File size: 20,395 Bytes
6260c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
from modules.file import ExcelFileWriter
import os

from abc import ABC, abstractmethod
from typing import List
import re

class FilterPipeline():
    def __init__(self, filter_list):
        self._filter_list:List[Filter] = filter_list

    def append(self, filter):
        self._filter_list.append(filter)

    def batch_encoder(self, inputs):
        for filter in self._filter_list:
            inputs = filter.encoder(inputs)
        return inputs
    
    def batch_decoder(self, inputs):
        for filter in reversed(self._filter_list):
            inputs = filter.decoder(inputs)
        return inputs

class Filter(ABC):
    def __init__(self):
        self.name = 'filter'
        self.code = []
    @abstractmethod
    def encoder(self, inputs):
        pass

    @abstractmethod
    def decoder(self, inputs):
        pass

class SpecialTokenFilter(Filter):
    def __init__(self):
        self.name = 'special token filter'
        self.code = []
        self.special_tokens = ['!', '!', '-']
    
    def encoder(self, inputs):
        filtered_inputs = []
        self.code = []
        for i, input_str in enumerate(inputs):
            if not all(char in self.special_tokens for char in input_str):
                filtered_inputs.append(input_str)
            else:
                self.code.append([i, input_str])
        return filtered_inputs
    
    def decoder(self, inputs):
        original_inputs = inputs.copy()
        for removed_indice in self.code:
            original_inputs.insert(removed_indice[0], removed_indice[1])
        return original_inputs

class SperSignFilter(Filter):
    def __init__(self):
        self.name = 's percentage sign filter'
        self.code = []
    
    def encoder(self, inputs):
        encoded_inputs = []
        self.code = []  # 清空 self.code
        for i, input_str in enumerate(inputs):
            if '%s' in input_str:
                encoded_str = input_str.replace('%s', '*')
                self.code.append(i)  # 将包含 '%s' 的字符串的索引存储到 self.code 中
            else:
                encoded_str = input_str
            encoded_inputs.append(encoded_str)
        return encoded_inputs
    
    def decoder(self, inputs):
        decoded_inputs = inputs.copy()
        for i in self.code:
            decoded_inputs[i] = decoded_inputs[i].replace('*', '%s')  # 使用 self.code 中的索引还原原始字符串
        return decoded_inputs

class ParenSParenFilter(Filter):
    def __init__(self):
        self.name = 'Paren s paren filter'
        self.code = []
    
    def encoder(self, inputs):
        encoded_inputs = []
        self.code = []  # 清空 self.code
        for i, input_str in enumerate(inputs):
            if '(s)' in input_str:
                encoded_str = input_str.replace('(s)', '$')
                self.code.append(i)  # 将包含 '(s)' 的字符串的索引存储到 self.code 中
            else:
                encoded_str = input_str
            encoded_inputs.append(encoded_str)
        return encoded_inputs
    
    def decoder(self, inputs):
        decoded_inputs = inputs.copy()
        for i in self.code:
            decoded_inputs[i] = decoded_inputs[i].replace('$', '(s)')  # 使用 self.code 中的索引还原原始字符串
        return decoded_inputs
    
class ChevronsFilter(Filter):
    def __init__(self):
        self.name = 'chevrons filter'
        self.code = []

    def encoder(self, inputs):
        encoded_inputs = []
        self.code = []  # 清空 self.code
        pattern = re.compile(r'<.*?>')
        for i, input_str in enumerate(inputs):
            if pattern.search(input_str):
                matches = pattern.findall(input_str)
                encoded_str = pattern.sub('#', input_str)
                self.code.append((i, matches))  # 将包含匹配模式的字符串的索引和匹配列表存储到 self.code 中
            else:
                encoded_str = input_str
            encoded_inputs.append(encoded_str)
        return encoded_inputs

    def decoder(self, inputs):
        decoded_inputs = inputs.copy()
        for i, matches in self.code:
            for match in matches:
                decoded_inputs[i] = decoded_inputs[i].replace('#', match, 1)  # 使用 self.code 中的匹配列表依次还原原始字符串
        return decoded_inputs
    
class SimilarFilter(Filter):
    def __init__(self):
        self.name = 'similar filter'
        self.code = []
    
    def is_similar(self, str1, str2):
        # 判断两个字符串是否相似(只有数字上有区别)
        pattern = re.compile(r'\d+')
        return pattern.sub('', str1) == pattern.sub('', str2)
    
    def encoder(self, inputs):
        encoded_inputs = []
        self.code = []  # 清空 self.code
        i = 0
        while i < len(inputs):
            encoded_inputs.append(inputs[i])
            similar_strs = [inputs[i]]
            j = i + 1
            while j < len(inputs) and self.is_similar(inputs[i], inputs[j]):
                similar_strs.append(inputs[j])
                j += 1
            if len(similar_strs) > 1:
                self.code.append((i, similar_strs))  # 将相似字符串的起始索引和实际字符串列表存储到 self.code 中
            i = j
        return encoded_inputs
    
    def decoder(self, inputs:List):
        decoded_inputs = inputs
        for i, similar_strs in self.code:
            pattern = re.compile(r'\d+')
            for j in range(len(similar_strs)):
                if pattern.search(similar_strs[j]):
                    number = re.findall(r'\d+', similar_strs[j])[0]  # 获取相似字符串的数字部分
                    new_str = pattern.sub(number, inputs[i])  # 将新字符串的数字部分替换为相似字符串的数字部分
                else:
                    new_str = inputs[i]  # 如果相似字符串不含数字,直接使用新字符串
                if j > 0:
                    decoded_inputs.insert(i+j, new_str)
        return decoded_inputs

class ChineseFilter:
    def __init__(self, pinyin_lib_file='pinyin.txt'):
        self.name = 'chinese filter'
        self.code = []
        self.pinyin_lib = self.load_pinyin_lib(pinyin_lib_file)

    def load_pinyin_lib(self, file_path):
        with open(os.path.join(script_dir,file_path), 'r', encoding='utf-8') as f:
            return set(line.strip().lower() for line in f)

    def is_valid_chinese(self, word):
        # 判断一个单词是否符合要求:只有一个单词构成,并且首字母大写
        if len(word.split()) == 1 and word[0].isupper():
            # 使用pinyin_or_word函数判断是否是合法的拼音
            return self.is_pinyin(word.lower())
        return False

    def encoder(self, inputs):
        encoded_inputs = []
        self.code = []  # 清空 self.code
        for i, word in enumerate(inputs):
            if self.is_valid_chinese(word):
                self.code.append((i, word))  # 将需要过滤的中文单词的索引和拼音存储到 self.code 中
            else:
                encoded_inputs.append(word)
        return encoded_inputs

    def decoder(self, inputs):
        decoded_inputs = inputs.copy()
        for i, word in self.code:
            decoded_inputs.insert(i, word)  # 根据索引将过滤的中文单词还原到原位置
        return decoded_inputs

    def is_pinyin(self, string):
        '''
        judge a string is a pinyin or a english word.
        pinyin_Lib comes from a txt file.
        '''
        string = string.lower()
        stringlen = len(string)
        max_len = 6
        result = []
        n = 0
        while n < stringlen:
            matched = 0
            temp_result = []
            for i in range(max_len, 0, -1):
                s = string[0:i]
                if s in self.pinyin_lib:
                    temp_result.append(string[:i])
                    matched = i
                    break
                if i == 1 and len(temp_result) == 0:
                    return False
            result.extend(temp_result)
            string = string[matched:]
            n += matched
        return True 

script_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir)))

class Model():
    def __init__(self, modelname, selected_lora_model, selected_gpu):
        def get_gpu_index(gpu_info, target_gpu_name):
            """
            从 GPU 信息中获取目标 GPU 的索引
            Args:
                gpu_info (list): 包含 GPU 名称的列表
                target_gpu_name (str): 目标 GPU 的名称

            Returns:
                int: 目标 GPU 的索引,如果未找到则返回 -1
            """
            for i, name in enumerate(gpu_info):
                if target_gpu_name.lower() in name.lower():
                    return i
            return -1
        if selected_gpu != "cpu":
            gpu_count = torch.cuda.device_count()
            gpu_info = [torch.cuda.get_device_name(i) for i in range(gpu_count)]
            selected_gpu_index = get_gpu_index(gpu_info, selected_gpu)
            self.device_name = f"cuda:{selected_gpu_index}"
        else:
            self.device_name = "cpu"
        print("device_name", self.device_name)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(modelname).to(self.device_name)
        self.tokenizer = AutoTokenizer.from_pretrained(modelname)
        # self.translator = pipeline('translation', model=self.original_model, tokenizer=self.tokenizer, src_lang=original_language, tgt_lang=target_language, device=device)
    
    def generate(self, inputs, original_language, target_languages, max_batch_size):
        filter_list = [SpecialTokenFilter(), SperSignFilter(), ParenSParenFilter(), ChevronsFilter(), SimilarFilter(), ChineseFilter()]
        filter_pipeline = FilterPipeline(filter_list)
        def language_mapping(original_language):
            d = {
                "Achinese (Arabic script)": "ace_Arab",
                "Achinese (Latin script)": "ace_Latn",
                "Mesopotamian Arabic": "acm_Arab",
                "Ta'izzi-Adeni Arabic": "acq_Arab",
                "Tunisian Arabic": "aeb_Arab",
                "Afrikaans": "afr_Latn",
                "South Levantine Arabic": "ajp_Arab",
                "Akan": "aka_Latn",
                "Amharic": "amh_Ethi",
                "North Levantine Arabic": "apc_Arab",
                "Standard Arabic": "arb_Arab",
                "Najdi Arabic": "ars_Arab",
                "Moroccan Arabic": "ary_Arab",
                "Egyptian Arabic": "arz_Arab",
                "Assamese": "asm_Beng",
                "Asturian": "ast_Latn",
                "Awadhi": "awa_Deva",
                "Central Aymara": "ayr_Latn",
                "South Azerbaijani": "azb_Arab",
                "North Azerbaijani": "azj_Latn",
                "Bashkir": "bak_Cyrl",
                "Bambara": "bam_Latn",
                "Balinese": "ban_Latn",
                "Belarusian": "bel_Cyrl",
                "Bemba": "bem_Latn",
                "Bengali": "ben_Beng",
                "Bhojpuri": "bho_Deva",
                "Banjar (Arabic script)": "bjn_Arab",
                "Banjar (Latin script)": "bjn_Latn",
                "Tibetan": "bod_Tibt",
                "Bosnian": "bos_Latn",
                "Buginese": "bug_Latn",
                "Bulgarian": "bul_Cyrl",
                "Catalan": "cat_Latn",
                "Cebuano": "ceb_Latn",
                "Czech": "ces_Latn",
                "Chokwe": "cjk_Latn",
                "Central Kurdish": "ckb_Arab",
                "Crimean Tatar": "crh_Latn",
                "Welsh": "cym_Latn",
                "Danish": "dan_Latn",
                "German": "deu_Latn",
                "Dinka": "dik_Latn",
                "Jula": "dyu_Latn",
                "Dzongkha": "dzo_Tibt",
                "Greek": "ell_Grek",
                "English": "eng_Latn",
                "Esperanto": "epo_Latn",
                "Estonian": "est_Latn",
                "Basque": "eus_Latn",
                "Ewe": "ewe_Latn",
                "Faroese": "fao_Latn",
                "Persian": "pes_Arab",
                "Fijian": "fij_Latn",
                "Finnish": "fin_Latn",
                "Fon": "fon_Latn",
                "French": "fra_Latn",
                "Friulian": "fur_Latn",
                "Nigerian Fulfulde": "fuv_Latn",
                "Scottish Gaelic": "gla_Latn",
                "Irish": "gle_Latn",
                "Galician": "glg_Latn",
                "Guarani": "grn_Latn",
                "Gujarati": "guj_Gujr",
                "Haitian Creole": "hat_Latn",
                "Hausa": "hau_Latn",
                "Hebrew": "heb_Hebr",
                "Hindi": "hin_Deva",
                "Chhattisgarhi": "hne_Deva",
                "Croatian": "hrv_Latn",
                "Hungarian": "hun_Latn",
                "Armenian": "hye_Armn",
                "Igbo": "ibo_Latn",
                "Iloko": "ilo_Latn",
                "Indonesian": "ind_Latn",
                "Icelandic": "isl_Latn",
                "Italian": "ita_Latn",
                "Javanese": "jav_Latn",
                "Japanese": "jpn_Jpan",
                "Kabyle": "kab_Latn",
                "Kachin": "kac_Latn",
                "Arabic": "ar_AR",
                "Chinese": "zho_Hans", 
                "Spanish": "spa_Latn",
                "Dutch": "nld_Latn", 
                "Kazakh": "kaz_Cyrl", 
                "Korean": "kor_Hang", 
                "Lithuanian": "lit_Latn",
                "Malayalam": "mal_Mlym", 
                "Marathi": "mar_Deva", 
                "Nepali": "ne_NP", 
                "Polish": "pol_Latn", 
                "Portuguese": "por_Latn", 
                "Russian": "rus_Cyrl", 
                "Sinhala": "sin_Sinh",
                "Tamil": "tam_Taml", 
                "Turkish": "tur_Latn", 
                "Ukrainian": "ukr_Cyrl", 
                "Urdu": "urd_Arab", 
                "Vietnamese": "vie_Latn", 
                "Thai":"tha_Thai",
                "Khmer":"khm_Khmr"
            }
            return d[original_language]
        def process_gpu_translate_result(temp_outputs):
            outputs = []
            for temp_output in temp_outputs:
                length = len(temp_output[0]["generated_translation"])
                for i in range(length):
                    temp = []
                    for trans in temp_output:
                        temp.append({
                            "target_language": trans["target_language"],
                            "generated_translation": trans['generated_translation'][i],
                        })
                    outputs.append(temp)
            excel_writer = ExcelFileWriter()
            excel_writer.write_text(os.path.join(parent_dir,r"temp/empty.xlsx"), outputs, 'A', 1, len(outputs))
        self.tokenizer.src_lang = language_mapping(original_language)
        if self.device_name == "cpu":
            # Tokenize input
            input_ids = self.tokenizer(inputs, return_tensors="pt", padding=True, max_length=128).to(self.device_name)
            output = []
            for target_language in target_languages:
                # Get language code for the target language
                target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
                # Generate translation
                generated_tokens = self.model.generate(
                    **input_ids,
                    forced_bos_token_id=target_lang_code,
                    max_length=128
                )
                generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                # Append result to output
                output.append({
                    "target_language": target_language,
                    "generated_translation": generated_translation,
                })
            outputs = []
            length = len(output[0]["generated_translation"])
            for i in range(length):
                temp = []
                for trans in output:
                    temp.append({
                        "target_language": trans["target_language"],
                        "generated_translation": trans['generated_translation'][i],
                    })
                outputs.append(temp)
            return outputs
        else:
            # 最大批量大小 = 可用 GPU 内存字节数 / 4 / (张量大小 + 可训练参数)
            # max_batch_size = 10
            # Ensure batch size is within model limits:
            print("length of inputs: ",len(inputs))
            batch_size = min(len(inputs), int(max_batch_size))
            batches = [inputs[i:i + batch_size] for i in range(0, len(inputs), batch_size)]
            print("length of batches size: ", len(batches))
            temp_outputs = []
            processed_num = 0
            for index, batch in enumerate(batches):
                # Tokenize input
                print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
                print(len(batch))
                print(batch)
                batch = filter_pipeline.batch_encoder(batch)
                print(batch)
                temp = []
                if len(batch) > 0:
                    input_ids = self.tokenizer(batch, return_tensors="pt", padding=True).to(self.device_name)
                    for target_language in target_languages:
                        target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
                        generated_tokens = self.model.generate(
                            **input_ids,
                            forced_bos_token_id=target_lang_code,
                        )
                        generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                        
                        print(generated_translation)
                        generated_translation = filter_pipeline.batch_decoder(generated_translation)
                        print(generated_translation)
                        print(len(generated_translation))
                        # Append result to output
                        temp.append({
                            "target_language": target_language,
                            "generated_translation": generated_translation,
                        })
                    input_ids.to('cpu')
                    del input_ids
                else:
                    for target_language in target_languages:
                        generated_translation = filter_pipeline.batch_decoder(batch)
                        print(generated_translation)
                        print(len(generated_translation))
                        # Append result to output
                        temp.append({
                            "target_language": target_language,
                            "generated_translation": generated_translation,
                        })
                temp_outputs.append(temp)
                processed_num += len(batch)
                if (index + 1) * max_batch_size // 1000 - index  * max_batch_size // 1000 == 1:
                    print("Already processed number: ", len(temp_outputs))
                    process_gpu_translate_result(temp_outputs)
            outputs = []
            for temp_output in temp_outputs:
                length = len(temp_output[0]["generated_translation"])
                for i in range(length):
                    temp = []
                    for trans in temp_output:
                        temp.append({
                            "target_language": trans["target_language"],
                            "generated_translation": trans['generated_translation'][i],
                        })
                    outputs.append(temp)
            return outputs
        for filter in self._filter_list:
            inputs = filter.encoder(inputs)
        return inputs
    
    def batch_decoder(self, inputs):
        for filter in reversed(self._filter_list):
            inputs = filter.decoder(inputs)
        return inputs