llm-t97 / chat-t5-tiny.py
ysn-rfd's picture
Upload 22 files
5500979 verified
raw
history blame
1.38 kB
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
# Load the fine-tuned model and tokenizer
model_path = './fine-tuned-t5-efficient-tiny'
tokenizer = T5Tokenizer.from_pretrained(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path)
def generate_response(input_text, model, tokenizer, max_length=256):
# Tokenize the input text
inputs = tokenizer(input_text, return_tensors='pt', truncation=True, padding='max_length', max_length=max_length)
# Generate a response from the model
outputs = model.generate(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_length=max_length,
num_beams=1, # Use greedy decoding
do_sample=True, # Enable sampling
temperature=1.0,
top_p=0.9,
early_stopping=False # Disable early stopping
)
# Decode the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def chat_with_model():
print("Chatbot is ready! Type 'exit' to end the conversation.")
while True:
user_input = input("You: ")
if user_input.lower() == 'exit':
print("Goodbye!")
break
response = generate_response(user_input, model, tokenizer)
print(f"Chatbot: {response}")
# Start the chat
chat_with_model()