|
|
|
|
|
|
|
|
|
|
|
import types |
|
import torch |
|
import torch.nn as nn |
|
from funasr.register import tables |
|
|
|
|
|
def export_rebuild_model(model, **kwargs): |
|
model.device = kwargs.get("device") |
|
is_onnx = kwargs.get("type", "onnx") == "onnx" |
|
|
|
|
|
|
|
|
|
|
|
from funasr.utils.torch_function import sequence_mask |
|
|
|
|
|
|
|
model.forward = types.MethodType(export_forward, model) |
|
model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model) |
|
model.export_input_names = types.MethodType(export_input_names, model) |
|
model.export_output_names = types.MethodType(export_output_names, model) |
|
model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model) |
|
model.export_name = types.MethodType(export_name, model) |
|
|
|
model.export_name = "model" |
|
return model |
|
|
|
|
|
def export_forward( |
|
self, |
|
speech: torch.Tensor, |
|
speech_lengths: torch.Tensor, |
|
language: torch.Tensor, |
|
textnorm: torch.Tensor, |
|
**kwargs, |
|
): |
|
speech = speech.to(device='cuda') |
|
speech_lengths = speech_lengths.to(device='cuda') |
|
|
|
language_query = self.embed(language.to(speech.device)).unsqueeze(1) |
|
|
|
textnorm_query = self.embed(textnorm.to(speech.device)).unsqueeze(1) |
|
print(textnorm_query.shape, speech.shape) |
|
speech = torch.cat((textnorm_query, speech), dim=1) |
|
speech_lengths += 1 |
|
|
|
event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat( |
|
speech.size(0), 1, 1 |
|
) |
|
input_query = torch.cat((language_query, event_emo_query), dim=1) |
|
speech = torch.cat((input_query, speech), dim=1) |
|
speech_lengths += 3 |
|
|
|
|
|
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths) |
|
if isinstance(encoder_out, tuple): |
|
encoder_out = encoder_out[0] |
|
|
|
|
|
|
|
ctc_logits = self.ctc.ctc_lo(encoder_out) |
|
|
|
|
|
return ctc_logits, encoder_out_lens |
|
|
|
|
|
def export_dummy_inputs(self): |
|
speech = torch.randn(2, 30, 560) |
|
speech_lengths = torch.tensor([6, 30], dtype=torch.int32) |
|
language = torch.tensor([0, 0], dtype=torch.int32) |
|
textnorm = torch.tensor([15, 15], dtype=torch.int32) |
|
return (speech, speech_lengths, language, textnorm) |
|
|
|
|
|
def export_input_names(self): |
|
return ["speech", "speech_lengths", "language", "textnorm"] |
|
|
|
|
|
def export_output_names(self): |
|
return ["ctc_logits", "encoder_out_lens"] |
|
|
|
|
|
def export_dynamic_axes(self): |
|
return { |
|
"speech": {0: "batch_size", 1: "feats_length"}, |
|
"speech_lengths": { |
|
0: "batch_size", |
|
}, |
|
"language": {0: "batch_size"}, |
|
"textnorm": {0: "batch_size"}, |
|
"ctc_logits": {0: "batch_size", 1: "logits_length"}, |
|
} |
|
|
|
|
|
def export_name( |
|
self, |
|
): |
|
return "model.onnx" |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
from model import SenseVoiceSmall |
|
|
|
model_dir = "iic/SenseVoiceSmall" |
|
|
|
model, kwargs = SenseVoiceSmall.from_pretrained(model=model_dir) |
|
|
|
model = export_rebuild_model(model, max_seq_len=512, device="cuda") |
|
|
|
print("Export Done.") |
|
|
|
dummy_inputs = model.export_dummy_inputs() |
|
|
|
|
|
torch.onnx.export( |
|
model, |
|
dummy_inputs, |
|
"model.onnx", |
|
input_names=model.export_input_names(), |
|
output_names=model.export_output_names(), |
|
dynamic_axes=model.export_dynamic_axes(), |
|
opset_version=18 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|