File size: 9,656 Bytes
65e3693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast, AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig, pipeline
from abc import ABC, abstractmethod
from typing import Type
import torch
import torch.nn.functional as F
import os

script_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir)))

class Model():
    def __init__(self, modelname, selected_lora_model, selected_gpu):
        def get_gpu_index(gpu_info, target_gpu_name):
            """
            从 GPU 信息中获取目标 GPU 的索引
            Args:
                gpu_info (list): 包含 GPU 名称的列表
                target_gpu_name (str): 目标 GPU 的名称
            Returns:
                int: 目标 GPU 的索引,如果未找到则返回 -1
            """
            for i, name in enumerate(gpu_info):
                if target_gpu_name.lower() in name.lower():
                    return i
            return -1
        if selected_gpu != "cpu":
            gpu_count = torch.cuda.device_count()
            gpu_info = [torch.cuda.get_device_name(i) for i in range(gpu_count)]
            selected_gpu_index = get_gpu_index(gpu_info, selected_gpu)
            self.device_name = f"cuda:{selected_gpu_index}"
        else:
            self.device_name = "cpu"
        print("device_name", self.device_name)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(modelname).to(self.device_name)
        self.tokenizer = AutoTokenizer.from_pretrained(modelname)
        # self.translator = pipeline('translation', model=self.original_model, tokenizer=self.tokenizer, src_lang=original_language, tgt_lang=target_language, device=device)
    
    def generate(self, inputs, original_language, target_languages, max_batch_size):
        def language_mapping(original_language):
            d = {
                "Achinese (Arabic script)": "ace_Arab",
                "Achinese (Latin script)": "ace_Latn",
                "Mesopotamian Arabic": "acm_Arab",
                "Ta'izzi-Adeni Arabic": "acq_Arab",
                "Tunisian Arabic": "aeb_Arab",
                "Afrikaans": "afr_Latn",
                "South Levantine Arabic": "ajp_Arab",
                "Akan": "aka_Latn",
                "Amharic": "amh_Ethi",
                "North Levantine Arabic": "apc_Arab",
                "Standard Arabic": "arb_Arab",
                "Najdi Arabic": "ars_Arab",
                "Moroccan Arabic": "ary_Arab",
                "Egyptian Arabic": "arz_Arab",
                "Assamese": "asm_Beng",
                "Asturian": "ast_Latn",
                "Awadhi": "awa_Deva",
                "Central Aymara": "ayr_Latn",
                "South Azerbaijani": "azb_Arab",
                "North Azerbaijani": "azj_Latn",
                "Bashkir": "bak_Cyrl",
                "Bambara": "bam_Latn",
                "Balinese": "ban_Latn",
                "Belarusian": "bel_Cyrl",
                "Bemba": "bem_Latn",
                "Bengali": "ben_Beng",
                "Bhojpuri": "bho_Deva",
                "Banjar (Arabic script)": "bjn_Arab",
                "Banjar (Latin script)": "bjn_Latn",
                "Tibetan": "bod_Tibt",
                "Bosnian": "bos_Latn",
                "Buginese": "bug_Latn",
                "Bulgarian": "bul_Cyrl",
                "Catalan": "cat_Latn",
                "Cebuano": "ceb_Latn",
                "Czech": "ces_Latn",
                "Chokwe": "cjk_Latn",
                "Central Kurdish": "ckb_Arab",
                "Crimean Tatar": "crh_Latn",
                "Welsh": "cym_Latn",
                "Danish": "dan_Latn",
                "German": "deu_Latn",
                "Dinka": "dik_Latn",
                "Jula": "dyu_Latn",
                "Dzongkha": "dzo_Tibt",
                "Greek": "ell_Grek",
                "English": "eng_Latn",
                "Esperanto": "epo_Latn",
                "Estonian": "est_Latn",
                "Basque": "eus_Latn",
                "Ewe": "ewe_Latn",
                "Faroese": "fao_Latn",
                "Persian": "pes_Arab",
                "Fijian": "fij_Latn",
                "Finnish": "fin_Latn",
                "Fon": "fon_Latn",
                "French": "fra_Latn",
                "Friulian": "fur_Latn",
                "Nigerian Fulfulde": "fuv_Latn",
                "Scottish Gaelic": "gla_Latn",
                "Irish": "gle_Latn",
                "Galician": "glg_Latn",
                "Guarani": "grn_Latn",
                "Gujarati": "guj_Gujr",
                "Haitian Creole": "hat_Latn",
                "Hausa": "hau_Latn",
                "Hebrew": "heb_Hebr",
                "Hindi": "hin_Deva",
                "Chhattisgarhi": "hne_Deva",
                "Croatian": "hrv_Latn",
                "Hungarian": "hun_Latn",
                "Armenian": "hye_Armn",
                "Igbo": "ibo_Latn",
                "Iloko": "ilo_Latn",
                "Indonesian": "ind_Latn",
                "Icelandic": "isl_Latn",
                "Italian": "ita_Latn",
                "Javanese": "jav_Latn",
                "Japanese": "jpn_Jpan",
                "Kabyle": "kab_Latn",
                "Kachin": "kac_Latn",
                "Arabic": "ar_AR",
                "Chinese": "zho_Hans", 
                "Spanish": "spa_Latn",
                "Dutch": "nld_Latn", 
                "Kazakh": "kaz_Cyrl", 
                "Korean": "kor_Hang", 
                "Lithuanian": "lit_Latn",
                "Malayalam": "mal_Mlym", 
                "Marathi": "mar_Deva", 
                "Nepali": "ne_NP", 
                "Polish": "pol_Latn", 
                "Portuguese": "por_Latn", 
                "Russian": "rus_Cyrl", 
                "Sinhala": "sin_Sinh",
                "Tamil": "tam_Taml", 
                "Turkish": "tur_Latn", 
                "Ukrainian": "ukr_Cyrl", 
                "Urdu": "urd_Arab", 
                "Vietnamese": "vie_Latn", 
                "Thai":"tha_Thai"
            }
            return d[original_language]
        self.tokenizer.src_lang = language_mapping(original_language)
        if self.device_name == "cpu":
            # Tokenize input
            input_ids = self.tokenizer(inputs, return_tensors="pt", padding=True, max_length=128).to(self.device_name)
            output = []
            for target_language in target_languages:
                # Get language code for the target language
                target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
                # Generate translation
                generated_tokens = self.model.generate(
                    **input_ids,
                    forced_bos_token_id=target_lang_code,
                    max_length=128
                )
                generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                # Append result to output
                output.append({
                    "target_language": target_language,
                    "generated_translation": generated_translation,
                })
            outputs = []
            length = len(output[0]["generated_translation"])
            for i in range(length):
                temp = []
                for trans in output:
                    temp.append({
                        "target_language": trans["target_language"],
                        "generated_translation": trans['generated_translation'][i],
                    })
                outputs.append(temp)
            return outputs
        else:
            # 最大批量大小 = 可用 GPU 内存字节数 / 4 / (张量大小 + 可训练参数)
            # max_batch_size = 10
            # Ensure batch size is within model limits:
            batch_size = min(len(inputs), int(max_batch_size))
            batches = [inputs[i:i + batch_size] for i in range(0, len(inputs), batch_size)]
            temp_outputs = []
            processed_num = 0
            for index, batch in enumerate(batches):
                # Tokenize input
                input_ids = self.tokenizer(batch, return_tensors="pt", padding=True).to(self.device_name)
                temp = []
                for target_language in target_languages:
                    target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
                    generated_tokens = self.model.generate(
                        **input_ids,
                        forced_bos_token_id=target_lang_code,
                    )
                    generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                    # Append result to output
                    temp.append({
                        "target_language": target_language,
                        "generated_translation": generated_translation,
                    })
                input_ids.to('cpu')
                del input_ids
                temp_outputs.append(temp)
                processed_num += len(batch)
            outputs = []
            for temp_output in temp_outputs:
                length = len(temp_output[0]["generated_translation"])
                for i in range(length):
                    temp = []
                    for trans in temp_output:
                        temp.append({
                            "target_language": trans["target_language"],
                            "generated_translation": trans['generated_translation'][i],
                        })
                    outputs.append(temp)
            return outputs