0.4544,
1491
+ "step": 148200
1492
+ },
1493
+ {
1494
+ "epoch": 6.71,
1495
+ "learning_rate": 9.940078986790138e-05,
1496
+ "loss": 0.4605,
1497
+ "step": 148800
1498
+ },
1499
+ {
1500
+ "epoch": 6.74,
1501
+ "learning_rate": 9.858368514231239e-05,
1502
+ "loss": 0.4518,
1503
+ "step": 149400
1504
+ },
1505
+ {
1506
+ "epoch": 6.76,
1507
+ "learning_rate": 9.77665804167234e-05,
1508
+ "loss": 0.4625,
1509
+ "step": 150000
1510
+ },
1511
+ {
1512
+ "epoch": 6.79,
1513
+ "learning_rate": 9.69494756911344e-05,
1514
+ "loss": 0.4537,
1515
+ "step": 150600
1516
+ },
1517
+ {
1518
+ "epoch": 6.82,
1519
+ "learning_rate": 9.613237096554541e-05,
1520
+ "loss": 0.4515,
1521
+ "step": 151200
1522
+ },
1523
+ {
1524
+ "epoch": 6.84,
1525
+ "learning_rate": 9.531526623995642e-05,
1526
+ "loss": 0.4507,
1527
+ "step": 151800
1528
+ },
1529
+ {
1530
+ "epoch": 6.87,
1531
+ "learning_rate": 9.449816151436741e-05,
1532
+ "loss": 0.4617,
1533
+ "step": 152400
1534
+ },
1535
+ {
1536
+ "epoch": 6.9,
1537
+ "learning_rate": 9.368105678877842e-05,
1538
+ "loss": 0.4494,
1539
+ "step": 153000
1540
+ },
1541
+ {
1542
+ "epoch": 6.93,
1543
+ "learning_rate": 9.286395206318943e-05,
1544
+ "loss": 0.4502,
1545
+ "step": 153600
1546
+ },
1547
+ {
1548
+ "epoch": 6.95,
1549
+ "learning_rate": 9.204684733760043e-05,
1550
+ "loss": 0.4495,
1551
+ "step": 154200
1552
+ },
1553
+ {
1554
+ "epoch": 6.98,
1555
+ "learning_rate": 9.122974261201142e-05,
1556
+ "loss": 0.4569,
1557
+ "step": 154800
1558
+ },
1559
+ {
1560
+ "epoch": 7.01,
1561
+ "learning_rate": 9.041263788642244e-05,
1562
+ "loss": 0.4416,
1563
+ "step": 155400
1564
+ },
1565
+ {
1566
+ "epoch": 7.03,
1567
+ "learning_rate": 8.959553316083343e-05,
1568
+ "loss": 0.4081,
1569
+ "step": 156000
1570
+ },
1571
+ {
1572
+ "epoch": 7.06,
1573
+ "learning_rate": 8.877842843524444e-05,
1574
+ "loss": 0.4196,
1575
+ "step": 156600
1576
+ },
1577
+ {
1578
+ "epoch": 7.09,
1579
+ "learning_rate": 8.796132370965546e-05,
1580
+ "loss": 0.4135,
1581
+ "step": 157200
1582
+ },
1583
+ {
1584
+ "epoch": 7.11,
1585
+ "learning_rate": 8.714421898406644e-05,
1586
+ "loss": 0.4088,
1587
+ "step": 157800
1588
+ },
1589
+ {
1590
+ "epoch": 7.14,
1591
+ "learning_rate": 8.632711425847745e-05,
1592
+ "loss": 0.4005,
1593
+ "step": 158400
1594
+ },
1595
+ {
1596
+ "epoch": 7.17,
1597
+ "learning_rate": 8.551000953288846e-05,
1598
+ "loss": 0.3954,
1599
+ "step": 159000
1600
+ },
1601
+ {
1602
+ "epoch": 7.2,
1603
+ "learning_rate": 8.469290480729946e-05,
1604
+ "loss": 0.4093,
1605
+ "step": 159600
1606
+ },
1607
+ {
1608
+ "epoch": 7.22,
1609
+ "learning_rate": 8.387580008171047e-05,
1610
+ "loss": 0.3998,
1611
+ "step": 160200
1612
+ },
1613
+ {
1614
+ "epoch": 7.25,
1615
+ "learning_rate": 8.305869535612147e-05,
1616
+ "loss": 0.4068,
1617
+ "step": 160800
1618
+ },
1619
+ {
1620
+ "epoch": 7.28,
1621
+ "learning_rate": 8.224159063053247e-05,
1622
+ "loss": 0.3933,
1623
+ "step": 161400
1624
+ },
1625
+ {
1626
+ "epoch": 7.3,
1627
+ "learning_rate": 8.142448590494348e-05,
1628
+ "loss": 0.3957,
1629
+ "step": 162000
1630
+ },
1631
+ {
1632
+ "epoch": 7.33,
1633
+ "learning_rate": 8.060738117935449e-05,
1634
+ "loss": 0.3954,
1635
+ "step": 162600
1636
+ },
1637
+ {
1638
+ "epoch": 7.36,
1639
+ "learning_rate": 7.979027645376547e-05,
1640
+ "loss": 0.3949,
1641
+ "step": 163200
1642
+ },
1643
+ {
1644
+ "epoch": 7.39,
1645
+ "learning_rate": 7.897317172817648e-05,
1646
+ "loss": 0.4014,
1647
+ "step": 163800
1648
+ },
1649
+ {
1650
+ "epoch": 7.41,
1651
+ "learning_rate": 7.81560670025875e-05,
1652
+ "loss": 0.4007,
1653
+ "step": 164400
1654
+ },
1655
+ {
1656
+ "epoch": 7.44,
1657
+ "learning_rate": 7.733896227699849e-05,
1658
+ "loss": 0.4037,
1659
+ "step": 165000
1660
+ },
1661
+ {
1662
+ "epoch": 7.47,
1663
+ "learning_rate": 7.65218575514095e-05,
1664
+ "loss": 0.4055,
1665
+ "step": 165600
1666
+ },
1667
+ {
1668
+ "epoch": 7.49,
1669
+ "learning_rate": 7.570475282582051e-05,
1670
+ "loss": 0.3985,
1671
+ "step": 166200
1672
+ },
1673
+ {
1674
+ "epoch": 7.52,
1675
+ "learning_rate": 7.488764810023151e-05,
1676
+ "loss": 0.4022,
1677
+ "step": 166800
1678
+ },
1679
+ {
1680
+ "epoch": 7.55,
1681
+ "learning_rate": 7.407054337464251e-05,
1682
+ "loss": 0.3872,
1683
+ "step": 167400
1684
+ },
1685
+ {
1686
+ "epoch": 7.57,
1687
+ "learning_rate": 7.325343864905351e-05,
1688
+ "loss": 0.3895,
1689
+ "step": 168000
1690
+ },
1691
+ {
1692
+ "epoch": 7.6,
1693
+ "learning_rate": 7.243633392346452e-05,
1694
+ "loss": 0.3968,
1695
+ "step": 168600
1696
+ },
1697
+ {
1698
+ "epoch": 7.63,
1699
+ "learning_rate": 7.161922919787552e-05,
1700
+ "loss": 0.4051,
1701
+ "step": 169200
1702
+ },
1703
+ {
1704
+ "epoch": 7.66,
1705
+ "learning_rate": 7.080212447228653e-05,
1706
+ "loss": 0.3915,
1707
+ "step": 169800
1708
+ },
1709
+ {
1710
+ "epoch": 7.68,
1711
+ "learning_rate": 6.998501974669754e-05,
1712
+ "loss": 0.3934,
1713
+ "step": 170400
1714
+ },
1715
+ {
1716
+ "epoch": 7.71,
1717
+ "learning_rate": 6.916791502110854e-05,
1718
+ "loss": 0.3943,
1719
+ "step": 171000
1720
+ },
1721
+ {
1722
+ "epoch": 7.74,
1723
+ "learning_rate": 6.835081029551953e-05,
1724
+ "loss": 0.3932,
1725
+ "step": 171600
1726
+ },
1727
+ {
1728
+ "epoch": 7.76,
1729
+ "learning_rate": 6.753370556993054e-05,
1730
+ "loss": 0.4063,
1731
+ "step": 172200
1732
+ },
1733
+ {
1734
+ "epoch": 7.79,
1735
+ "learning_rate": 6.671660084434154e-05,
1736
+ "loss": 0.3975,
1737
+ "step": 172800
1738
+ },
1739
+ {
1740
+ "epoch": 7.82,
1741
+ "learning_rate": 6.589949611875254e-05,
1742
+ "loss": 0.3915,
1743
+ "step": 173400
1744
+ },
1745
+ {
1746
+ "epoch": 7.85,
1747
+ "learning_rate": 6.508239139316355e-05,
1748
+ "loss": 0.3892,
1749
+ "step": 174000
1750
+ },
1751
+ {
1752
+ "epoch": 7.87,
1753
+ "learning_rate": 6.426528666757456e-05,
1754
+ "loss": 0.3831,
1755
+ "step": 174600
1756
+ },
1757
+ {
1758
+ "epoch": 7.9,
1759
+ "learning_rate": 6.344818194198556e-05,
1760
+ "loss": 0.3896,
1761
+ "step": 175200
1762
+ },
1763
+ {
1764
+ "epoch": 7.93,
1765
+ "learning_rate": 6.263107721639657e-05,
1766
+ "loss": 0.3839,
1767
+ "step": 175800
1768
+ },
1769
+ {
1770
+ "epoch": 7.95,
1771
+ "learning_rate": 6.181397249080757e-05,
1772
+ "loss": 0.401,
1773
+ "step": 176400
1774
+ },
1775
+ {
1776
+ "epoch": 7.98,
1777
+ "learning_rate": 6.0996867765218565e-05,
1778
+ "loss": 0.3888,
1779
+ "step": 177000
1780
+ },
1781
+ {
1782
+ "epoch": 8.01,
1783
+ "learning_rate": 6.0179763039629576e-05,
1784
+ "loss": 0.371,
1785
+ "step": 177600
1786
+ },
1787
+ {
1788
+ "epoch": 8.03,
1789
+ "learning_rate": 5.936265831404058e-05,
1790
+ "loss": 0.3514,
1791
+ "step": 178200
1792
+ },
1793
+ {
1794
+ "epoch": 8.06,
1795
+ "learning_rate": 5.854555358845158e-05,
1796
+ "loss": 0.364,
1797
+ "step": 178800
1798
+ },
1799
+ {
1800
+ "epoch": 8.09,
1801
+ "learning_rate": 5.772844886286259e-05,
1802
+ "loss": 0.3486,
1803
+ "step": 179400
1804
+ },
1805
+ {
1806
+ "epoch": 8.12,
1807
+ "learning_rate": 5.691134413727359e-05,
1808
+ "loss": 0.3531,
1809
+ "step": 180000
1810
+ },
1811
+ {
1812
+ "epoch": 8.14,
1813
+ "learning_rate": 5.609423941168459e-05,
1814
+ "loss": 0.3584,
1815
+ "step": 180600
1816
+ },
1817
+ {
1818
+ "epoch": 8.17,
1819
+ "learning_rate": 5.52771346860956e-05,
1820
+ "loss": 0.345,
1821
+ "step": 181200
1822
+ },
1823
+ {
1824
+ "epoch": 8.2,
1825
+ "learning_rate": 5.44600299605066e-05,
1826
+ "loss": 0.3406,
1827
+ "step": 181800
1828
+ },
1829
+ {
1830
+ "epoch": 8.22,
1831
+ "learning_rate": 5.3642925234917604e-05,
1832
+ "loss": 0.3519,
1833
+ "step": 182400
1834
+ },
1835
+ {
1836
+ "epoch": 8.25,
1837
+ "learning_rate": 5.28258205093286e-05,
1838
+ "loss": 0.3607,
1839
+ "step": 183000
1840
+ },
1841
+ {
1842
+ "epoch": 8.28,
1843
+ "learning_rate": 5.200871578373961e-05,
1844
+ "loss": 0.3533,
1845
+ "step": 183600
1846
+ },
1847
+ {
1848
+ "epoch": 8.31,
1849
+ "learning_rate": 5.119161105815061e-05,
1850
+ "loss": 0.3586,
1851
+ "step": 184200
1852
+ },
1853
+ {
1854
+ "epoch": 8.33,
1855
+ "learning_rate": 5.0374506332561615e-05,
1856
+ "loss": 0.3453,
1857
+ "step": 184800
1858
+ },
1859
+ {
1860
+ "epoch": 8.36,
1861
+ "learning_rate": 4.9557401606972626e-05,
1862
+ "loss": 0.3431,
1863
+ "step": 185400
1864
+ },
1865
+ {
1866
+ "epoch": 8.39,
1867
+ "learning_rate": 4.8740296881383624e-05,
1868
+ "loss": 0.3546,
1869
+ "step": 186000
1870
+ },
1871
+ {
1872
+ "epoch": 8.41,
1873
+ "learning_rate": 4.792319215579463e-05,
1874
+ "loss": 0.3434,
1875
+ "step": 186600
1876
+ },
1877
+ {
1878
+ "epoch": 8.44,
1879
+ "learning_rate": 4.710608743020563e-05,
1880
+ "loss": 0.356,
1881
+ "step": 187200
1882
+ },
1883
+ {
1884
+ "epoch": 8.47,
1885
+ "learning_rate": 4.628898270461664e-05,
1886
+ "loss": 0.343,
1887
+ "step": 187800
1888
+ },
1889
+ {
1890
+ "epoch": 8.49,
1891
+ "learning_rate": 4.547187797902764e-05,
1892
+ "loss": 0.3501,
1893
+ "step": 188400
1894
+ },
1895
+ {
1896
+ "epoch": 8.52,
1897
+ "learning_rate": 4.4654773253438645e-05,
1898
+ "loss": 0.3384,
1899
+ "step": 189000
1900
+ },
1901
+ {
1902
+ "epoch": 8.55,
1903
+ "learning_rate": 4.383766852784965e-05,
1904
+ "loss": 0.3515,
1905
+ "step": 189600
1906
+ },
1907
+ {
1908
+ "epoch": 8.58,
1909
+ "learning_rate": 4.302056380226065e-05,
1910
+ "loss": 0.353,
1911
+ "step": 190200
1912
+ },
1913
+ {
1914
+ "epoch": 8.6,
1915
+ "learning_rate": 4.220345907667166e-05,
1916
+ "loss": 0.3448,
1917
+ "step": 190800
1918
+ },
1919
+ {
1920
+ "epoch": 8.63,
1921
+ "learning_rate": 4.138635435108266e-05,
1922
+ "loss": 0.3438,
1923
+ "step": 191400
1924
+ },
1925
+ {
1926
+ "epoch": 8.66,
1927
+ "learning_rate": 4.056924962549366e-05,
1928
+ "loss": 0.3539,
1929
+ "step": 192000
1930
+ },
1931
+ {
1932
+ "epoch": 8.68,
1933
+ "learning_rate": 3.975214489990467e-05,
1934
+ "loss": 0.3514,
1935
+ "step": 192600
1936
+ },
1937
+ {
1938
+ "epoch": 8.71,
1939
+ "learning_rate": 3.893504017431567e-05,
1940
+ "loss": 0.3514,
1941
+ "step": 193200
1942
+ },
1943
+ {
1944
+ "epoch": 8.74,
1945
+ "learning_rate": 3.811793544872667e-05,
1946
+ "loss": 0.3349,
1947
+ "step": 193800
1948
+ },
1949
+ {
1950
+ "epoch": 8.77,
1951
+ "learning_rate": 3.730083072313768e-05,
1952
+ "loss": 0.3429,
1953
+ "step": 194400
1954
+ },
1955
+ {
1956
+ "epoch": 8.79,
1957
+ "learning_rate": 3.648372599754868e-05,
1958
+ "loss": 0.3407,
1959
+ "step": 195000
1960
+ },
1961
+ {
1962
+ "epoch": 8.82,
1963
+ "learning_rate": 3.5666621271959686e-05,
1964
+ "loss": 0.3444,
1965
+ "step": 195600
1966
+ },
1967
+ {
1968
+ "epoch": 8.85,
1969
+ "learning_rate": 3.484951654637069e-05,
1970
+ "loss": 0.3434,
1971
+ "step": 196200
1972
+ },
1973
+ {
1974
+ "epoch": 8.87,
1975
+ "learning_rate": 3.4032411820781695e-05,
1976
+ "loss": 0.3423,
1977
+ "step": 196800
1978
+ },
1979
+ {
1980
+ "epoch": 8.9,
1981
+ "learning_rate": 3.32153070951927e-05,
1982
+ "loss": 0.3387,
1983
+ "step": 197400
1984
+ },
1985
+ {
1986
+ "epoch": 8.93,
1987
+ "learning_rate": 3.23982023696037e-05,
1988
+ "loss": 0.3415,
1989
+ "step": 198000
1990
+ },
1991
+ {
1992
+ "epoch": 8.95,
1993
+ "learning_rate": 3.158109764401471e-05,
1994
+ "loss": 0.3404,
1995
+ "step": 198600
1996
+ },
1997
+ {
1998
+ "epoch": 8.98,
1999
+ "learning_rate": 3.076399291842571e-05,
2000
+ "loss": 0.3303,
2001
+ "step": 199200
2002
+ },
2003
+ {
2004
+ "epoch": 9.01,
2005
+ "learning_rate": 2.994688819283671e-05,
2006
+ "loss": 0.3239,
2007
+ "step": 199800
2008
+ },
2009
+ {
2010
+ "epoch": 9.04,
2011
+ "learning_rate": 2.9129783467247718e-05,
2012
+ "loss": 0.3095,
2013
+ "step": 200400
2014
+ },
2015
+ {
2016
+ "epoch": 9.06,
2017
+ "learning_rate": 2.8312678741658722e-05,
2018
+ "loss": 0.3101,
2019
+ "step": 201000
2020
+ },
2021
+ {
2022
+ "epoch": 9.09,
2023
+ "learning_rate": 2.7495574016069723e-05,
2024
+ "loss": 0.3228,
2025
+ "step": 201600
2026
+ },
2027
+ {
2028
+ "epoch": 9.12,
2029
+ "learning_rate": 2.6678469290480727e-05,
2030
+ "loss": 0.3092,
2031
+ "step": 202200
2032
+ },
2033
+ {
2034
+ "epoch": 9.14,
2035
+ "learning_rate": 2.5861364564891732e-05,
2036
+ "loss": 0.3162,
2037
+ "step": 202800
2038
+ },
2039
+ {
2040
+ "epoch": 9.17,
2041
+ "learning_rate": 2.5044259839302733e-05,
2042
+ "loss": 0.3065,
2043
+ "step": 203400
2044
+ },
2045
+ {
2046
+ "epoch": 9.2,
2047
+ "learning_rate": 2.422715511371374e-05,
2048
+ "loss": 0.3123,
2049
+ "step": 204000
2050
+ },
2051
+ {
2052
+ "epoch": 9.22,
2053
+ "learning_rate": 2.3410050388124745e-05,
2054
+ "loss": 0.3075,
2055
+ "step": 204600
2056
+ },
2057
+ {
2058
+ "epoch": 9.25,
2059
+ "learning_rate": 2.2592945662535746e-05,
2060
+ "loss": 0.3075,
2061
+ "step": 205200
2062
+ },
2063
+ {
2064
+ "epoch": 9.28,
2065
+ "learning_rate": 2.177584093694675e-05,
2066
+ "loss": 0.3129,
2067
+ "step": 205800
2068
+ },
2069
+ {
2070
+ "epoch": 9.31,
2071
+ "learning_rate": 2.0958736211357754e-05,
2072
+ "loss": 0.3091,
2073
+ "step": 206400
2074
+ },
2075
+ {
2076
+ "epoch": 9.33,
2077
+ "learning_rate": 2.0141631485768755e-05,
2078
+ "loss": 0.3076,
2079
+ "step": 207000
2080
+ },
2081
+ {
2082
+ "epoch": 9.36,
2083
+ "learning_rate": 1.9324526760179763e-05,
2084
+ "loss": 0.31,
2085
+ "step": 207600
2086
+ },
2087
+ {
2088
+ "epoch": 9.39,
2089
+ "learning_rate": 1.8507422034590764e-05,
2090
+ "loss": 0.3169,
2091
+ "step": 208200
2092
+ },
2093
+ {
2094
+ "epoch": 9.41,
2095
+ "learning_rate": 1.769031730900177e-05,
2096
+ "loss": 0.3117,
2097
+ "step": 208800
2098
+ },
2099
+ {
2100
+ "epoch": 9.44,
2101
+ "learning_rate": 1.6873212583412773e-05,
2102
+ "loss": 0.312,
2103
+ "step": 209400
2104
+ },
2105
+ {
2106
+ "epoch": 9.47,
2107
+ "learning_rate": 1.6056107857823777e-05,
2108
+ "loss": 0.3039,
2109
+ "step": 210000
2110
+ },
2111
+ {
2112
+ "epoch": 9.5,
2113
+ "learning_rate": 1.523900313223478e-05,
2114
+ "loss": 0.3057,
2115
+ "step": 210600
2116
+ },
2117
+ {
2118
+ "epoch": 9.52,
2119
+ "learning_rate": 1.4421898406645782e-05,
2120
+ "loss": 0.318,
2121
+ "step": 211200
2122
+ },
2123
+ {
2124
+ "epoch": 9.55,
2125
+ "learning_rate": 1.3604793681056788e-05,
2126
+ "loss": 0.3094,
2127
+ "step": 211800
2128
+ },
2129
+ {
2130
+ "epoch": 9.58,
2131
+ "learning_rate": 1.2787688955467791e-05,
2132
+ "loss": 0.3057,
2133
+ "step": 212400
2134
+ },
2135
+ {
2136
+ "epoch": 9.6,
2137
+ "learning_rate": 1.1970584229878794e-05,
2138
+ "loss": 0.3001,
2139
+ "step": 213000
2140
+ },
2141
+ {
2142
+ "epoch": 9.63,
2143
+ "learning_rate": 1.11534795042898e-05,
2144
+ "loss": 0.31,
2145
+ "step": 213600
2146
+ },
2147
+ {
2148
+ "epoch": 9.66,
2149
+ "learning_rate": 1.0336374778700802e-05,
2150
+ "loss": 0.3195,
2151
+ "step": 214200
2152
+ },
2153
+ {
2154
+ "epoch": 9.68,
2155
+ "learning_rate": 9.519270053111805e-06,
2156
+ "loss": 0.3022,
2157
+ "step": 214800
2158
+ },
2159
+ {
2160
+ "epoch": 9.71,
2161
+ "learning_rate": 8.70216532752281e-06,
2162
+ "loss": 0.3081,
2163
+ "step": 215400
2164
+ },
2165
+ {
2166
+ "epoch": 9.74,
2167
+ "learning_rate": 7.885060601933814e-06,
2168
+ "loss": 0.3037,
2169
+ "step": 216000
2170
+ },
2171
+ {
2172
+ "epoch": 9.77,
2173
+ "learning_rate": 7.067955876344818e-06,
2174
+ "loss": 0.3039,
2175
+ "step": 216600
2176
+ },
2177
+ {
2178
+ "epoch": 9.79,
2179
+ "learning_rate": 6.250851150755821e-06,
2180
+ "loss": 0.2932,
2181
+ "step": 217200
2182
+ },
2183
+ {
2184
+ "epoch": 9.82,
2185
+ "learning_rate": 5.433746425166825e-06,
2186
+ "loss": 0.3038,
2187
+ "step": 217800
2188
+ },
2189
+ {
2190
+ "epoch": 9.85,
2191
+ "learning_rate": 4.616641699577829e-06,
2192
+ "loss": 0.3031,
2193
+ "step": 218400
2194
+ },
2195
+ {
2196
+ "epoch": 9.87,
2197
+ "learning_rate": 3.7995369739888326e-06,
2198
+ "loss": 0.297,
2199
+ "step": 219000
2200
+ },
2201
+ {
2202
+ "epoch": 9.9,
2203
+ "learning_rate": 2.982432248399836e-06,
2204
+ "loss": 0.3094,
2205
+ "step": 219600
2206
+ },
2207
+ {
2208
+ "epoch": 9.93,
2209
+ "learning_rate": 2.16532752281084e-06,
2210
+ "loss": 0.3106,
2211
+ "step": 220200
2212
+ },
2213
+ {
2214
+ "epoch": 9.96,
2215
+ "learning_rate": 1.348222797221844e-06,
2216
+ "loss": 0.3051,
2217
+ "step": 220800
2218
+ },
2219
+ {
2220
+ "epoch": 9.98,
2221
+ "learning_rate": 5.311180716328475e-07,
2222
+ "loss": 0.3008,
2223
+ "step": 221400
2224
+ },
2225
+ {
2226
+ "epoch": 10.0,
2227
+ "step": 221790,
2228
+ "total_flos": 2.2250697536839877e+20,
2229
+ "train_loss": 0.6810670465756336,
2230
+ "train_runtime": 74687.5891,
2231
+ "train_samples_per_second": 23.756,
2232
+ "train_steps_per_second": 2.97
2233
+ }
2234
+ ],
2235
+ "logging_steps": 600,
2236
+ "max_steps": 221790,
2237
+ "num_train_epochs": 10,
2238
+ "save_steps": 500,
2239
+ "total_flos": 2.2250697536839877e+20,
2240
+ "trial_name": null,
2241
+ "trial_params": null
2242
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbe48fb494caf380988751c53bf416c9251961405d6d7abc072283944dfa068c
3
+ size 4600
vocab.json ADDED
@@ -0,0 +1,1890 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "=": 1,
3
+ "[PAD]": 1887,
4
+ "[UNK]": 1886,
5
+ "|": 0,
6
+ "}": 2,
7
+ "è": 3,
8
+ "ㄴ": 4,
9
+ "ㅅ": 5,
10
+ "ㅋ": 6,
11
+ "ㅡ": 7,
12
+ "가": 8,
13
+ "각": 9,
14
+ "간": 10,
15
+ "갇": 11,
16
+ "갈": 12,
17
+ "갉": 13,
18
+ "감": 14,
19
+ "갑": 15,
20
+ "값": 16,
21
+ "갓": 17,
22
+ "갔": 18,
23
+ "강": 19,
24
+ "갖": 20,
25
+ "갗": 21,
26
+ "같": 22,
27
+ "갚": 23,
28
+ "갛": 24,
29
+ "개": 25,
30
+ "객": 26,
31
+ "갠": 27,
32
+ "갤": 28,
33
+ "갬": 29,
34
+ "갭": 30,
35
+ "갯": 31,
36
+ "갰": 32,
37
+ "갱": 33,
38
+ "갸": 34,
39
+ "걀": 35,
40
+ "걍": 36,
41
+ "걎": 37,
42
+ "걔": 38,
43
+ "걘": 39,
44
+ "거": 40,
45
+ "걱": 41,
46
+ "건": 42,
47
+ "걷": 43,
48
+ "걸": 44,
49
+ "검": 45,
50
+ "겁": 46,
51
+ "것": 47,
52
+ "겄": 48,
53
+ "겅": 49,
54
+ "겉": 50,
55
+ "겋": 51,
56
+ "게": 52,
57
+ "겐": 53,
58
+ "겔": 54,
59
+ "겜": 55,
60
+ "겝": 56,
61
+ "겟": 57,
62
+ "겠": 58,
63
+ "겡": 59,
64
+ "겨": 60,
65
+ "격": 61,
66
+ "겪": 62,
67
+ "견": 63,
68
+ "결": 64,
69
+ "겸": 65,
70
+ "겹": 66,
71
+ "겼": 67,
72
+ "경": 68,
73
+ "곁": 69,
74
+ "계": 70,
75
+ "곗": 71,
76
+ "곘": 72,
77
+ "고": 73,
78
+ "곡": 74,
79
+ "곤": 75,
80
+ "곧": 76,
81
+ "골": 77,
82
+ "곰": 78,
83
+ "곱": 79,
84
+ "곳": 80,
85
+ "공": 81,
86
+ "곶": 82,
87
+ "과": 83,
88
+ "곽": 84,
89
+ "관": 85,
90
+ "괄": 86,
91
+ "괌": 87,
92
+ "괍": 88,
93
+ "광": 89,
94
+ "괘": 90,
95
+ "괜": 91,
96
+ "괞": 92,
97
+ "괭": 93,
98
+ "괴": 94,
99
+ "괼": 95,
100
+ "굉": 96,
101
+ "교": 97,
102
+ "굔": 98,
103
+ "굘": 99,
104
+ "구": 100,
105
+ "국": 101,
106
+ "군": 102,
107
+ "굳": 103,
108
+ "굴": 104,
109
+ "굵": 105,
110
+ "굶": 106,
111
+ "굼": 107,
112
+ "굽": 108,
113
+ "굿": 109,
114
+ "궁": 110,
115
+ "궈": 111,
116
+ "권": 112,
117
+ "궐": 113,
118
+ "궜": 114,
119
+ "궤": 115,
120
+ "귀": 116,
121
+ "귄": 117,
122
+ "귓": 118,
123
+ "규": 119,
124
+ "귝": 120,
125
+ "균": 121,
126
+ "귤": 122,
127
+ "그": 123,
128
+ "극": 124,
129
+ "근": 125,
130
+ "귿": 126,
131
+ "글": 127,
132
+ "긁": 128,
133
+ "금": 129,
134
+ "급": 130,
135
+ "긋": 131,
136
+ "긍": 132,
137
+ "긔": 133,
138
+ "기": 134,
139
+ "긴": 135,
140
+ "길": 136,
141
+ "김": 137,
142
+ "깁": 138,
143
+ "깃": 139,
144
+ "깄": 140,
145
+ "깅": 141,
146
+ "깉": 142,
147
+ "깊": 143,
148
+ "까": 144,
149
+ "깍": 145,
150
+ "깎": 146,
151
+ "깐": 147,
152
+ "깔": 148,
153
+ "깜": 149,
154
+ "깝": 150,
155
+ "깠": 151,
156
+ "깡": 152,
157
+ "깥": 153,
158
+ "깨": 154,
159
+ "깬": 155,
160
+ "깰": 156,
161
+ "깸": 157,
162
+ "깹": 158,
163
+ "깻": 159,
164
+ "깼": 160,
165
+ "깽": 161,
166
+ "꺄": 162,
167
+ "꺅": 163,
168
+ "꺼": 164,
169
+ "꺽": 165,
170
+ "꺾": 166,
171
+ "껀": 167,
172
+ "껄": 168,
173
+ "껌": 169,
174
+ "껍": 170,
175
+ "껏": 171,
176
+ "껐": 172,
177
+ "껑": 173,
178
+ "께": 174,
179
+ "껨": 175,
180
+ "껴": 176,
181
+ "꼇": 177,
182
+ "꼈": 178,
183
+ "꼉": 179,
184
+ "꼐": 180,
185
+ "꼬": 181,
186
+ "꼭": 182,
187
+ "꼰": 183,
188
+ "꼴": 184,
189
+ "꼼": 185,
190
+ "꼽": 186,
191
+ "꽁": 187,
192
+ "꽂": 188,
193
+ "꽃": 189,
194
+ "꽈": 190,
195
+ "꽉": 191,
196
+ "꽝": 192,
197
+ "꽤": 193,
198
+ "꽥": 194,
199
+ "꾀": 195,
200
+ "꾸": 196,
201
+ "꾹": 197,
202
+ "꾼": 198,
203
+ "꿀": 199,
204
+ "꿇": 200,
205
+ "꿈": 201,
206
+ "꿉": 202,
207
+ "꿋": 203,
208
+ "꿍": 204,
209
+ "꿔": 205,
210
+ "꿨": 206,
211
+ "꿩": 207,
212
+ "꿰": 208,
213
+ "뀌": 209,
214
+ "뀐": 210,
215
+ "뀔": 211,
216
+ "뀜": 212,
217
+ "뀝": 213,
218
+ "뀠": 214,
219
+ "끄": 215,
220
+ "끈": 216,
221
+ "끊": 217,
222
+ "끌": 218,
223
+ "끓": 219,
224
+ "끔": 220,
225
+ "끕": 221,
226
+ "끗": 222,
227
+ "끙": 223,
228
+ "끝": 224,
229
+ "끼": 225,
230
+ "끽": 226,
231
+ "낀": 227,
232
+ "낄": 228,
233
+ "낌": 229,
234
+ "낍": 230,
235
+ "낑": 231,
236
+ "나": 232,
237
+ "낙": 233,
238
+ "낚": 234,
239
+ "난": 235,
240
+ "날": 236,
241
+ "낡": 237,
242
+ "남": 238,
243
+ "납": 239,
244
+ "낫": 240,
245
+ "났": 241,
246
+ "낭": 242,
247
+ "낮": 243,
248
+ "낯": 244,
249
+ "낱": 245,
250
+ "낳": 246,
251
+ "내": 247,
252
+ "낵": 248,
253
+ "낸": 249,
254
+ "낼": 250,
255
+ "냄": 251,
256
+ "냅": 252,
257
+ "냇": 253,
258
+ "냈": 254,
259
+ "냉": 255,
260
+ "냐": 256,
261
+ "냑": 257,
262
+ "냠": 258,
263
+ "냥": 259,
264
+ "냬": 260,
265
+ "너": 261,
266
+ "넉": 262,
267
+ "넋": 263,
268
+ "넌": 264,
269
+ "널": 265,
270
+ "넓": 266,
271
+ "넘": 267,
272
+ "넙": 268,
273
+ "넛": 269,
274
+ "넝": 270,
275
+ "넢": 271,
276
+ "넣": 272,
277
+ "네": 273,
278
+ "넥": 274,
279
+ "넨": 275,
280
+ "넬": 276,
281
+ "넴": 277,
282
+ "넵": 278,
283
+ "넷": 279,
284
+ "넹": 280,
285
+ "녀": 281,
286
+ "녁": 282,
287
+ "년": 283,
288
+ "념": 284,
289
+ "녑": 285,
290
+ "녔": 286,
291
+ "녕": 287,
292
+ "녘": 288,
293
+ "녜": 289,
294
+ "노": 290,
295
+ "녹": 291,
296
+ "논": 292,
297
+ "놀": 293,
298
+ "놈": 294,
299
+ "놉": 295,
300
+ "농": 296,
301
+ "높": 297,
302
+ "놓": 298,
303
+ "놔": 299,
304
+ "놧": 300,
305
+ "놨": 301,
306
+ "뇌": 302,
307
+ "뇨": 303,
308
+ "뇽": 304,
309
+ "누": 305,
310
+ "눅": 306,
311
+ "눈": 307,
312
+ "눌": 308,
313
+ "눔": 309,
314
+ "눕": 310,
315
+ "눗": 311,
316
+ "눠": 312,
317
+ "눴": 313,
318
+ "뉘": 314,
319
+ "뉜": 315,
320
+ "뉠": 316,
321
+ "뉩": 317,
322
+ "뉴": 318,
323
+ "늄": 319,
324
+ "늉": 320,
325
+ "느": 321,
326
+ "늑": 322,
327
+ "는": 323,
328
+ "늗": 324,
329
+ "늘": 325,
330
+ "늙": 326,
331
+ "늠": 327,
332
+ "늡": 328,
333
+ "능": 329,
334
+ "늦": 330,
335
+ "늪": 331,
336
+ "늫": 332,
337
+ "늬": 333,
338
+ "니": 334,
339
+ "닉": 335,
340
+ "닌": 336,
341
+ "닐": 337,
342
+ "님": 338,
343
+ "닙": 339,
344
+ "닛": 340,
345
+ "닝": 341,
346
+ "다": 342,
347
+ "닥": 343,
348
+ "닦": 344,
349
+ "단": 345,
350
+ "닫": 346,
351
+ "달": 347,
352
+ "닭": 348,
353
+ "닮": 349,
354
+ "닳": 350,
355
+ "담": 351,
356
+ "답": 352,
357
+ "닷": 353,
358
+ "당": 354,
359
+ "닿": 355,
360
+ "대": 356,
361
+ "댁": 357,
362
+ "댄": 358,
363
+ "댈": 359,
364
+ "댐": 360,
365
+ "댑": 361,
366
+ "댓": 362,
367
+ "댔": 363,
368
+ "댕": 364,
369
+ "댗": 365,
370
+ "댜": 366,
371
+ "더": 367,
372
+ "덕": 368,
373
+ "던": 369,
374
+ "덜": 370,
375
+ "덟": 371,
376
+ "덤": 372,
377
+ "덥": 373,
378
+ "덧": 374,
379
+ "덩": 375,
380
+ "덫": 376,
381
+ "덮": 377,
382
+ "데": 378,
383
+ "덱": 379,
384
+ "덴": 380,
385
+ "델": 381,
386
+ "뎀": 382,
387
+ "뎁": 383,
388
+ "뎃": 384,
389
+ "뎅": 385,
390
+ "뎌": 386,
391
+ "도": 387,
392
+ "독": 388,
393
+ "돈": 389,
394
+ "돋": 390,
395
+ "돌": 391,
396
+ "돔": 392,
397
+ "돕": 393,
398
+ "돗": 394,
399
+ "동": 395,
400
+ "돚": 396,
401
+ "돨": 397,
402
+ "돼": 398,
403
+ "됐": 399,
404
+ "됑": 400,
405
+ "되": 401,
406
+ "된": 402,
407
+ "될": 403,
408
+ "됨": 404,
409
+ "됩": 405,
410
+ "됬": 406,
411
+ "두": 407,
412
+ "둑": 408,
413
+ "둔": 409,
414
+ "둘": 410,
415
+ "둠": 411,
416
+ "둡": 412,
417
+ "둣": 413,
418
+ "둥": 414,
419
+ "둬": 415,
420
+ "뒀": 416,
421
+ "뒈": 417,
422
+ "뒤": 418,
423
+ "뒷": 419,
424
+ "뒹": 420,
425
+ "듀": 421,
426
+ "듄": 422,
427
+ "듕": 423,
428
+ "드": 424,
429
+ "득": 425,
430
+ "든": 426,
431
+ "듣": 427,
432
+ "들": 428,
433
+ "듦": 429,
434
+ "듬": 430,
435
+ "듭": 431,
436
+ "듯": 432,
437
+ "등": 433,
438
+ "디": 434,
439
+ "딕": 435,
440
+ "딘": 436,
441
+ "딛": 437,
442
+ "딜": 438,
443
+ "딣": 439,
444
+ "딤": 440,
445
+ "딥": 441,
446
+ "딧": 442,
447
+ "딨": 443,
448
+ "딩": 444,
449
+ "딪": 445,
450
+ "따": 446,
451
+ "딱": 447,
452
+ "딴": 448,
453
+ "딸": 449,
454
+ "땀": 450,
455
+ "땁": 451,
456
+ "땃": 452,
457
+ "땄": 453,
458
+ "땅": 454,
459
+ "땋": 455,
460
+ "때": 456,
461
+ "땐": 457,
462
+ "땔": 458,
463
+ "땜": 459,
464
+ "땠": 460,
465
+ "땡": 461,
466
+ "떄": 462,
467
+ "떙": 463,
468
+ "떠": 464,
469
+ "떡": 465,
470
+ "떢": 466,
471
+ "떤": 467,
472
+ "떨": 468,
473
+ "떫": 469,
474
+ "떰": 470,
475
+ "떱": 471,
476
+ "떳": 472,
477
+ "떴": 473,
478
+ "떵": 474,
479
+ "떻": 475,
480
+ "떼": 476,
481
+ "뗀": 477,
482
+ "뗄": 478,
483
+ "뗍": 479,
484
+ "뗏": 480,
485
+ "뗐": 481,
486
+ "뗘": 482,
487
+ "또": 483,
488
+ "똑": 484,
489
+ "똘": 485,
490
+ "똠": 486,
491
+ "똥": 487,
492
+ "뙤": 488,
493
+ "뚜": 489,
494
+ "뚝": 490,
495
+ "뚠": 491,
496
+ "뚤": 492,
497
+ "뚫": 493,
498
+ "뚱": 494,
499
+ "뛰": 495,
500
+ "뛴": 496,
501
+ "뛸": 497,
502
+ "뜀": 498,
503
+ "뜁": 499,
504
+ "뜨": 500,
505
+ "뜩": 501,
506
+ "뜬": 502,
507
+ "뜯": 503,
508
+ "뜰": 504,
509
+ "뜷": 505,
510
+ "뜸": 506,
511
+ "뜹": 507,
512
+ "뜻": 508,
513
+ "뜽": 509,
514
+ "띄": 510,
515
+ "띈": 511,
516
+ "띌": 512,
517
+ "띕": 513,
518
+ "띠": 514,
519
+ "띡": 515,
520
+ "띤": 516,
521
+ "띨": 517,
522
+ "띰": 518,
523
+ "띱": 519,
524
+ "띵": 520,
525
+ "라": 521,
526
+ "락": 522,
527
+ "란": 523,
528
+ "랄": 524,
529
+ "람": 525,
530
+ "랍": 526,
531
+ "랏": 527,
532
+ "랐": 528,
533
+ "랑": 529,
534
+ "랖": 530,
535
+ "랗": 531,
536
+ "래": 532,
537
+ "랙": 533,
538
+ "랜": 534,
539
+ "랠": 535,
540
+ "램": 536,
541
+ "랩": 537,
542
+ "랫": 538,
543
+ "랬": 539,
544
+ "랭": 540,
545
+ "랴": 541,
546
+ "략": 542,
547
+ "랼": 543,
548
+ "량": 544,
549
+ "러": 545,
550
+ "럭": 546,
551
+ "런": 547,
552
+ "럴": 548,
553
+ "럼": 549,
554
+ "럽": 550,
555
+ "럿": 551,
556
+ "렀": 552,
557
+ "렁": 553,
558
+ "렇": 554,
559
+ "레": 555,
560
+ "렉": 556,
561
+ "렌": 557,
562
+ "렐": 558,
563
+ "렘": 559,
564
+ "렙": 560,
565
+ "렛": 561,
566
+ "렜": 562,
567
+ "렝": 563,
568
+ "렣": 564,
569
+ "려": 565,
570
+ "력": 566,
571
+ "련": 567,
572
+ "렬": 568,
573
+ "렴": 569,
574
+ "렵": 570,
575
+ "렷": 571,
576
+ "렸": 572,
577
+ "령": 573,
578
+ "렿": 574,
579
+ "례": 575,
580
+ "로": 576,
581
+ "록": 577,
582
+ "론": 578,
583
+ "롤": 579,
584
+ "롬": 580,
585
+ "롭": 581,
586
+ "롯": 582,
587
+ "롱": 583,
588
+ "롷": 584,
589
+ "롸": 585,
590
+ "뢰": 586,
591
+ "료": 587,
592
+ "룡": 588,
593
+ "루": 589,
594
+ "룩": 590,
595
+ "룬": 591,
596
+ "룰": 592,
597
+ "룸": 593,
598
+ "룹": 594,
599
+ "룻": 595,
600
+ "룽": 596,
601
+ "뤄": 597,
602
+ "뤘": 598,
603
+ "뤼": 599,
604
+ "륑": 600,
605
+ "류": 601,
606
+ "륙": 602,
607
+ "륜": 603,
608
+ "률": 604,
609
+ "륨": 605,
610
+ "륭": 606,
611
+ "르": 607,
612
+ "륵": 608,
613
+ "른": 609,
614
+ "를": 610,
615
+ "름": 611,
616
+ "릅": 612,
617
+ "릇": 613,
618
+ "릉": 614,
619
+ "릎": 615,
620
+ "릏": 616,
621
+ "리": 617,
622
+ "릭": 618,
623
+ "린": 619,
624
+ "릴": 620,
625
+ "림": 621,
626
+ "립": 622,
627
+ "릿": 623,
628
+ "링": 624,
629
+ "마": 625,
630
+ "막": 626,
631
+ "만": 627,
632
+ "맍": 628,
633
+ "많": 629,
634
+ "맑": 630,
635
+ "맘": 631,
636
+ "맙": 632,
637
+ "맛": 633,
638
+ "맜": 634,
639
+ "망": 635,
640
+ "맞": 636,
641
+ "맡": 637,
642
+ "맣": 638,
643
+ "매": 639,
644
+ "맥": 640,
645
+ "맨": 641,
646
+ "맬": 642,
647
+ "맴": 643,
648
+ "맵": 644,
649
+ "맷": 645,
650
+ "맸": 646,
651
+ "맹": 647,
652
+ "맺": 648,
653
+ "맻": 649,
654
+ "머": 650,
655
+ "먹": 651,
656
+ "먼": 652,
657
+ "멀": 653,
658
+ "멈": 654,
659
+ "멉": 655,
660
+ "멋": 656,
661
+ "멌": 657,
662
+ "멍": 658,
663
+ "멎": 659,
664
+ "멓": 660,
665
+ "메": 661,
666
+ "멕": 662,
667
+ "멘": 663,
668
+ "멜": 664,
669
+ "멤": 665,
670
+ "멥": 666,
671
+ "멧": 667,
672
+ "멨": 668,
673
+ "멩": 669,
674
+ "며": 670,
675
+ "멱": 671,
676
+ "면": 672,
677
+ "멸": 673,
678
+ "몀": 674,
679
+ "명": 675,
680
+ "몇": 676,
681
+ "모": 677,
682
+ "목": 678,
683
+ "몫": 679,
684
+ "몬": 680,
685
+ "몰": 681,
686
+ "몸": 682,
687
+ "몹": 683,
688
+ "못": 684,
689
+ "몽": 685,
690
+ "묘": 686,
691
+ "무": 687,
692
+ "묵": 688,
693
+ "묶": 689,
694
+ "문": 690,
695
+ "묻": 691,
696
+ "물": 692,
697
+ "묽": 693,
698
+ "뭄": 694,
699
+ "뭅": 695,
700
+ "뭇": 696,
701
+ "뭉": 697,
702
+ "뭐": 698,
703
+ "뭔": 699,
704
+ "뭘": 700,
705
+ "뭠": 701,
706
+ "뭡": 702,
707
+ "뭣": 703,
708
+ "뭰": 704,
709
+ "뮌": 705,
710
+ "뮐": 706,
711
+ "뮤": 707,
712
+ "뮨": 708,
713
+ "뮬": 709,
714
+ "므": 710,
715
+ "믄": 711,
716
+ "믈": 712,
717
+ "믐": 713,
718
+ "믤": 714,
719
+ "미": 715,
720
+ "믹": 716,
721
+ "민": 717,
722
+ "믾": 718,
723
+ "믿": 719,
724
+ "밀": 720,
725
+ "밈": 721,
726
+ "밉": 722,
727
+ "밋": 723,
728
+ "밌": 724,
729
+ "밍": 725,
730
+ "및": 726,
731
+ "밑": 727,
732
+ "바": 728,
733
+ "박": 729,
734
+ "밖": 730,
735
+ "반": 731,
736
+ "받": 732,
737
+ "발": 733,
738
+ "밝": 734,
739
+ "밟": 735,
740
+ "밤": 736,
741
+ "밥": 737,
742
+ "밧": 738,
743
+ "방": 739,
744
+ "밭": 740,
745
+ "배": 741,
746
+ "백": 742,
747
+ "밴": 743,
748
+ "밸": 744,
749
+ "뱀": 745,
750
+ "뱃": 746,
751
+ "뱄": 747,
752
+ "뱅": 748,
753
+ "뱉": 749,
754
+ "뱌": 750,
755
+ "버": 751,
756
+ "벅": 752,
757
+ "번": 753,
758
+ "벋": 754,
759
+ "벌": 755,
760
+ "범": 756,
761
+ "법": 757,
762
+ "벗": 758,
763
+ "벙": 759,
764
+ "벚": 760,
765
+ "베": 761,
766
+ "벡": 762,
767
+ "벤": 763,
768
+ "벨": 764,
769
+ "벳": 765,
770
+ "벵": 766,
771
+ "벼": 767,
772
+ "벽": 768,
773
+ "변": 769,
774
+ "별": 770,
775
+ "볍": 771,
776
+ "볏": 772,
777
+ "볐": 773,
778
+ "병": 774,
779
+ "볕": 775,
780
+ "보": 776,
781
+ "복": 777,
782
+ "볶": 778,
783
+ "본": 779,
784
+ "볼": 780,
785
+ "봄": 781,
786
+ "봅": 782,
787
+ "봇": 783,
788
+ "봉": 784,
789
+ "봐": 785,
790
+ "봣": 786,
791
+ "봤": 787,
792
+ "봬": 788,
793
+ "봽": 789,
794
+ "뵀": 790,
795
+ "뵈": 791,
796
+ "뵌": 792,
797
+ "뵐": 793,
798
+ "뵙": 794,
799
+ "뵜": 795,
800
+ "뵤": 796,
801
+ "뵬": 797,
802
+ "뵹": 798,
803
+ "부": 799,
804
+ "북": 800,
805
+ "분": 801,
806
+ "불": 802,
807
+ "붉": 803,
808
+ "붐": 804,
809
+ "붑": 805,
810
+ "붓": 806,
811
+ "붕": 807,
812
+ "붙": 808,
813
+ "붚": 809,
814
+ "뷔": 810,
815
+ "뷰": 811,
816
+ "뷸": 812,
817
+ "븅": 813,
818
+ "브": 814,
819
+ "븐": 815,
820
+ "블": 816,
821
+ "븕": 817,
822
+ "븜": 818,
823
+ "븝": 819,
824
+ "븥": 820,
825
+ "비": 821,
826
+ "빅": 822,
827
+ "빈": 823,
828
+ "빋": 824,
829
+ "빌": 825,
830
+ "빔": 826,
831
+ "빕": 827,
832
+ "빗": 828,
833
+ "빙": 829,
834
+ "빚": 830,
835
+ "빛": 831,
836
+ "빠": 832,
837
+ "빡": 833,
838
+ "빤": 834,
839
+ "빨": 835,
840
+ "빰": 836,
841
+ "빳": 837,
842
+ "빴": 838,
843
+ "빵": 839,
844
+ "빼": 840,
845
+ "빽": 841,
846
+ "뺀": 842,
847
+ "뺄": 843,
848
+ "뺍": 844,
849
+ "뺏": 845,
850
+ "뺐": 846,
851
+ "뺑": 847,
852
+ "뺘": 848,
853
+ "뺨": 849,
854
+ "뺴": 850,
855
+ "뺵": 851,
856
+ "뻇": 852,
857
+ "뻈": 853,
858
+ "뻐": 854,
859
+ "뻑": 855,
860
+ "뻔": 856,
861
+ "뻗": 857,
862
+ "뻘": 858,
863
+ "뻣": 859,
864
+ "뻤": 860,
865
+ "뻥": 861,
866
+ "뻬": 862,
867
+ "뼀": 863,
868
+ "뼈": 864,
869
+ "뼉": 865,
870
+ "뼐": 866,
871
+ "뽀": 867,
872
+ "뽁": 868,
873
+ "뽂": 869,
874
+ "뽈": 870,
875
+ "뽐": 871,
876
+ "뽑": 872,
877
+ "뽓": 873,
878
+ "뽕": 874,
879
+ "뾰": 875,
880
+ "뾱": 876,
881
+ "뿅": 877,
882
+ "뿌": 878,
883
+ "뿍": 879,
884
+ "뿐": 880,
885
+ "뿔": 881,
886
+ "뿜": 882,
887
+ "뿝": 883,
888
+ "뿡": 884,
889
+ "쁘": 885,
890
+ "쁜": 886,
891
+ "쁠": 887,
892
+ "쁨": 888,
893
+ "쁩": 889,
894
+ "삐": 890,
895
+ "삑": 891,
896
+ "삘": 892,
897
+ "삥": 893,
898
+ "사": 894,
899
+ "삭": 895,
900
+ "산": 896,
901
+ "살": 897,
902
+ "삶": 898,
903
+ "삼": 899,
904
+ "삽": 900,
905
+ "삿": 901,
906
+ "샀": 902,
907
+ "상": 903,
908
+ "샅": 904,
909
+ "새": 905,
910
+ "색": 906,
911
+ "샌": 907,
912
+ "샐": 908,
913
+ "샘": 909,
914
+ "샙": 910,
915
+ "샛": 911,
916
+ "샜": 912,
917
+ "생": 913,
918
+ "샤": 914,
919
+ "샥": 915,
920
+ "샨": 916,
921
+ "샬": 917,
922
+ "샴": 918,
923
+ "샵": 919,
924
+ "샷": 920,
925
+ "샹": 921,
926
+ "샾": 922,
927
+ "섀": 923,
928
+ "서": 924,
929
+ "석": 925,
930
+ "섞": 926,
931
+ "선": 927,
932
+ "섣": 928,
933
+ "설": 929,
934
+ "섬": 930,
935
+ "섭": 931,
936
+ "섯": 932,
937
+ "섰": 933,
938
+ "성": 934,
939
+ "세": 935,
940
+ "섹": 936,
941
+ "센": 937,
942
+ "셀": 938,
943
+ "셈": 939,
944
+ "셉": 940,
945
+ "셋": 941,
946
+ "셌": 942,
947
+ "셍": 943,
948
+ "셔": 944,
949
+ "션": 945,
950
+ "셜": 946,
951
+ "셥": 947,
952
+ "셧": 948,
953
+ "셨": 949,
954
+ "셰": 950,
955
+ "셴": 951,
956
+ "셸": 952,
957
+ "솁": 953,
958
+ "소": 954,
959
+ "속": 955,
960
+ "손": 956,
961
+ "솔": 957,
962
+ "솜": 958,
963
+ "솝": 959,
964
+ "솟": 960,
965
+ "송": 961,
966
+ "솥": 962,
967
+ "솨": 963,
968
+ "솩": 964,
969
+ "쇄": 965,
970
+ "쇠": 966,
971
+ "쇼": 967,
972
+ "쇽": 968,
973
+ "숄": 969,
974
+ "숍": 970,
975
+ "숏": 971,
976
+ "숑": 972,
977
+ "숙": 973,
978
+ "순": 974,
979
+ "숟": 975,
980
+ "술": 976,
981
+ "숨": 977,
982
+ "숩": 978,
983
+ "숫": 979,
984
+ "숭": 980,
985
+ "숯": 981,
986
+ "숱": 982,
987
+ "숲": 983,
988
+ "숴": 984,
989
+ "쉈": 985,
990
+ "쉐": 986,
991
+ "쉑": 987,
992
+ "쉔": 988,
993
+ "쉘": 989,
994
+ "쉣": 990,
995
+ "쉬": 991,
996
+ "쉰": 992,
997
+ "쉴": 993,
998
+ "쉼": 994,
999
+ "쉽": 995,
1000
+ "슈": 996,
1001
+ "슉": 997,
1002
+ "슐": 998,
1003
+ "슘": 999,
1004
+ "슛": 1000,
1005
+ "슝": 1001,
1006
+ "스": 1002,
1007
+ "슥": 1003,
1008
+ "슨": 1004,
1009
+ "슬": 1005,
1010
+ "슴": 1006,
1011
+ "습": 1007,
1012
+ "슷": 1008,
1013
+ "승": 1009,
1014
+ "시": 1010,
1015
+ "식": 1011,
1016
+ "신": 1012,
1017
+ "싣": 1013,
1018
+ "싫": 1014,
1019
+ "심": 1015,
1020
+ "십": 1016,
1021
+ "싯": 1017,
1022
+ "싱": 1018,
1023
+ "싶": 1019,
1024
+ "싸": 1020,
1025
+ "싹": 1021,
1026
+ "싼": 1022,
1027
+ "쌀": 1023,
1028
+ "쌈": 1024,
1029
+ "쌉": 1025,
1030
+ "쌌": 1026,
1031
+ "쌍": 1027,
1032
+ "쌓": 1028,
1033
+ "쌔": 1029,
1034
+ "쌤": 1030,
1035
+ "쌥": 1031,
1036
+ "쌩": 1032,
1037
+ "쌰": 1033,
1038
+ "썅": 1034,
1039
+ "썜": 1035,
1040
+ "썝": 1036,
1041
+ "썡": 1037,
1042
+ "써": 1038,
1043
+ "썩": 1039,
1044
+ "썬": 1040,
1045
+ "썰": 1041,
1046
+ "썸": 1042,
1047
+ "썹": 1043,
1048
+ "썻": 1044,
1049
+ "썼": 1045,
1050
+ "썽": 1046,
1051
+ "쎄": 1047,
1052
+ "쎅": 1048,
1053
+ "쎈": 1049,
1054
+ "쎌": 1050,
1055
+ "쎕": 1051,
1056
+ "쎘": 1052,
1057
+ "쎼": 1053,
1058
+ "쏍": 1054,
1059
+ "쏘": 1055,
1060
+ "쏙": 1056,
1061
+ "쏜": 1057,
1062
+ "쏟": 1058,
1063
+ "쏠": 1059,
1064
+ "쏩": 1060,
1065
+ "쏭": 1061,
1066
+ "쏴": 1062,
1067
+ "쏵": 1063,
1068
+ "쐈": 1064,
1069
+ "쐐": 1065,
1070
+ "쐬": 1066,
1071
+ "쐰": 1067,
1072
+ "쐴": 1068,
1073
+ "쑤": 1069,
1074
+ "쑥": 1070,
1075
+ "쑨": 1071,
1076
+ "쒀": 1072,
1077
+ "쒔": 1073,
1078
+ "쒜": 1074,
1079
+ "쒝": 1075,
1080
+ "쒯": 1076,
1081
+ "쒸": 1077,
1082
+ "쓕": 1078,
1083
+ "쓰": 1079,
1084
+ "쓱": 1080,
1085
+ "쓴": 1081,
1086
+ "쓸": 1082,
1087
+ "씀": 1083,
1088
+ "씁": 1084,
1089
+ "씌": 1085,
1090
+ "씨": 1086,
1091
+ "씩": 1087,
1092
+ "씬": 1088,
1093
+ "씰": 1089,
1094
+ "씸": 1090,
1095
+ "씹": 1091,
1096
+ "씻": 1092,
1097
+ "씽": 1093,
1098
+ "아": 1094,
1099
+ "악": 1095,
1100
+ "앆": 1096,
1101
+ "안": 1097,
1102
+ "앉": 1098,
1103
+ "않": 1099,
1104
+ "알": 1100,
1105
+ "앓": 1101,
1106
+ "암": 1102,
1107
+ "압": 1103,
1108
+ "앗": 1104,
1109
+ "았": 1105,
1110
+ "앙": 1106,
1111
+ "앞": 1107,
1112
+ "애": 1108,
1113
+ "액": 1109,
1114
+ "앤": 1110,
1115
+ "앨": 1111,
1116
+ "앰": 1112,
1117
+ "앱": 1113,
1118
+ "앳": 1114,
1119
+ "앴": 1115,
1120
+ "앵": 1116,
1121
+ "야": 1117,
1122
+ "약": 1118,
1123
+ "얀": 1119,
1124
+ "얄": 1120,
1125
+ "얇": 1121,
1126
+ "얌": 1122,
1127
+ "얍": 1123,
1128
+ "얏": 1124,
1129
+ "양": 1125,
1130
+ "얓": 1126,
1131
+ "얕": 1127,
1132
+ "얗": 1128,
1133
+ "얘": 1129,
1134
+ "얜": 1130,
1135
+ "얠": 1131,
1136
+ "얫": 1132,
1137
+ "얬": 1133,
1138
+ "어": 1134,
1139
+ "억": 1135,
1140
+ "언": 1136,
1141
+ "얹": 1137,
1142
+ "얻": 1138,
1143
+ "얼": 1139,
1144
+ "얽": 1140,
1145
+ "엄": 1141,
1146
+ "업": 1142,
1147
+ "없": 1143,
1148
+ "엇": 1144,
1149
+ "었": 1145,
1150
+ "엉": 1146,
1151
+ "엊": 1147,
1152
+ "엌": 1148,
1153
+ "엍": 1149,
1154
+ "엎": 1150,
1155
+ "에": 1151,
1156
+ "엑": 1152,
1157
+ "엔": 1153,
1158
+ "엘": 1154,
1159
+ "엠": 1155,
1160
+ "엡": 1156,
1161
+ "엣": 1157,
1162
+ "엥": 1158,
1163
+ "여": 1159,
1164
+ "역": 1160,
1165
+ "엮": 1161,
1166
+ "연": 1162,
1167
+ "열": 1163,
1168
+ "엷": 1164,
1169
+ "염": 1165,
1170
+ "엽": 1166,
1171
+ "엿": 1167,
1172
+ "였": 1168,
1173
+ "영": 1169,
1174
+ "옅": 1170,
1175
+ "옆": 1171,
1176
+ "옇": 1172,
1177
+ "예": 1173,
1178
+ "옌": 1174,
1179
+ "옐": 1175,
1180
+ "옙": 1176,
1181
+ "옛": 1177,
1182
+ "옜": 1178,
1183
+ "오": 1179,
1184
+ "옥": 1180,
1185
+ "온": 1181,
1186
+ "올": 1182,
1187
+ "옮": 1183,
1188
+ "옳": 1184,
1189
+ "옴": 1185,
1190
+ "옵": 1186,
1191
+ "옷": 1187,
1192
+ "옹": 1188,
1193
+ "옻": 1189,
1194
+ "옾": 1190,
1195
+ "와": 1191,
1196
+ "완": 1192,
1197
+ "왈": 1193,
1198
+ "왐": 1194,
1199
+ "왑": 1195,
1200
+ "왓": 1196,
1201
+ "왔": 1197,
1202
+ "왕": 1198,
1203
+ "왜": 1199,
1204
+ "왠": 1200,
1205
+ "왤": 1201,
1206
+ "왬": 1202,
1207
+ "외": 1203,
1208
+ "왼": 1204,
1209
+ "욉": 1205,
1210
+ "요": 1206,
1211
+ "욕": 1207,
1212
+ "욘": 1208,
1213
+ "욜": 1209,
1214
+ "욤": 1210,
1215
+ "욥": 1211,
1216
+ "용": 1212,
1217
+ "우": 1213,
1218
+ "욱": 1214,
1219
+ "운": 1215,
1220
+ "울": 1216,
1221
+ "움": 1217,
1222
+ "웁": 1218,
1223
+ "웃": 1219,
1224
+ "웅": 1220,
1225
+ "워": 1221,
1226
+ "웍": 1222,
1227
+ "원": 1223,
1228
+ "월": 1224,
1229
+ "웜": 1225,
1230
+ "웠": 1226,
1231
+ "웡": 1227,
1232
+ "웨": 1228,
1233
+ "웬": 1229,
1234
+ "웰": 1230,
1235
+ "웹": 1231,
1236
+ "위": 1232,
1237
+ "윅": 1233,
1238
+ "윈": 1234,
1239
+ "윌": 1235,
1240
+ "윔": 1236,
1241
+ "윕": 1237,
1242
+ "윗": 1238,
1243
+ "윙": 1239,
1244
+ "유": 1240,
1245
+ "육": 1241,
1246
+ "윤": 1242,
1247
+ "율": 1243,
1248
+ "윱": 1244,
1249
+ "융": 1245,
1250
+ "윷": 1246,
1251
+ "으": 1247,
1252
+ "윽": 1248,
1253
+ "은": 1249,
1254
+ "읃": 1250,
1255
+ "을": 1251,
1256
+ "읊": 1252,
1257
+ "음": 1253,
1258
+ "읍": 1254,
1259
+ "읎": 1255,
1260
+ "읏": 1256,
1261
+ "응": 1257,
1262
+ "읒": 1258,
1263
+ "읔": 1259,
1264
+ "읗": 1260,
1265
+ "의": 1261,
1266
+ "읭": 1262,
1267
+ "이": 1263,
1268
+ "익": 1264,
1269
+ "인": 1265,
1270
+ "일": 1266,
1271
+ "읽": 1267,
1272
+ "잃": 1268,
1273
+ "임": 1269,
1274
+ "입": 1270,
1275
+ "잇": 1271,
1276
+ "있": 1272,
1277
+ "잉": 1273,
1278
+ "잊": 1274,
1279
+ "잌": 1275,
1280
+ "잍": 1276,
1281
+ "잎": 1277,
1282
+ "자": 1278,
1283
+ "작": 1279,
1284
+ "잔": 1280,
1285
+ "잖": 1281,
1286
+ "잘": 1282,
1287
+ "잠": 1283,
1288
+ "잡": 1284,
1289
+ "잣": 1285,
1290
+ "잤": 1286,
1291
+ "장": 1287,
1292
+ "잦": 1288,
1293
+ "재": 1289,
1294
+ "잭": 1290,
1295
+ "잰": 1291,
1296
+ "잴": 1292,
1297
+ "잼": 1293,
1298
+ "잽": 1294,
1299
+ "잿": 1295,
1300
+ "쟀": 1296,
1301
+ "쟁": 1297,
1302
+ "쟈": 1298,
1303
+ "쟌": 1299,
1304
+ "쟎": 1300,
1305
+ "쟤": 1301,
1306
+ "쟨": 1302,
1307
+ "쟬": 1303,
1308
+ "저": 1304,
1309
+ "적": 1305,
1310
+ "전": 1306,
1311
+ "절": 1307,
1312
+ "젊": 1308,
1313
+ "점": 1309,
1314
+ "접": 1310,
1315
+ "젓": 1311,
1316
+ "정": 1312,
1317
+ "젖": 1313,
1318
+ "제": 1314,
1319
+ "젝": 1315,
1320
+ "젠": 1316,
1321
+ "젤": 1317,
1322
+ "젬": 1318,
1323
+ "젭": 1319,
1324
+ "젯": 1320,
1325
+ "젱": 1321,
1326
+ "져": 1322,
1327
+ "젼": 1323,
1328
+ "졌": 1324,
1329
+ "조": 1325,
1330
+ "족": 1326,
1331
+ "존": 1327,
1332
+ "졸": 1328,
1333
+ "좀": 1329,
1334
+ "좁": 1330,
1335
+ "좃": 1331,
1336
+ "종": 1332,
1337
+ "좆": 1333,
1338
+ "좇": 1334,
1339
+ "좋": 1335,
1340
+ "좌": 1336,
1341
+ "좍": 1337,
1342
+ "좔": 1338,
1343
+ "좟": 1339,
1344
+ "죄": 1340,
1345
+ "죌": 1341,
1346
+ "죙": 1342,
1347
+ "죠": 1343,
1348
+ "죵": 1344,
1349
+ "주": 1345,
1350
+ "죽": 1346,
1351
+ "준": 1347,
1352
+ "줄": 1348,
1353
+ "줌": 1349,
1354
+ "줍": 1350,
1355
+ "줏": 1351,
1356
+ "중": 1352,
1357
+ "줘": 1353,
1358
+ "줬": 1354,
1359
+ "줸": 1355,
1360
+ "쥐": 1356,
1361
+ "쥔": 1357,
1362
+ "쥡": 1358,
1363
+ "쥤": 1359,
1364
+ "쥬": 1360,
1365
+ "쥴": 1361,
1366
+ "즈": 1362,
1367
+ "즉": 1363,
1368
+ "즌": 1364,
1369
+ "즐": 1365,
1370
+ "즘": 1366,
1371
+ "즙": 1367,
1372
+ "증": 1368,
1373
+ "지": 1369,
1374
+ "직": 1370,
1375
+ "진": 1371,
1376
+ "질": 1372,
1377
+ "짊": 1373,
1378
+ "짐": 1374,
1379
+ "집": 1375,
1380
+ "짓": 1376,
1381
+ "징": 1377,
1382
+ "짖": 1378,
1383
+ "짙": 1379,
1384
+ "짚": 1380,
1385
+ "짜": 1381,
1386
+ "짝": 1382,
1387
+ "짠": 1383,
1388
+ "짢": 1384,
1389
+ "짤": 1385,
1390
+ "짧": 1386,
1391
+ "짬": 1387,
1392
+ "짭": 1388,
1393
+ "짰": 1389,
1394
+ "짱": 1390,
1395
+ "째": 1391,
1396
+ "짹": 1392,
1397
+ "짼": 1393,
1398
+ "쨈": 1394,
1399
+ "쨉": 1395,
1400
+ "쨋": 1396,
1401
+ "쨌": 1397,
1402
+ "쨍": 1398,
1403
+ "쨔": 1399,
1404
+ "쨰": 1400,
1405
+ "쩃": 1401,
1406
+ "쩄": 1402,
1407
+ "쩌": 1403,
1408
+ "쩍": 1404,
1409
+ "쩐": 1405,
1410
+ "쩔": 1406,
1411
+ "쩜": 1407,
1412
+ "쩝": 1408,
1413
+ "쩡": 1409,
1414
+ "쩨": 1410,
1415
+ "쩰": 1411,
1416
+ "쪄": 1412,
1417
+ "쪘": 1413,
1418
+ "쪼": 1414,
1419
+ "쪽": 1415,
1420
+ "쫀": 1416,
1421
+ "쫄": 1417,
1422
+ "쫌": 1418,
1423
+ "쫍": 1419,
1424
+ "쫑": 1420,
1425
+ "쫒": 1421,
1426
+ "쫓": 1422,
1427
+ "쫘": 1423,
1428
+ "쫙": 1424,
1429
+ "쫜": 1425,
1430
+ "쫠": 1426,
1431
+ "쬐": 1427,
1432
+ "쭈": 1428,
1433
+ "쭉": 1429,
1434
+ "쭌": 1430,
1435
+ "쭐": 1431,
1436
+ "쭘": 1432,
1437
+ "쭤": 1433,
1438
+ "쮸": 1434,
1439
+ "쮹": 1435,
1440
+ "쯔": 1436,
1441
+ "쯜": 1437,
1442
+ "쯤": 1438,
1443
+ "쯥": 1439,
1444
+ "쯧": 1440,
1445
+ "쯩": 1441,
1446
+ "찌": 1442,
1447
+ "찍": 1443,
1448
+ "찐": 1444,
1449
+ "찔": 1445,
1450
+ "찜": 1446,
1451
+ "찝": 1447,
1452
+ "찡": 1448,
1453
+ "찢": 1449,
1454
+ "차": 1450,
1455
+ "착": 1451,
1456
+ "찬": 1452,
1457
+ "찮": 1453,
1458
+ "찰": 1454,
1459
+ "참": 1455,
1460
+ "찹": 1456,
1461
+ "찻": 1457,
1462
+ "찼": 1458,
1463
+ "창": 1459,
1464
+ "찾": 1460,
1465
+ "찿": 1461,
1466
+ "챁": 1462,
1467
+ "채": 1463,
1468
+ "책": 1464,
1469
+ "챈": 1465,
1470
+ "챌": 1466,
1471
+ "챔": 1467,
1472
+ "챕": 1468,
1473
+ "챗": 1469,
1474
+ "챘": 1470,
1475
+ "챙": 1471,
1476
+ "챠": 1472,
1477
+ "챦": 1473,
1478
+ "챱": 1474,
1479
+ "처": 1475,
1480
+ "척": 1476,
1481
+ "천": 1477,
1482
+ "철": 1478,
1483
+ "첨": 1479,
1484
+ "첩": 1480,
1485
+ "첫": 1481,
1486
+ "청": 1482,
1487
+ "체": 1483,
1488
+ "첵": 1484,
1489
+ "첸": 1485,
1490
+ "첼": 1486,
1491
+ "쳇": 1487,
1492
+ "쳌": 1488,
1493
+ "쳐": 1489,
1494
+ "쳘": 1490,
1495
+ "쳣": 1491,
1496
+ "쳤": 1492,
1497
+ "초": 1493,
1498
+ "촉": 1494,
1499
+ "촌": 1495,
1500
+ "촐": 1496,
1501
+ "촘": 1497,
1502
+ "촛": 1498,
1503
+ "총": 1499,
1504
+ "촤": 1500,
1505
+ "촥": 1501,
1506
+ "촬": 1502,
1507
+ "최": 1503,
1508
+ "쵸": 1504,
1509
+ "추": 1505,
1510
+ "축": 1506,
1511
+ "춘": 1507,
1512
+ "출": 1508,
1513
+ "춤": 1509,
1514
+ "춥": 1510,
1515
+ "춧": 1511,
1516
+ "충": 1512,
1517
+ "춰": 1513,
1518
+ "췄": 1514,
1519
+ "췌": 1515,
1520
+ "취": 1516,
1521
+ "츄": 1517,
1522
+ "츠": 1518,
1523
+ "측": 1519,
1524
+ "츤": 1520,
1525
+ "츨": 1521,
1526
+ "츰": 1522,
1527
+ "층": 1523,
1528
+ "츼": 1524,
1529
+ "치": 1525,
1530
+ "칙": 1526,
1531
+ "친": 1527,
1532
+ "칠": 1528,
1533
+ "침": 1529,
1534
+ "칩": 1530,
1535
+ "칫": 1531,
1536
+ "칬": 1532,
1537
+ "칭": 1533,
1538
+ "칲": 1534,
1539
+ "카": 1535,
1540
+ "칵": 1536,
1541
+ "칸": 1537,
1542
+ "칼": 1538,
1543
+ "캄": 1539,
1544
+ "캅": 1540,
1545
+ "캉": 1541,
1546
+ "캐": 1542,
1547
+ "캔": 1543,
1548
+ "캘": 1544,
1549
+ "캠": 1545,
1550
+ "캡": 1546,
1551
+ "캣": 1547,
1552
+ "캤": 1548,
1553
+ "캥": 1549,
1554
+ "캬": 1550,
1555
+ "커": 1551,
1556
+ "컥": 1552,
1557
+ "컨": 1553,
1558
+ "컬": 1554,
1559
+ "컴": 1555,
1560
+ "컵": 1556,
1561
+ "컷": 1557,
1562
+ "컸": 1558,
1563
+ "컹": 1559,
1564
+ "케": 1560,
1565
+ "켄": 1561,
1566
+ "켈": 1562,
1567
+ "켓": 1563,
1568
+ "켜": 1564,
1569
+ "켠": 1565,
1570
+ "켤": 1566,
1571
+ "켬": 1567,
1572
+ "켭": 1568,
1573
+ "켰": 1569,
1574
+ "켱": 1570,
1575
+ "코": 1571,
1576
+ "콕": 1572,
1577
+ "콘": 1573,
1578
+ "콜": 1574,
1579
+ "콤": 1575,
1580
+ "콥": 1576,
1581
+ "콧": 1577,
1582
+ "콩": 1578,
1583
+ "콰": 1579,
1584
+ "콱": 1580,
1585
+ "콸": 1581,
1586
+ "쾅": 1582,
1587
+ "쾌": 1583,
1588
+ "쾬": 1584,
1589
+ "쿄": 1585,
1590
+ "쿠": 1586,
1591
+ "쿡": 1587,
1592
+ "쿤": 1588,
1593
+ "쿨": 1589,
1594
+ "쿰": 1590,
1595
+ "쿱": 1591,
1596
+ "쿵": 1592,
1597
+ "쿼": 1593,
1598
+ "퀀": 1594,
1599
+ "퀄": 1595,
1600
+ "퀘": 1596,
1601
+ "퀴": 1597,
1602
+ "퀵": 1598,
1603
+ "퀸": 1599,
1604
+ "큐": 1600,
1605
+ "큔": 1601,
1606
+ "큘": 1602,
1607
+ "큠": 1603,
1608
+ "크": 1604,
1609
+ "큭": 1605,
1610
+ "큰": 1606,
1611
+ "클": 1607,
1612
+ "큼": 1608,
1613
+ "큽": 1609,
1614
+ "킁": 1610,
1615
+ "키": 1611,
1616
+ "킥": 1612,
1617
+ "킨": 1613,
1618
+ "킬": 1614,
1619
+ "킴": 1615,
1620
+ "킵": 1616,
1621
+ "킷": 1617,
1622
+ "킹": 1618,
1623
+ "타": 1619,
1624
+ "탁": 1620,
1625
+ "탄": 1621,
1626
+ "탈": 1622,
1627
+ "탐": 1623,
1628
+ "탑": 1624,
1629
+ "탓": 1625,
1630
+ "탔": 1626,
1631
+ "탕": 1627,
1632
+ "태": 1628,
1633
+ "택": 1629,
1634
+ "탠": 1630,
1635
+ "탤": 1631,
1636
+ "탬": 1632,
1637
+ "탭": 1633,
1638
+ "탯": 1634,
1639
+ "탱": 1635,
1640
+ "탶": 1636,
1641
+ "터": 1637,
1642
+ "턱": 1638,
1643
+ "턴": 1639,
1644
+ "털": 1640,
1645
+ "텀": 1641,
1646
+ "텁": 1642,
1647
+ "텃": 1643,
1648
+ "텄": 1644,
1649
+ "텅": 1645,
1650
+ "테": 1646,
1651
+ "텍": 1647,
1652
+ "텐": 1648,
1653
+ "텔": 1649,
1654
+ "템": 1650,
1655
+ "텝": 1651,
1656
+ "텟": 1652,
1657
+ "텡": 1653,
1658
+ "텨": 1654,
1659
+ "텼": 1655,
1660
+ "토": 1656,
1661
+ "톡": 1657,
1662
+ "톤": 1658,
1663
+ "톨": 1659,
1664
+ "톰": 1660,
1665
+ "톱": 1661,
1666
+ "통": 1662,
1667
+ "퇴": 1663,
1668
+ "투": 1664,
1669
+ "툭": 1665,
1670
+ "툰": 1666,
1671
+ "툴": 1667,
1672
+ "툼": 1668,
1673
+ "퉁": 1669,
1674
+ "퉈": 1670,
1675
+ "퉜": 1671,
1676
+ "퉤": 1672,
1677
+ "튀": 1673,
1678
+ "튄": 1674,
1679
+ "튈": 1675,
1680
+ "튕": 1676,
1681
+ "튜": 1677,
1682
+ "튤": 1678,
1683
+ "튬": 1679,
1684
+ "튭": 1680,
1685
+ "트": 1681,
1686
+ "특": 1682,
1687
+ "튼": 1683,
1688
+ "틀": 1684,
1689
+ "틈": 1685,
1690
+ "틉": 1686,
1691
+ "틋": 1687,
1692
+ "틔": 1688,
1693
+ "티": 1689,
1694
+ "틱": 1690,
1695
+ "틴": 1691,
1696
+ "틸": 1692,
1697
+ "팀": 1693,
1698
+ "팁": 1694,
1699
+ "팅": 1695,
1700
+ "파": 1696,
1701
+ "팍": 1697,
1702
+ "팎": 1698,
1703
+ "판": 1699,
1704
+ "팔": 1700,
1705
+ "팜": 1701,
1706
+ "팝": 1702,
1707
+ "팟": 1703,
1708
+ "팠": 1704,
1709
+ "팡": 1705,
1710
+ "팥": 1706,
1711
+ "패": 1707,
1712
+ "팩": 1708,
1713
+ "팬": 1709,
1714
+ "팰": 1710,
1715
+ "팸": 1711,
1716
+ "팹": 1712,
1717
+ "팻": 1713,
1718
+ "팼": 1714,
1719
+ "팽": 1715,
1720
+ "퍄": 1716,
1721
+ "퍼": 1717,
1722
+ "퍽": 1718,
1723
+ "펀": 1719,
1724
+ "펄": 1720,
1725
+ "펌": 1721,
1726
+ "펍": 1722,
1727
+ "펐": 1723,
1728
+ "펑": 1724,
1729
+ "페": 1725,
1730
+ "펙": 1726,
1731
+ "펜": 1727,
1732
+ "펠": 1728,
1733
+ "펩": 1729,
1734
+ "펫": 1730,
1735
+ "펭": 1731,
1736
+ "펴": 1732,
1737
+ "편": 1733,
1738
+ "펼": 1734,
1739
+ "폄": 1735,
1740
+ "폇": 1736,
1741
+ "폈": 1737,
1742
+ "평": 1738,
1743
+ "폐": 1739,
1744
+ "폣": 1740,
1745
+ "포": 1741,
1746
+ "폭": 1742,
1747
+ "폰": 1743,
1748
+ "폴": 1744,
1749
+ "폼": 1745,
1750
+ "폿": 1746,
1751
+ "퐁": 1747,
1752
+ "퐉": 1748,
1753
+ "푀": 1749,
1754
+ "표": 1750,
1755
+ "푠": 1751,
1756
+ "푸": 1752,
1757
+ "푹": 1753,
1758
+ "푼": 1754,
1759
+ "풀": 1755,
1760
+ "품": 1756,
1761
+ "풉": 1757,
1762
+ "풋": 1758,
1763
+ "풍": 1759,
1764
+ "퓌": 1760,
1765
+ "퓨": 1761,
1766
+ "프": 1762,
1767
+ "픈": 1763,
1768
+ "플": 1764,
1769
+ "픔": 1765,
1770
+ "픕": 1766,
1771
+ "피": 1767,
1772
+ "픽": 1768,
1773
+ "핀": 1769,
1774
+ "필": 1770,
1775
+ "핌": 1771,
1776
+ "핏": 1772,
1777
+ "핑": 1773,
1778
+ "하": 1774,
1779
+ "학": 1775,
1780
+ "한": 1776,
1781
+ "할": 1777,
1782
+ "핥": 1778,
1783
+ "핧": 1779,
1784
+ "함": 1780,
1785
+ "합": 1781,
1786
+ "핫": 1782,
1787
+ "핬": 1783,
1788
+ "항": 1784,
1789
+ "핰": 1785,
1790
+ "해": 1786,
1791
+ "핵": 1787,
1792
+ "핸": 1788,
1793
+ "핼": 1789,
1794
+ "햄": 1790,
1795
+ "햅": 1791,
1796
+ "햇": 1792,
1797
+ "했": 1793,
1798
+ "행": 1794,
1799
+ "햐": 1795,
1800
+ "향": 1796,
1801
+ "허": 1797,
1802
+ "헉": 1798,
1803
+ "헌": 1799,
1804
+ "헐": 1800,
1805
+ "험": 1801,
1806
+ "헙": 1802,
1807
+ "헛": 1803,
1808
+ "헝": 1804,
1809
+ "헤": 1805,
1810
+ "헥": 1806,
1811
+ "헨": 1807,
1812
+ "헬": 1808,
1813
+ "헴": 1809,
1814
+ "헷": 1810,
1815
+ "헸": 1811,
1816
+ "헹": 1812,
1817
+ "혀": 1813,
1818
+ "혁": 1814,
1819
+ "현": 1815,
1820
+ "혈": 1816,
1821
+ "혐": 1817,
1822
+ "협": 1818,
1823
+ "혓": 1819,
1824
+ "혔": 1820,
1825
+ "형": 1821,
1826
+ "혜": 1822,
1827
+ "호": 1823,
1828
+ "혹": 1824,
1829
+ "혼": 1825,
1830
+ "홀": 1826,
1831
+ "홈": 1827,
1832
+ "홉": 1828,
1833
+ "홋": 1829,
1834
+ "홍": 1830,
1835
+ "화": 1831,
1836
+ "확": 1832,
1837
+ "환": 1833,
1838
+ "활": 1834,
1839
+ "홥": 1835,
1840
+ "황": 1836,
1841
+ "횃": 1837,
1842
+ "회": 1838,
1843
+ "획": 1839,
1844
+ "횐": 1840,
1845
+ "횟": 1841,
1846
+ "횡": 1842,
1847
+ "효": 1843,
1848
+ "후": 1844,
1849
+ "훅": 1845,
1850
+ "훈": 1846,
1851
+ "훌": 1847,
1852
+ "훑": 1848,
1853
+ "훔": 1849,
1854
+ "훕": 1850,
1855
+ "훗": 1851,
1856
+ "훠": 1852,
1857
+ "훤": 1853,
1858
+ "훨": 1854,
1859
+ "훼": 1855,
1860
+ "휀": 1856,
1861
+ "휑": 1857,
1862
+ "휘": 1858,
1863
+ "휙": 1859,
1864
+ "휜": 1860,
1865
+ "휠": 1861,
1866
+ "휴": 1862,
1867
+ "휸": 1863,
1868
+ "흉": 1864,
1869
+ "흐": 1865,
1870
+ "흑": 1866,
1871
+ "흔": 1867,
1872
+ "흘": 1868,
1873
+ "흙": 1869,
1874
+ "흠": 1870,
1875
+ "흡": 1871,
1876
+ "흣": 1872,
1877
+ "흥": 1873,
1878
+ "흩": 1874,
1879
+ "희": 1875,
1880
+ "흰": 1876,
1881
+ "흴": 1877,
1882
+ "히": 1878,
1883
+ "힉": 1879,
1884
+ "힌": 1880,
1885
+ "힐": 1881,
1886
+ "힘": 1882,
1887
+ "힙": 1883,
1888
+ "힛": 1884,
1889
+ "힝": 1885
1890
+ }