File size: 20,395 Bytes
0fc9e07 e64bf30 0fc9e07 e64bf30 c4604a1 0fc9e07 e64bf30 c4604a1 e64bf30 0fc9e07 e64bf30 7f13f1f e64bf30 7f13f1f e64bf30 0fc9e07 c4604a1 0fc9e07 c91322c 0fc9e07 7f13f1f 0fc9e07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
from modules.file import ExcelFileWriter
import os
from abc import ABC, abstractmethod
from typing import List
import re
class FilterPipeline():
def __init__(self, filter_list):
self._filter_list:List[Filter] = filter_list
def append(self, filter):
self._filter_list.append(filter)
def batch_encoder(self, inputs):
for filter in self._filter_list:
inputs = filter.encoder(inputs)
return inputs
def batch_decoder(self, inputs):
for filter in reversed(self._filter_list):
inputs = filter.decoder(inputs)
return inputs
class Filter(ABC):
def __init__(self):
self.name = 'filter'
self.code = []
@abstractmethod
def encoder(self, inputs):
pass
@abstractmethod
def decoder(self, inputs):
pass
class SpecialTokenFilter(Filter):
def __init__(self):
self.name = 'special token filter'
self.code = []
self.special_tokens = ['!', '!', '-']
def encoder(self, inputs):
filtered_inputs = []
self.code = []
for i, input_str in enumerate(inputs):
if not all(char in self.special_tokens for char in input_str):
filtered_inputs.append(input_str)
else:
self.code.append([i, input_str])
return filtered_inputs
def decoder(self, inputs):
original_inputs = inputs.copy()
for removed_indice in self.code:
original_inputs.insert(removed_indice[0], removed_indice[1])
return original_inputs
class SperSignFilter(Filter):
def __init__(self):
self.name = 's percentage sign filter'
self.code = []
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
for i, input_str in enumerate(inputs):
if '%s' in input_str:
encoded_str = input_str.replace('%s', '*')
self.code.append(i) # 将包含 '%s' 的字符串的索引存储到 self.code 中
else:
encoded_str = input_str
encoded_inputs.append(encoded_str)
return encoded_inputs
def decoder(self, inputs):
decoded_inputs = inputs.copy()
for i in self.code:
decoded_inputs[i] = decoded_inputs[i].replace('*', '%s') # 使用 self.code 中的索引还原原始字符串
return decoded_inputs
class ParenSParenFilter(Filter):
def __init__(self):
self.name = 'Paren s paren filter'
self.code = []
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
for i, input_str in enumerate(inputs):
if '(s)' in input_str:
encoded_str = input_str.replace('(s)', '$')
self.code.append(i) # 将包含 '(s)' 的字符串的索引存储到 self.code 中
else:
encoded_str = input_str
encoded_inputs.append(encoded_str)
return encoded_inputs
def decoder(self, inputs):
decoded_inputs = inputs.copy()
for i in self.code:
decoded_inputs[i] = decoded_inputs[i].replace('$', '(s)') # 使用 self.code 中的索引还原原始字符串
return decoded_inputs
class ChevronsFilter(Filter):
def __init__(self):
self.name = 'chevrons filter'
self.code = []
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
pattern = re.compile(r'<.*?>')
for i, input_str in enumerate(inputs):
if pattern.search(input_str):
matches = pattern.findall(input_str)
encoded_str = pattern.sub('#', input_str)
self.code.append((i, matches)) # 将包含匹配模式的字符串的索引和匹配列表存储到 self.code 中
else:
encoded_str = input_str
encoded_inputs.append(encoded_str)
return encoded_inputs
def decoder(self, inputs):
decoded_inputs = inputs.copy()
for i, matches in self.code:
for match in matches:
decoded_inputs[i] = decoded_inputs[i].replace('#', match, 1) # 使用 self.code 中的匹配列表依次还原原始字符串
return decoded_inputs
class SimilarFilter(Filter):
def __init__(self):
self.name = 'similar filter'
self.code = []
def is_similar(self, str1, str2):
# 判断两个字符串是否相似(只有数字上有区别)
pattern = re.compile(r'\d+')
return pattern.sub('', str1) == pattern.sub('', str2)
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
i = 0
while i < len(inputs):
encoded_inputs.append(inputs[i])
similar_strs = [inputs[i]]
j = i + 1
while j < len(inputs) and self.is_similar(inputs[i], inputs[j]):
similar_strs.append(inputs[j])
j += 1
if len(similar_strs) > 1:
self.code.append((i, similar_strs)) # 将相似字符串的起始索引和实际字符串列表存储到 self.code 中
i = j
return encoded_inputs
def decoder(self, inputs:List):
decoded_inputs = inputs
for i, similar_strs in self.code:
pattern = re.compile(r'\d+')
for j in range(len(similar_strs)):
if pattern.search(similar_strs[j]):
number = re.findall(r'\d+', similar_strs[j])[0] # 获取相似字符串的数字部分
new_str = pattern.sub(number, inputs[i]) # 将新字符串的数字部分替换为相似字符串的数字部分
else:
new_str = inputs[i] # 如果相似字符串不含数字,直接使用新字符串
if j > 0:
decoded_inputs.insert(i+j, new_str)
return decoded_inputs
class ChineseFilter:
def __init__(self, pinyin_lib_file='pinyin.txt'):
self.name = 'chinese filter'
self.code = []
self.pinyin_lib = self.load_pinyin_lib(pinyin_lib_file)
def load_pinyin_lib(self, file_path):
with open(os.path.join(script_dir,file_path), 'r', encoding='utf-8') as f:
return set(line.strip().lower() for line in f)
def is_valid_chinese(self, word):
# 判断一个单词是否符合要求:只有一个单词构成,并且首字母大写
if len(word.split()) == 1 and word[0].isupper():
# 使用pinyin_or_word函数判断是否是合法的拼音
return self.is_pinyin(word.lower())
return False
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
for i, word in enumerate(inputs):
if self.is_valid_chinese(word):
self.code.append((i, word)) # 将需要过滤的中文单词的索引和拼音存储到 self.code 中
else:
encoded_inputs.append(word)
return encoded_inputs
def decoder(self, inputs):
decoded_inputs = inputs.copy()
for i, word in self.code:
decoded_inputs.insert(i, word) # 根据索引将过滤的中文单词还原到原位置
return decoded_inputs
def is_pinyin(self, string):
'''
judge a string is a pinyin or a english word.
pinyin_Lib comes from a txt file.
'''
string = string.lower()
stringlen = len(string)
max_len = 6
result = []
n = 0
while n < stringlen:
matched = 0
temp_result = []
for i in range(max_len, 0, -1):
s = string[0:i]
if s in self.pinyin_lib:
temp_result.append(string[:i])
matched = i
break
if i == 1 and len(temp_result) == 0:
return False
result.extend(temp_result)
string = string[matched:]
n += matched
return True
script_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir)))
class Model():
def __init__(self, modelname, selected_lora_model, selected_gpu):
def get_gpu_index(gpu_info, target_gpu_name):
"""
从 GPU 信息中获取目标 GPU 的索引
Args:
gpu_info (list): 包含 GPU 名称的列表
target_gpu_name (str): 目标 GPU 的名称
Returns:
int: 目标 GPU 的索引,如果未找到则返回 -1
"""
for i, name in enumerate(gpu_info):
if target_gpu_name.lower() in name.lower():
return i
return -1
if selected_gpu != "cpu":
gpu_count = torch.cuda.device_count()
gpu_info = [torch.cuda.get_device_name(i) for i in range(gpu_count)]
selected_gpu_index = get_gpu_index(gpu_info, selected_gpu)
self.device_name = f"cuda:{selected_gpu_index}"
else:
self.device_name = "cpu"
print("device_name", self.device_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(modelname).to(self.device_name)
self.tokenizer = AutoTokenizer.from_pretrained(modelname)
# self.translator = pipeline('translation', model=self.original_model, tokenizer=self.tokenizer, src_lang=original_language, tgt_lang=target_language, device=device)
def generate(self, inputs, original_language, target_languages, max_batch_size):
filter_list = [SpecialTokenFilter(), SperSignFilter(), ParenSParenFilter(), ChevronsFilter(), SimilarFilter(), ChineseFilter()]
filter_pipeline = FilterPipeline(filter_list)
def language_mapping(original_language):
d = {
"Achinese (Arabic script)": "ace_Arab",
"Achinese (Latin script)": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Standard Arabic": "arb_Arab",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar (Arabic script)": "bjn_Arab",
"Banjar (Latin script)": "bjn_Latn",
"Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Dinka": "dik_Latn",
"Jula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Persian": "pes_Arab",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Iloko": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Kachin": "kac_Latn",
"Arabic": "ar_AR",
"Chinese": "zho_Hans",
"Spanish": "spa_Latn",
"Dutch": "nld_Latn",
"Kazakh": "kaz_Cyrl",
"Korean": "kor_Hang",
"Lithuanian": "lit_Latn",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Nepali": "ne_NP",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Russian": "rus_Cyrl",
"Sinhala": "sin_Sinh",
"Tamil": "tam_Taml",
"Turkish": "tur_Latn",
"Ukrainian": "ukr_Cyrl",
"Urdu": "urd_Arab",
"Vietnamese": "vie_Latn",
"Thai":"tha_Thai",
"Khmer":"khm_Khmr"
}
return d[original_language]
def process_gpu_translate_result(temp_outputs):
outputs = []
for temp_output in temp_outputs:
length = len(temp_output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in temp_output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
excel_writer = ExcelFileWriter()
excel_writer.write_text(os.path.join(parent_dir,r"temp/empty.xlsx"), outputs, 'A', 1, len(outputs))
self.tokenizer.src_lang = language_mapping(original_language)
if self.device_name == "cpu":
# Tokenize input
input_ids = self.tokenizer(inputs, return_tensors="pt", padding=True, max_length=128).to(self.device_name)
output = []
for target_language in target_languages:
# Get language code for the target language
target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
# Generate translation
generated_tokens = self.model.generate(
**input_ids,
forced_bos_token_id=target_lang_code,
max_length=128
)
generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# Append result to output
output.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
outputs = []
length = len(output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
return outputs
else:
# 最大批量大小 = 可用 GPU 内存字节数 / 4 / (张量大小 + 可训练参数)
# max_batch_size = 10
# Ensure batch size is within model limits:
print("length of inputs: ",len(inputs))
batch_size = min(len(inputs), int(max_batch_size))
batches = [inputs[i:i + batch_size] for i in range(0, len(inputs), batch_size)]
print("length of batches size: ", len(batches))
temp_outputs = []
processed_num = 0
for index, batch in enumerate(batches):
# Tokenize input
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
print(len(batch))
print(batch)
batch = filter_pipeline.batch_encoder(batch)
print(batch)
temp = []
if len(batch) > 0:
input_ids = self.tokenizer(batch, return_tensors="pt", padding=True).to(self.device_name)
for target_language in target_languages:
target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
generated_tokens = self.model.generate(
**input_ids,
forced_bos_token_id=target_lang_code,
)
generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
print(generated_translation)
generated_translation = filter_pipeline.batch_decoder(generated_translation)
print(generated_translation)
print(len(generated_translation))
# Append result to output
temp.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
input_ids.to('cpu')
del input_ids
else:
for target_language in target_languages:
generated_translation = filter_pipeline.batch_decoder(batch)
print(generated_translation)
print(len(generated_translation))
# Append result to output
temp.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
temp_outputs.append(temp)
processed_num += len(batch)
if (index + 1) * max_batch_size // 1000 - index * max_batch_size // 1000 == 1:
print("Already processed number: ", len(temp_outputs))
process_gpu_translate_result(temp_outputs)
outputs = []
for temp_output in temp_outputs:
length = len(temp_output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in temp_output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
return outputs
for filter in self._filter_list:
inputs = filter.encoder(inputs)
return inputs
def batch_decoder(self, inputs):
for filter in reversed(self._filter_list):
inputs = filter.decoder(inputs)
return inputs
|