File size: 7,630 Bytes
b16a888
eb02946
 
 
b16a888
eb02946
b16a888
 
eb02946
 
 
 
 
 
 
 
 
 
b16a888
eb02946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b16a888
 
 
 
 
eb02946
b16a888
eb02946
 
 
 
 
 
b16a888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb02946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b16a888
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
- ymoslem/Tatoeba-Speech-Irish
- ymoslem/Wikimedia-Speech-Irish
metrics:
- bleu
- wer
model-index:
- name: Whisper Medium GA-EN Speech Translation
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia
      type: ymoslem/IWSLT2023-GA-EN
    metrics:
    - name: Bleu
      type: bleu
      value: 35.04
    - name: Wer
      type: wer
      value: 57.90184601530842
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium GA-EN Speech Translation

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2966
- Bleu: 35.04
- Chrf: 55.03
- Wer: 57.9018

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 7000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Bleu  | Chrf  | Validation Loss | Wer      |
|:-------------:|:------:|:----:|:-----:|:-----:|:---------------:|:--------:|
| 2.5164        | 0.0328 | 100  | 2.56  | 17.46 | 2.0060          | 162.9896 |
| 2.656         | 0.0657 | 200  | 8.49  | 26.0  | 2.0232          | 99.5498  |
| 2.5156        | 0.0985 | 300  | 7.55  | 25.1  | 1.9253          | 141.2877 |
| 2.4722        | 0.1314 | 400  | 12.52 | 30.49 | 1.8289          | 90.4548  |
| 2.3376        | 0.1642 | 500  | 17.39 | 33.23 | 1.6839          | 81.1796  |
| 2.1733        | 0.1970 | 600  | 9.62  | 32.48 | 1.7342          | 137.9559 |
| 2.3382        | 0.2299 | 700  | 12.54 | 34.43 | 1.6570          | 112.2467 |
| 2.0041        | 0.2627 | 800  | 17.55 | 36.73 | 1.6048          | 85.1418  |
| 2.1142        | 0.2956 | 900  | 17.58 | 35.74 | 1.6256          | 82.7105  |
| 2.024         | 0.3284 | 1000 | 14.4  | 37.22 | 1.5861          | 86.7177  |
| 1.7556        | 0.3612 | 1100 | 17.21 | 38.88 | 1.5415          | 84.5115  |
| 1.6904        | 0.3941 | 1200 | 19.6  | 38.84 | 1.4902          | 85.3670  |
| 1.674         | 0.4269 | 1300 | 20.33 | 41.3  | 1.4748          | 88.3836  |
| 1.6899        | 0.4598 | 1400 | 22.74 | 43.25 | 1.4479          | 80.9995  |
| 1.5234        | 0.4926 | 1500 | 20.13 | 42.08 | 1.3763          | 80.6844  |
| 1.364         | 0.5255 | 1600 | 23.12 | 41.78 | 1.4164          | 72.9851  |
| 1.5267        | 0.5583 | 1700 | 19.94 | 41.63 | 1.3855          | 91.7605  |
| 1.4282        | 0.5911 | 1800 | 23.96 | 44.84 | 1.3729          | 74.6961  |
| 1.3611        | 0.6240 | 1900 | 23.1  | 45.41 | 1.3562          | 81.8100  |
| 1.1396        | 0.6568 | 2000 | 27.9  | 46.89 | 1.3131          | 67.2670  |
| 1.1849        | 0.6897 | 2100 | 24.38 | 45.25 | 1.3483          | 75.8667  |
| 1.0871        | 0.7225 | 2200 | 28.64 | 48.93 | 1.2848          | 66.6817  |
| 1.1822        | 0.7553 | 2300 | 28.41 | 47.25 | 1.2782          | 68.6628  |
| 1.1272        | 0.7882 | 2400 | 27.24 | 48.57 | 1.2549          | 75.9568  |
| 1.0241        | 0.8210 | 2500 | 25.74 | 47.44 | 1.2922          | 74.4710  |
| 0.9629        | 0.8539 | 2600 | 23.93 | 44.61 | 1.3209          | 82.1252  |
| 0.8251        | 0.8867 | 2700 | 32.21 | 51.64 | 1.2273          | 65.5110  |
| 0.7921        | 0.9195 | 2800 | 26.38 | 48.31 | 1.2881          | 80.2792  |
| 0.8873        | 0.9524 | 2900 | 26.57 | 50.09 | 1.2268          | 77.1724  |
| 0.7967        | 0.9852 | 3000 | 29.35 | 51.53 | 1.2036          | 69.6533  |
| 0.3119        | 1.0181 | 3100 | 31.77 | 51.57 | 1.2231          | 62.3143  |
| 0.3009        | 1.0509 | 3200 | 31.8  | 50.44 | 1.2446          | 61.8190  |
| 0.2855        | 1.0837 | 3300 | 30.48 | 50.86 | 1.2240          | 66.7717  |
| 0.2535        | 1.1166 | 3400 | 31.96 | 52.82 | 1.2287          | 63.3949  |
| 0.2162        | 1.1494 | 3500 | 33.91 | 52.17 | 1.2398          | 61.3688  |
| 0.2307        | 1.1823 | 3600 | 32.11 | 51.67 | 1.2280          | 64.7456  |
| 0.2184        | 1.2151 | 3700 | 34.59 | 53.32 | 1.2149          | 59.9730  |
| 0.2365        | 1.2479 | 3800 | 32.51 | 52.98 | 1.2044          | 62.3593  |
| 0.1958        | 1.2808 | 3900 | 32.45 | 52.86 | 1.2116          | 63.1697  |
| 0.2081        | 1.3136 | 4000 | 32.53 | 52.88 | 1.2087          | 62.8095  |
| 0.2768        | 1.3465 | 4100 | 1.3177| 30.73 | 49.53           | 64.3854  |
| 0.3241        | 1.3793 | 4200 | 1.3363| 24.44 | 46.88           | 78.2981  |
| 0.3326        | 1.4122 | 4300 | 1.3622| 27.77 | 47.05           | 68.7528  |
| 0.3623        | 1.4450 | 4400 | 1.3232| 27.0  | 47.25           | 70.4187  |
| 0.3114        | 1.4778 | 4500 | 1.3530| 25.64 | 46.53           | 73.7506  |
| 0.2933        | 1.5107 | 4600 | 1.3674| 29.95 | 47.77           | 65.3760  |
| 0.3162        | 1.5435 | 4700 | 1.4011| 28.58 | 47.12           | 66.2765  |
| 0.2687        | 1.5764 | 4800 | 1.2875| 32.67 | 50.02           | 61.7740  |
| 0.2733        | 1.6092 | 4900 | 1.3090| 30.86 | 50.51           | 63.2148  |
| 0.2552        | 1.6420 | 5000 | 1.2946| 27.95 | 49.41           | 69.8334  |
| 0.2781        | 1.6749 | 5100 | 1.2971| 34.16 | 52.07           | 61.5489  |
| 0.2367        | 1.7077 | 5200 | 1.2990| 32.3  | 51.69           | 63.3949  |
| 0.244         | 1.7406 | 5300 | 1.3185| 32.17 | 50.59           | 62.0891  |
| 0.2118        | 1.7734 | 5400 | 1.2813| 32.85 | 52.14           | 60.8735  |
| 0.1986        | 1.8062 | 5500 | 1.3007| 30.35 | 50.78           | 64.9707  |
| 0.2393        | 1.8391 | 5600 | 1.2729| 34.09 | 53.08           | 59.3426  |
| 0.1803        | 1.8719 | 5700 | 1.2481| 33.92 | 53.57           | 59.7929  |
| 0.199         | 1.9048 | 5800 | 1.2670| 34.53 | 52.74           | 58.9824  |
| 0.2           | 1.9376 | 5900 | 1.2591| 33.57 | 53.24           | 60.0180  |
| 0.1585        | 1.9704 | 6000 | 1.2855| 31.51 | 52.67           | 64.0702  |
| 0.132         | 2.0033 | 6100 | 1.2915| 30.79 | 51.84           | 66.5466  |
| 0.0555        | 2.0361 | 6200 | 1.3077| 34.44 | 51.8            | 61.2337  |
| 0.0623        | 2.0690 | 6300 | 1.3224| 35.52 | 53.58           | 59.4327  |
| 0.0455        | 2.1018 | 6400 | 1.2942| 35.34 | 53.46           | 58.9824  |
| 0.0573        | 2.1346 | 6500 | 1.3020| 34.32 | 53.93           | 59.5227  |
| 0.0487        | 2.1675 | 6600 | 1.3091| 35.64 | 54.4            | 58.9824  |
| 0.0646        | 2.2003 | 6700 | 1.3184| 34.75 | 53.92           | 59.0725  |
| 0.0454        | 2.2332 | 6800 | 1.3062| 35.48 | 55.12           | 58.2620  |
| 0.0574        | 2.2660 | 6900 | 1.2996| 34.97 | 55.31           | 58.6673  |
| 0.051         | 2.2989 | 7000 | 1.2966| 35.04 | 55.03           | 57.9018  |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.2.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1