--- license: mit base_model: gogamza/kobart-base-v2 tags: - generated_from_trainer metrics: - bleu model-index: - name: Jeolla_encoder results: [] --- # Jeolla_encoder This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0132 - Bleu: 89.0781 - Gen Len: 14.0615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.0168 | 1.0 | 15477 | 0.0157 | 88.8862 | 14.0583 | | 0.0143 | 2.0 | 30954 | 0.0136 | 89.0198 | 14.0637 | | 0.0123 | 3.0 | 46431 | 0.0132 | 89.0781 | 14.0615 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1