File size: 9,656 Bytes
65e3693 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast, AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig, pipeline
from abc import ABC, abstractmethod
from typing import Type
import torch
import torch.nn.functional as F
import os
script_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir)))
class Model():
def __init__(self, modelname, selected_lora_model, selected_gpu):
def get_gpu_index(gpu_info, target_gpu_name):
"""
从 GPU 信息中获取目标 GPU 的索引
Args:
gpu_info (list): 包含 GPU 名称的列表
target_gpu_name (str): 目标 GPU 的名称
Returns:
int: 目标 GPU 的索引,如果未找到则返回 -1
"""
for i, name in enumerate(gpu_info):
if target_gpu_name.lower() in name.lower():
return i
return -1
if selected_gpu != "cpu":
gpu_count = torch.cuda.device_count()
gpu_info = [torch.cuda.get_device_name(i) for i in range(gpu_count)]
selected_gpu_index = get_gpu_index(gpu_info, selected_gpu)
self.device_name = f"cuda:{selected_gpu_index}"
else:
self.device_name = "cpu"
print("device_name", self.device_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(modelname).to(self.device_name)
self.tokenizer = AutoTokenizer.from_pretrained(modelname)
# self.translator = pipeline('translation', model=self.original_model, tokenizer=self.tokenizer, src_lang=original_language, tgt_lang=target_language, device=device)
def generate(self, inputs, original_language, target_languages, max_batch_size):
def language_mapping(original_language):
d = {
"Achinese (Arabic script)": "ace_Arab",
"Achinese (Latin script)": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Standard Arabic": "arb_Arab",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar (Arabic script)": "bjn_Arab",
"Banjar (Latin script)": "bjn_Latn",
"Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Dinka": "dik_Latn",
"Jula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Persian": "pes_Arab",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Iloko": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Kachin": "kac_Latn",
"Arabic": "ar_AR",
"Chinese": "zho_Hans",
"Spanish": "spa_Latn",
"Dutch": "nld_Latn",
"Kazakh": "kaz_Cyrl",
"Korean": "kor_Hang",
"Lithuanian": "lit_Latn",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Nepali": "ne_NP",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Russian": "rus_Cyrl",
"Sinhala": "sin_Sinh",
"Tamil": "tam_Taml",
"Turkish": "tur_Latn",
"Ukrainian": "ukr_Cyrl",
"Urdu": "urd_Arab",
"Vietnamese": "vie_Latn",
"Thai":"tha_Thai"
}
return d[original_language]
self.tokenizer.src_lang = language_mapping(original_language)
if self.device_name == "cpu":
# Tokenize input
input_ids = self.tokenizer(inputs, return_tensors="pt", padding=True, max_length=128).to(self.device_name)
output = []
for target_language in target_languages:
# Get language code for the target language
target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
# Generate translation
generated_tokens = self.model.generate(
**input_ids,
forced_bos_token_id=target_lang_code,
max_length=128
)
generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# Append result to output
output.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
outputs = []
length = len(output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
return outputs
else:
# 最大批量大小 = 可用 GPU 内存字节数 / 4 / (张量大小 + 可训练参数)
# max_batch_size = 10
# Ensure batch size is within model limits:
batch_size = min(len(inputs), int(max_batch_size))
batches = [inputs[i:i + batch_size] for i in range(0, len(inputs), batch_size)]
temp_outputs = []
processed_num = 0
for index, batch in enumerate(batches):
# Tokenize input
input_ids = self.tokenizer(batch, return_tensors="pt", padding=True).to(self.device_name)
temp = []
for target_language in target_languages:
target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
generated_tokens = self.model.generate(
**input_ids,
forced_bos_token_id=target_lang_code,
)
generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# Append result to output
temp.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
input_ids.to('cpu')
del input_ids
temp_outputs.append(temp)
processed_num += len(batch)
outputs = []
for temp_output in temp_outputs:
length = len(temp_output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in temp_output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
return outputs |