|
import argparse |
|
import io |
|
import os |
|
import random |
|
import warnings |
|
import zipfile |
|
from abc import ABC, abstractmethod |
|
from contextlib import contextmanager |
|
from functools import partial |
|
from multiprocessing import cpu_count |
|
from multiprocessing.pool import ThreadPool |
|
from typing import Iterable, Optional, Tuple |
|
|
|
import numpy as np |
|
import requests |
|
import tensorflow.compat.v1 as tf |
|
from scipy import linalg |
|
from tqdm.auto import tqdm |
|
|
|
INCEPTION_V3_URL = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb" |
|
INCEPTION_V3_PATH = "classify_image_graph_def.pb" |
|
|
|
FID_POOL_NAME = "pool_3:0" |
|
FID_SPATIAL_NAME = "mixed_6/conv:0" |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("ref_batch", help="path to reference batch npz file") |
|
parser.add_argument("sample_batch", help="path to sample batch npz file") |
|
args = parser.parse_args() |
|
|
|
config = tf.ConfigProto( |
|
allow_soft_placement=True |
|
) |
|
config.gpu_options.allow_growth = True |
|
evaluator = Evaluator(tf.Session(config=config)) |
|
|
|
print("warming up TensorFlow...") |
|
|
|
|
|
evaluator.warmup() |
|
|
|
print("computing reference batch activations...") |
|
ref_acts = evaluator.read_activations(args.ref_batch) |
|
print("computing/reading reference batch statistics...") |
|
ref_stats, ref_stats_spatial = evaluator.read_statistics(args.ref_batch, ref_acts) |
|
|
|
print("computing sample batch activations...") |
|
sample_acts = evaluator.read_activations(args.sample_batch) |
|
print("computing/reading sample batch statistics...") |
|
sample_stats, sample_stats_spatial = evaluator.read_statistics(args.sample_batch, sample_acts) |
|
|
|
print("Computing evaluations...") |
|
print("Inception Score:", evaluator.compute_inception_score(sample_acts[0])) |
|
print("FID:", sample_stats.frechet_distance(ref_stats)) |
|
print("sFID:", sample_stats_spatial.frechet_distance(ref_stats_spatial)) |
|
prec, recall = evaluator.compute_prec_recall(ref_acts[0], sample_acts[0]) |
|
print("Precision:", prec) |
|
print("Recall:", recall) |
|
|
|
|
|
class InvalidFIDException(Exception): |
|
pass |
|
|
|
|
|
class FIDStatistics: |
|
def __init__(self, mu: np.ndarray, sigma: np.ndarray): |
|
self.mu = mu |
|
self.sigma = sigma |
|
|
|
def frechet_distance(self, other, eps=1e-6): |
|
""" |
|
Compute the Frechet distance between two sets of statistics. |
|
""" |
|
|
|
mu1, sigma1 = self.mu, self.sigma |
|
mu2, sigma2 = other.mu, other.sigma |
|
|
|
mu1 = np.atleast_1d(mu1) |
|
mu2 = np.atleast_1d(mu2) |
|
|
|
sigma1 = np.atleast_2d(sigma1) |
|
sigma2 = np.atleast_2d(sigma2) |
|
|
|
assert ( |
|
mu1.shape == mu2.shape |
|
), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}" |
|
assert ( |
|
sigma1.shape == sigma2.shape |
|
), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}" |
|
|
|
diff = mu1 - mu2 |
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) |
|
if not np.isfinite(covmean).all(): |
|
msg = ( |
|
"fid calculation produces singular product; adding %s to diagonal of cov estimates" |
|
% eps |
|
) |
|
warnings.warn(msg) |
|
offset = np.eye(sigma1.shape[0]) * eps |
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(covmean): |
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(covmean.imag)) |
|
raise ValueError("Imaginary component {}".format(m)) |
|
covmean = covmean.real |
|
|
|
tr_covmean = np.trace(covmean) |
|
|
|
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean |
|
|
|
|
|
class Evaluator: |
|
def __init__( |
|
self, |
|
session, |
|
batch_size=64, |
|
softmax_batch_size=512, |
|
): |
|
self.sess = session |
|
self.batch_size = batch_size |
|
self.softmax_batch_size = softmax_batch_size |
|
self.manifold_estimator = ManifoldEstimator(session) |
|
with self.sess.graph.as_default(): |
|
self.image_input = tf.placeholder(tf.float32, shape=[None, None, None, 3]) |
|
self.softmax_input = tf.placeholder(tf.float32, shape=[None, 2048]) |
|
self.pool_features, self.spatial_features = _create_feature_graph(self.image_input) |
|
self.softmax = _create_softmax_graph(self.softmax_input) |
|
|
|
def warmup(self): |
|
self.compute_activations(np.zeros([1, 8, 64, 64, 3])) |
|
|
|
def read_activations(self, npz_path: str) -> Tuple[np.ndarray, np.ndarray]: |
|
with open_npz_array(npz_path, "arr_0") as reader: |
|
return self.compute_activations(reader.read_batches(self.batch_size)) |
|
|
|
def compute_activations(self, batches: Iterable[np.ndarray]) -> Tuple[np.ndarray, np.ndarray]: |
|
""" |
|
Compute image features for downstream evals. |
|
|
|
:param batches: a iterator over NHWC numpy arrays in [0, 255]. |
|
:return: a tuple of numpy arrays of shape [N x X], where X is a feature |
|
dimension. The tuple is (pool_3, spatial). |
|
""" |
|
preds = [] |
|
spatial_preds = [] |
|
for batch in tqdm(batches): |
|
batch = batch.astype(np.float32) |
|
pred, spatial_pred = self.sess.run( |
|
[self.pool_features, self.spatial_features], {self.image_input: batch} |
|
) |
|
preds.append(pred.reshape([pred.shape[0], -1])) |
|
spatial_preds.append(spatial_pred.reshape([spatial_pred.shape[0], -1])) |
|
return ( |
|
np.concatenate(preds, axis=0), |
|
np.concatenate(spatial_preds, axis=0), |
|
) |
|
|
|
def read_statistics( |
|
self, npz_path: str, activations: Tuple[np.ndarray, np.ndarray] |
|
) -> Tuple[FIDStatistics, FIDStatistics]: |
|
obj = np.load(npz_path) |
|
if "mu" in list(obj.keys()): |
|
return FIDStatistics(obj["mu"], obj["sigma"]), FIDStatistics( |
|
obj["mu_s"], obj["sigma_s"] |
|
) |
|
return tuple(self.compute_statistics(x) for x in activations) |
|
|
|
def compute_statistics(self, activations: np.ndarray) -> FIDStatistics: |
|
mu = np.mean(activations, axis=0) |
|
sigma = np.cov(activations, rowvar=False) |
|
return FIDStatistics(mu, sigma) |
|
|
|
def compute_inception_score(self, activations: np.ndarray, split_size: int = 5000) -> float: |
|
softmax_out = [] |
|
for i in range(0, len(activations), self.softmax_batch_size): |
|
acts = activations[i : i + self.softmax_batch_size] |
|
softmax_out.append(self.sess.run(self.softmax, feed_dict={self.softmax_input: acts})) |
|
preds = np.concatenate(softmax_out, axis=0) |
|
|
|
scores = [] |
|
for i in range(0, len(preds), split_size): |
|
part = preds[i : i + split_size] |
|
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) |
|
kl = np.mean(np.sum(kl, 1)) |
|
scores.append(np.exp(kl)) |
|
return float(np.mean(scores)) |
|
|
|
def compute_prec_recall( |
|
self, activations_ref: np.ndarray, activations_sample: np.ndarray |
|
) -> Tuple[float, float]: |
|
radii_1 = self.manifold_estimator.manifold_radii(activations_ref) |
|
radii_2 = self.manifold_estimator.manifold_radii(activations_sample) |
|
pr = self.manifold_estimator.evaluate_pr( |
|
activations_ref, radii_1, activations_sample, radii_2 |
|
) |
|
return (float(pr[0][0]), float(pr[1][0])) |
|
|
|
|
|
class ManifoldEstimator: |
|
""" |
|
A helper for comparing manifolds of feature vectors. |
|
|
|
Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L57 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
session, |
|
row_batch_size=10000, |
|
col_batch_size=10000, |
|
nhood_sizes=(3,), |
|
clamp_to_percentile=None, |
|
eps=1e-5, |
|
): |
|
""" |
|
Estimate the manifold of given feature vectors. |
|
|
|
:param session: the TensorFlow session. |
|
:param row_batch_size: row batch size to compute pairwise distances |
|
(parameter to trade-off between memory usage and performance). |
|
:param col_batch_size: column batch size to compute pairwise distances. |
|
:param nhood_sizes: number of neighbors used to estimate the manifold. |
|
:param clamp_to_percentile: prune hyperspheres that have radius larger than |
|
the given percentile. |
|
:param eps: small number for numerical stability. |
|
""" |
|
self.distance_block = DistanceBlock(session) |
|
self.row_batch_size = row_batch_size |
|
self.col_batch_size = col_batch_size |
|
self.nhood_sizes = nhood_sizes |
|
self.num_nhoods = len(nhood_sizes) |
|
self.clamp_to_percentile = clamp_to_percentile |
|
self.eps = eps |
|
|
|
def warmup(self): |
|
feats, radii = ( |
|
np.zeros([1, 2048], dtype=np.float32), |
|
np.zeros([1, 1], dtype=np.float32), |
|
) |
|
self.evaluate_pr(feats, radii, feats, radii) |
|
|
|
def manifold_radii(self, features: np.ndarray) -> np.ndarray: |
|
num_images = len(features) |
|
|
|
|
|
radii = np.zeros([num_images, self.num_nhoods], dtype=np.float32) |
|
distance_batch = np.zeros([self.row_batch_size, num_images], dtype=np.float32) |
|
seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32) |
|
|
|
for begin1 in range(0, num_images, self.row_batch_size): |
|
end1 = min(begin1 + self.row_batch_size, num_images) |
|
row_batch = features[begin1:end1] |
|
|
|
for begin2 in range(0, num_images, self.col_batch_size): |
|
end2 = min(begin2 + self.col_batch_size, num_images) |
|
col_batch = features[begin2:end2] |
|
|
|
|
|
distance_batch[ |
|
0 : end1 - begin1, begin2:end2 |
|
] = self.distance_block.pairwise_distances(row_batch, col_batch) |
|
|
|
|
|
radii[begin1:end1, :] = np.concatenate( |
|
[ |
|
x[:, self.nhood_sizes] |
|
for x in _numpy_partition(distance_batch[0 : end1 - begin1, :], seq, axis=1) |
|
], |
|
axis=0, |
|
) |
|
|
|
if self.clamp_to_percentile is not None: |
|
max_distances = np.percentile(radii, self.clamp_to_percentile, axis=0) |
|
radii[radii > max_distances] = 0 |
|
return radii |
|
|
|
def evaluate(self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray): |
|
""" |
|
Evaluate if new feature vectors are at the manifold. |
|
""" |
|
num_eval_images = eval_features.shape[0] |
|
num_ref_images = radii.shape[0] |
|
distance_batch = np.zeros([self.row_batch_size, num_ref_images], dtype=np.float32) |
|
batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32) |
|
max_realism_score = np.zeros([num_eval_images], dtype=np.float32) |
|
nearest_indices = np.zeros([num_eval_images], dtype=np.int32) |
|
|
|
for begin1 in range(0, num_eval_images, self.row_batch_size): |
|
end1 = min(begin1 + self.row_batch_size, num_eval_images) |
|
feature_batch = eval_features[begin1:end1] |
|
|
|
for begin2 in range(0, num_ref_images, self.col_batch_size): |
|
end2 = min(begin2 + self.col_batch_size, num_ref_images) |
|
ref_batch = features[begin2:end2] |
|
|
|
distance_batch[ |
|
0 : end1 - begin1, begin2:end2 |
|
] = self.distance_block.pairwise_distances(feature_batch, ref_batch) |
|
|
|
|
|
|
|
|
|
|
|
samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii |
|
batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype(np.int32) |
|
|
|
max_realism_score[begin1:end1] = np.max( |
|
radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1 |
|
) |
|
nearest_indices[begin1:end1] = np.argmin(distance_batch[0 : end1 - begin1, :], axis=1) |
|
|
|
return { |
|
"fraction": float(np.mean(batch_predictions)), |
|
"batch_predictions": batch_predictions, |
|
"max_realisim_score": max_realism_score, |
|
"nearest_indices": nearest_indices, |
|
} |
|
|
|
def evaluate_pr( |
|
self, |
|
features_1: np.ndarray, |
|
radii_1: np.ndarray, |
|
features_2: np.ndarray, |
|
radii_2: np.ndarray, |
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
""" |
|
Evaluate precision and recall efficiently. |
|
|
|
:param features_1: [N1 x D] feature vectors for reference batch. |
|
:param radii_1: [N1 x K1] radii for reference vectors. |
|
:param features_2: [N2 x D] feature vectors for the other batch. |
|
:param radii_2: [N x K2] radii for other vectors. |
|
:return: a tuple of arrays for (precision, recall): |
|
- precision: an np.ndarray of length K1 |
|
- recall: an np.ndarray of length K2 |
|
""" |
|
features_1_status = np.zeros([len(features_1), radii_2.shape[1]], dtype=np.bool) |
|
features_2_status = np.zeros([len(features_2), radii_1.shape[1]], dtype=np.bool) |
|
for begin_1 in range(0, len(features_1), self.row_batch_size): |
|
end_1 = begin_1 + self.row_batch_size |
|
batch_1 = features_1[begin_1:end_1] |
|
for begin_2 in range(0, len(features_2), self.col_batch_size): |
|
end_2 = begin_2 + self.col_batch_size |
|
batch_2 = features_2[begin_2:end_2] |
|
batch_1_in, batch_2_in = self.distance_block.less_thans( |
|
batch_1, radii_1[begin_1:end_1], batch_2, radii_2[begin_2:end_2] |
|
) |
|
features_1_status[begin_1:end_1] |= batch_1_in |
|
features_2_status[begin_2:end_2] |= batch_2_in |
|
return ( |
|
np.mean(features_2_status.astype(np.float64), axis=0), |
|
np.mean(features_1_status.astype(np.float64), axis=0), |
|
) |
|
|
|
|
|
class DistanceBlock: |
|
""" |
|
Calculate pairwise distances between vectors. |
|
|
|
Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L34 |
|
""" |
|
|
|
def __init__(self, session): |
|
self.session = session |
|
|
|
|
|
with session.graph.as_default(): |
|
self._features_batch1 = tf.placeholder(tf.float32, shape=[None, None]) |
|
self._features_batch2 = tf.placeholder(tf.float32, shape=[None, None]) |
|
distance_block_16 = _batch_pairwise_distances( |
|
tf.cast(self._features_batch1, tf.float16), |
|
tf.cast(self._features_batch2, tf.float16), |
|
) |
|
self.distance_block = tf.cond( |
|
tf.reduce_all(tf.math.is_finite(distance_block_16)), |
|
lambda: tf.cast(distance_block_16, tf.float32), |
|
lambda: _batch_pairwise_distances(self._features_batch1, self._features_batch2), |
|
) |
|
|
|
|
|
self._radii1 = tf.placeholder(tf.float32, shape=[None, None]) |
|
self._radii2 = tf.placeholder(tf.float32, shape=[None, None]) |
|
dist32 = tf.cast(self.distance_block, tf.float32)[..., None] |
|
self._batch_1_in = tf.math.reduce_any(dist32 <= self._radii2, axis=1) |
|
self._batch_2_in = tf.math.reduce_any(dist32 <= self._radii1[:, None], axis=0) |
|
|
|
def pairwise_distances(self, U, V): |
|
""" |
|
Evaluate pairwise distances between two batches of feature vectors. |
|
""" |
|
return self.session.run( |
|
self.distance_block, |
|
feed_dict={self._features_batch1: U, self._features_batch2: V}, |
|
) |
|
|
|
def less_thans(self, batch_1, radii_1, batch_2, radii_2): |
|
return self.session.run( |
|
[self._batch_1_in, self._batch_2_in], |
|
feed_dict={ |
|
self._features_batch1: batch_1, |
|
self._features_batch2: batch_2, |
|
self._radii1: radii_1, |
|
self._radii2: radii_2, |
|
}, |
|
) |
|
|
|
|
|
def _batch_pairwise_distances(U, V): |
|
""" |
|
Compute pairwise distances between two batches of feature vectors. |
|
""" |
|
with tf.variable_scope("pairwise_dist_block"): |
|
|
|
norm_u = tf.reduce_sum(tf.square(U), 1) |
|
norm_v = tf.reduce_sum(tf.square(V), 1) |
|
|
|
|
|
norm_u = tf.reshape(norm_u, [-1, 1]) |
|
norm_v = tf.reshape(norm_v, [1, -1]) |
|
|
|
|
|
D = tf.maximum(norm_u - 2 * tf.matmul(U, V, False, True) + norm_v, 0.0) |
|
|
|
return D |
|
|
|
|
|
class NpzArrayReader(ABC): |
|
@abstractmethod |
|
def read_batch(self, batch_size: int) -> Optional[np.ndarray]: |
|
pass |
|
|
|
@abstractmethod |
|
def remaining(self) -> int: |
|
pass |
|
|
|
def read_batches(self, batch_size: int) -> Iterable[np.ndarray]: |
|
def gen_fn(): |
|
while True: |
|
batch = self.read_batch(batch_size) |
|
if batch is None: |
|
break |
|
yield batch |
|
|
|
rem = self.remaining() |
|
num_batches = rem // batch_size + int(rem % batch_size != 0) |
|
return BatchIterator(gen_fn, num_batches) |
|
|
|
|
|
class BatchIterator: |
|
def __init__(self, gen_fn, length): |
|
self.gen_fn = gen_fn |
|
self.length = length |
|
|
|
def __len__(self): |
|
return self.length |
|
|
|
def __iter__(self): |
|
return self.gen_fn() |
|
|
|
|
|
class StreamingNpzArrayReader(NpzArrayReader): |
|
def __init__(self, arr_f, shape, dtype): |
|
self.arr_f = arr_f |
|
self.shape = shape |
|
self.dtype = dtype |
|
self.idx = 0 |
|
|
|
def read_batch(self, batch_size: int) -> Optional[np.ndarray]: |
|
if self.idx >= self.shape[0]: |
|
return None |
|
|
|
bs = min(batch_size, self.shape[0] - self.idx) |
|
self.idx += bs |
|
|
|
if self.dtype.itemsize == 0: |
|
return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype) |
|
|
|
read_count = bs * np.prod(self.shape[1:]) |
|
read_size = int(read_count * self.dtype.itemsize) |
|
data = _read_bytes(self.arr_f, read_size, "array data") |
|
return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]]) |
|
|
|
def remaining(self) -> int: |
|
return max(0, self.shape[0] - self.idx) |
|
|
|
|
|
class MemoryNpzArrayReader(NpzArrayReader): |
|
def __init__(self, arr): |
|
self.arr = arr |
|
self.idx = 0 |
|
|
|
@classmethod |
|
def load(cls, path: str, arr_name: str): |
|
with open(path, "rb") as f: |
|
arr = np.load(f)[arr_name] |
|
return cls(arr) |
|
|
|
def read_batch(self, batch_size: int) -> Optional[np.ndarray]: |
|
if self.idx >= self.arr.shape[0]: |
|
return None |
|
|
|
res = self.arr[self.idx : self.idx + batch_size] |
|
self.idx += batch_size |
|
return res |
|
|
|
def remaining(self) -> int: |
|
return max(0, self.arr.shape[0] - self.idx) |
|
|
|
|
|
@contextmanager |
|
def open_npz_array(path: str, arr_name: str) -> NpzArrayReader: |
|
with _open_npy_file(path, arr_name) as arr_f: |
|
version = np.lib.format.read_magic(arr_f) |
|
if version == (1, 0): |
|
header = np.lib.format.read_array_header_1_0(arr_f) |
|
elif version == (2, 0): |
|
header = np.lib.format.read_array_header_2_0(arr_f) |
|
else: |
|
yield MemoryNpzArrayReader.load(path, arr_name) |
|
return |
|
shape, fortran, dtype = header |
|
if fortran or dtype.hasobject: |
|
yield MemoryNpzArrayReader.load(path, arr_name) |
|
else: |
|
yield StreamingNpzArrayReader(arr_f, shape, dtype) |
|
|
|
|
|
def _read_bytes(fp, size, error_template="ran out of data"): |
|
""" |
|
Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886 |
|
|
|
Read from file-like object until size bytes are read. |
|
Raises ValueError if not EOF is encountered before size bytes are read. |
|
Non-blocking objects only supported if they derive from io objects. |
|
Required as e.g. ZipExtFile in python 2.6 can return less data than |
|
requested. |
|
""" |
|
data = bytes() |
|
while True: |
|
|
|
|
|
|
|
try: |
|
r = fp.read(size - len(data)) |
|
data += r |
|
if len(r) == 0 or len(data) == size: |
|
break |
|
except io.BlockingIOError: |
|
pass |
|
if len(data) != size: |
|
msg = "EOF: reading %s, expected %d bytes got %d" |
|
raise ValueError(msg % (error_template, size, len(data))) |
|
else: |
|
return data |
|
|
|
|
|
@contextmanager |
|
def _open_npy_file(path: str, arr_name: str): |
|
with open(path, "rb") as f: |
|
with zipfile.ZipFile(f, "r") as zip_f: |
|
if f"{arr_name}.npy" not in zip_f.namelist(): |
|
raise ValueError(f"missing {arr_name} in npz file") |
|
with zip_f.open(f"{arr_name}.npy", "r") as arr_f: |
|
yield arr_f |
|
|
|
|
|
def _download_inception_model(): |
|
if os.path.exists(INCEPTION_V3_PATH): |
|
return |
|
print("downloading InceptionV3 model...") |
|
with requests.get(INCEPTION_V3_URL, stream=True) as r: |
|
r.raise_for_status() |
|
tmp_path = INCEPTION_V3_PATH + ".tmp" |
|
with open(tmp_path, "wb") as f: |
|
for chunk in tqdm(r.iter_content(chunk_size=8192)): |
|
f.write(chunk) |
|
os.rename(tmp_path, INCEPTION_V3_PATH) |
|
|
|
|
|
def _create_feature_graph(input_batch): |
|
_download_inception_model() |
|
prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}" |
|
with open(INCEPTION_V3_PATH, "rb") as f: |
|
graph_def = tf.GraphDef() |
|
graph_def.ParseFromString(f.read()) |
|
pool3, spatial = tf.import_graph_def( |
|
graph_def, |
|
input_map={f"ExpandDims:0": input_batch}, |
|
return_elements=[FID_POOL_NAME, FID_SPATIAL_NAME], |
|
name=prefix, |
|
) |
|
_update_shapes(pool3) |
|
spatial = spatial[..., :7] |
|
return pool3, spatial |
|
|
|
|
|
def _create_softmax_graph(input_batch): |
|
_download_inception_model() |
|
prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}" |
|
with open(INCEPTION_V3_PATH, "rb") as f: |
|
graph_def = tf.GraphDef() |
|
graph_def.ParseFromString(f.read()) |
|
(matmul,) = tf.import_graph_def( |
|
graph_def, return_elements=[f"softmax/logits/MatMul"], name=prefix |
|
) |
|
w = matmul.inputs[1] |
|
logits = tf.matmul(input_batch, w) |
|
return tf.nn.softmax(logits) |
|
|
|
|
|
def _update_shapes(pool3): |
|
|
|
ops = pool3.graph.get_operations() |
|
for op in ops: |
|
for o in op.outputs: |
|
shape = o.get_shape() |
|
if shape._dims is not None: |
|
|
|
shape = [s for s in shape] |
|
new_shape = [] |
|
for j, s in enumerate(shape): |
|
if s == 1 and j == 0: |
|
new_shape.append(None) |
|
else: |
|
new_shape.append(s) |
|
o.__dict__["_shape_val"] = tf.TensorShape(new_shape) |
|
return pool3 |
|
|
|
|
|
def _numpy_partition(arr, kth, **kwargs): |
|
num_workers = min(cpu_count(), len(arr)) |
|
chunk_size = len(arr) // num_workers |
|
extra = len(arr) % num_workers |
|
|
|
start_idx = 0 |
|
batches = [] |
|
for i in range(num_workers): |
|
size = chunk_size + (1 if i < extra else 0) |
|
batches.append(arr[start_idx : start_idx + size]) |
|
start_idx += size |
|
|
|
with ThreadPool(num_workers) as pool: |
|
return list(pool.map(partial(np.partition, kth=kth, **kwargs), batches)) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|