|
import os |
|
|
|
import cv2 |
|
import torch |
|
|
|
import modules.face_restoration |
|
import modules.shared |
|
from modules import shared, devices, modelloader, errors |
|
from modules.paths import models_path |
|
|
|
|
|
|
|
|
|
model_dir = "Codeformer" |
|
model_path = os.path.join(models_path, model_dir) |
|
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' |
|
|
|
have_codeformer = False |
|
codeformer = None |
|
|
|
|
|
def setup_model(dirname): |
|
global model_path |
|
if not os.path.exists(model_path): |
|
os.makedirs(model_path) |
|
|
|
path = modules.paths.paths.get("CodeFormer", None) |
|
if path is None: |
|
return |
|
|
|
try: |
|
from torchvision.transforms.functional import normalize |
|
from modules.codeformer.codeformer_arch import CodeFormer |
|
from basicsr.utils import img2tensor, tensor2img |
|
from facelib.utils.face_restoration_helper import FaceRestoreHelper |
|
from facelib.detection.retinaface import retinaface |
|
|
|
net_class = CodeFormer |
|
|
|
class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration): |
|
def name(self): |
|
return "CodeFormer" |
|
|
|
def __init__(self, dirname): |
|
self.net = None |
|
self.face_helper = None |
|
self.cmd_dir = dirname |
|
|
|
def create_models(self): |
|
|
|
if self.net is not None and self.face_helper is not None: |
|
self.net.to(devices.device_codeformer) |
|
return self.net, self.face_helper |
|
model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth', ext_filter=['.pth']) |
|
if len(model_paths) != 0: |
|
ckpt_path = model_paths[0] |
|
else: |
|
print("Unable to load codeformer model.") |
|
return None, None |
|
net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(devices.device_codeformer) |
|
checkpoint = torch.load(ckpt_path)['params_ema'] |
|
net.load_state_dict(checkpoint) |
|
net.eval() |
|
|
|
if hasattr(retinaface, 'device'): |
|
retinaface.device = devices.device_codeformer |
|
face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer) |
|
|
|
self.net = net |
|
self.face_helper = face_helper |
|
|
|
return net, face_helper |
|
|
|
def send_model_to(self, device): |
|
self.net.to(device) |
|
self.face_helper.face_det.to(device) |
|
self.face_helper.face_parse.to(device) |
|
|
|
def restore(self, np_image, w=None): |
|
np_image = np_image[:, :, ::-1] |
|
|
|
original_resolution = np_image.shape[0:2] |
|
|
|
self.create_models() |
|
if self.net is None or self.face_helper is None: |
|
return np_image |
|
|
|
self.send_model_to(devices.device_codeformer) |
|
|
|
self.face_helper.clean_all() |
|
self.face_helper.read_image(np_image) |
|
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) |
|
self.face_helper.align_warp_face() |
|
|
|
for cropped_face in self.face_helper.cropped_faces: |
|
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) |
|
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) |
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) |
|
|
|
try: |
|
with torch.no_grad(): |
|
output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0] |
|
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) |
|
del output |
|
torch.cuda.empty_cache() |
|
except Exception: |
|
errors.report('Failed inference for CodeFormer', exc_info=True) |
|
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) |
|
|
|
restored_face = restored_face.astype('uint8') |
|
self.face_helper.add_restored_face(restored_face) |
|
|
|
self.face_helper.get_inverse_affine(None) |
|
|
|
restored_img = self.face_helper.paste_faces_to_input_image() |
|
restored_img = restored_img[:, :, ::-1] |
|
|
|
if original_resolution != restored_img.shape[0:2]: |
|
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR) |
|
|
|
self.face_helper.clean_all() |
|
|
|
if shared.opts.face_restoration_unload: |
|
self.send_model_to(devices.cpu) |
|
|
|
return restored_img |
|
|
|
global have_codeformer |
|
have_codeformer = True |
|
|
|
global codeformer |
|
codeformer = FaceRestorerCodeFormer(dirname) |
|
shared.face_restorers.append(codeformer) |
|
|
|
except Exception: |
|
errors.report("Error setting up CodeFormer", exc_info=True) |
|
|
|
|
|
|