File size: 15,732 Bytes
87c126b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import torch
import torch.nn as nn
# import numpy as np
# import math
# from timm.models.vision_transformer import PatchEmbed, Attention, Mlp

from .dit_models import TimestepEmbedder, LabelEmbedder, DiTBlock, get_2d_sincos_pos_embed


class DiTwoEmbedder(nn.Module):
    """
    Diffusion model with a Transformer backbone, performing directly on the ViT token latents rather than spatial latents.
    """

    def __init__(
        self,
        input_size=224,  # raw img input size
        # patch_size=14, # dino version
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        class_dropout_prob=0.1,
        num_classes=1000,
        learn_sigma=True,
    ):
        super().__init__()
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.patch_size = 14  # dino-v2 patch sized fixed in this project
        self.num_heads = num_heads

        # self.x_embedder = PatchEmbed(input_size,
        #                              patch_size,
        #                              in_channels,
        #                              hidden_size,
        #                              bias=True)
        self.t_embedder = TimestepEmbedder(hidden_size)
        if num_classes > 0:
            self.y_embedder = LabelEmbedder(num_classes, hidden_size,
                                            class_dropout_prob)
        else:
            self.y_embedder = None

        # num_patches = self.x_embedder.num_patches # 14*14*3
        self.num_patches = (input_size // self.patch_size)**2

        # Will use fixed sin-cos embedding:
        self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches,
                                                  hidden_size),
                                      requires_grad=False)

        self.blocks = nn.ModuleList([
            DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio)
            for _ in range(depth)
        ])
        # self.final_layer = FinalLayer(hidden_size, patch_size,
        #                               self.out_channels)
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize (and freeze) pos_embed by sin-cos embedding:
        pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1],
                                            int(self.num_patches**0.5))
        # st()
        self.pos_embed.data.copy_(
            torch.from_numpy(pos_embed).float().unsqueeze(0))

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        # w = self.x_embedder.proj.weight.data
        # nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        # nn.init.constant_(self.x_embedder.proj.bias, 0)

        # Initialize label embedding table:
        if self.y_embedder is not None:
            nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        # nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        # nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        # nn.init.constant_(self.final_layer.linear.weight, 0)
        # nn.init.constant_(self.final_layer.linear.bias, 0)

    def forward(self, x, t, y=None):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """

        # ! no embedder operation
        # x = self.x_embedder(
        #     x) + self.pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        x = x + self.pos_embed

        t = self.t_embedder(t)  # (N, D)

        if self.y_embedder is not None:
            assert y is not None
            y = self.y_embedder(y, self.training)  # (N, D)
            c = t + y  # (N, D)
        else:
            c = t

        for block in self.blocks:
            x = block(x, c)  # (N, T, D)

        # x = self.final_layer(x, c)  # (N, T, patch_size ** 2 * out_channels)
        # x = self.unpatchify(x)  # (N, out_channels, H, W)

        return x

    def forward_with_cfg(self, x, t, y, cfg_scale):
        """
        Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        half = x[:len(x) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = self.forward(combined, t, y)
        # For exact reproducibility reasons, we apply classifier-free guidance on only
        # three channels by default. The standard approach to cfg applies it to all channels.
        # This can be done by uncommenting the following line and commenting-out the line following that.
        # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return torch.cat([eps, rest], dim=1)

    def forward_with_cfg_unconditional(self, x, t, y=None, cfg_scale=None):
        """
        Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
        """

        combined = x
        model_out = self.forward(combined, t, y)

        return model_out


class DiTwoEmbedderLongSkipConnection(nn.Module):

    def __init__(
        self,
        input_size=224,  # raw img input size
        patch_size=14,  # dino version
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        class_dropout_prob=0.1,
        num_classes=1000,
        learn_sigma=True,
    ):
        """DiT with long skip-connections from U-ViT, CVPR 23'
        """
        super().__init__()
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads

        self.t_embedder = TimestepEmbedder(hidden_size)
        if num_classes > 0:
            self.y_embedder = LabelEmbedder(num_classes, hidden_size,
                                            class_dropout_prob)
        else:
            self.y_embedder = None

        # num_patches = self.x_embedder.num_patches # 14*14*3
        self.num_patches = (input_size // patch_size)**2

        # Will use fixed sin-cos embedding:
        self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches,
                                                  hidden_size),
                                      requires_grad=False)

        self.blocks = nn.ModuleList([
            DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio)
            for _ in range(depth)
        ])

        # ! add long-skip-connections from U-ViT
        self.in_blocks = nn.ModuleList([
            DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio)
            for _ in range(depth // 2)
        ])

        self.mid_block = DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio)

        self.out_blocks = nn.ModuleList([
            DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio)
            for _ in range(depth // 2)
        ])

        # ! needed or to be replaced?
        # self.final_layer = FinalLayer(hidden_size, patch_size,
        #                               self.out_channels)
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize (and freeze) pos_embed by sin-cos embedding:
        pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1],
                                            int(self.num_patches**0.5))
        # st()
        self.pos_embed.data.copy_(
            torch.from_numpy(pos_embed).float().unsqueeze(0))

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        # w = self.x_embedder.proj.weight.data
        # nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        # nn.init.constant_(self.x_embedder.proj.bias, 0)

        # Initialize label embedding table:
        if self.y_embedder is not None:
            nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        # nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        # nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        # nn.init.constant_(self.final_layer.linear.weight, 0)
        # nn.init.constant_(self.final_layer.linear.bias, 0)

    def forward(self, x, t, y=None):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """

        # ! no embedder operation
        # x = self.x_embedder(
        #     x) + self.pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        x = x + self.pos_embed

        t = self.t_embedder(t)  # (N, D)

        if self.y_embedder is not None:
            assert y is not None
            y = self.y_embedder(y, self.training)  # (N, D)
            c = t + y  # (N, D)
        else:
            c = t

        # ! add long-skip-connections here

        # for block in self.blocks:
        #     x = block(x, c)  # (N, T, D)

        skips = []
        for blk in self.in_blocks:
            x = blk(x)
            skips.append(x)

        x = self.mid_block(x)

        for blk in self.out_blocks:
            x = blk(x, skips.pop())

        # ! the order of unpatchify and final_linear swaps in the baseline implementation
        # x = self.final_layer(x, c)  # (N, T, patch_size ** 2 * out_channels)
        # x = self.unpatchify(x)  # (N, out_channels, H, W)

        return x

    def forward_with_cfg(self, x, t, y, cfg_scale):
        """
        Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        half = x[:len(x) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = self.forward(combined, t, y)
        # For exact reproducibility reasons, we apply classifier-free guidance on only
        # three channels by default. The standard approach to cfg applies it to all channels.
        # This can be done by uncommenting the following line and commenting-out the line following that.
        # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return torch.cat([eps, rest], dim=1)

    def forward_with_cfg_unconditional(self, x, t, y=None, cfg_scale=None):
        """
        Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
        """

        combined = x
        model_out = self.forward(combined, t, y)

        return model_out


#################################################################################
#                                   DiT Configs                                  #
#################################################################################

# def DiT_XL_2(**kwargs):
#     return DiT(depth=28,
#                hidden_size=1152,
#                patch_size=2,
#                num_heads=16,
#                **kwargs)

# def DiT_XL_4(**kwargs):
#     return DiT(depth=28,
#                hidden_size=1152,
#                patch_size=4,
#                num_heads=16,
#                **kwargs)

# def DiT_XL_8(**kwargs):
#     return DiT(depth=28,
#                hidden_size=1152,
#                patch_size=8,
#                num_heads=16,
#                **kwargs)

# def DiT_L_2(**kwargs):
#     return DiT(depth=24,
#                hidden_size=1024,
#                patch_size=2,
#                num_heads=16,
#                **kwargs)

# def DiT_L_4(**kwargs):
#     return DiT(depth=24,
#                hidden_size=1024,
#                patch_size=4,
#                num_heads=16,
#                **kwargs)

# def DiT_L_8(**kwargs):
#     return DiT(depth=24,
#                hidden_size=1024,
#                patch_size=8,
#                num_heads=16,
#                **kwargs)

# def DiT_B_2(**kwargs):
#     return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)

# def DiT_B_4(**kwargs):
#     return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)

# def DiT_B_8(**kwargs):
#     return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)

# def DiT_B_16(**kwargs): # ours cfg
#     return DiT(depth=12, hidden_size=768, patch_size=16, num_heads=12, **kwargs)

# def DiT_S_2(**kwargs):
#     return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)

# def DiT_S_4(**kwargs):
#     return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)

# def DiT_S_8(**kwargs):
#     return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)


def DiT_woembed_S(**kwargs):
    return DiTwoEmbedder(depth=12, hidden_size=384, num_heads=6, **kwargs)


def DiT_woembed_B(**kwargs):
    return DiTwoEmbedder(depth=12, hidden_size=768, num_heads=12, **kwargs)


def DiT_woembed_L(**kwargs):
    return DiTwoEmbedder(
        depth=24,
        hidden_size=1024,
        num_heads=16,
        **kwargs)


DiT_woembed_models = {
    # 'DiT-XL/2': DiT_XL_2,
    # 'DiT-XL/4': DiT_XL_4,
    # 'DiT-XL/8': DiT_XL_8,
    # 'DiT-L/2': DiT_L_2,
    # 'DiT-L/4': DiT_L_4,
    # 'DiT-L/8': DiT_L_8,
    # 'DiT-B/2': DiT_B_2,
    # 'DiT-B/4': DiT_B_4,
    # 'DiT-B/8': DiT_B_8,
    # 'DiT-B/16': DiT_B_16,
    # 'DiT-S/2': DiT_S_2,
    # 'DiT-S/4': DiT_S_4,
    # 'DiT-S/8': DiT_S_8,
    'DiT-wo-S': DiT_woembed_S,
    'DiT-wo-B': DiT_woembed_B,
    'DiT-wo-L': DiT_woembed_L,
}