File size: 3,533 Bytes
d888923
 
c12296c
d888923
 
c12296c
d888923
 
 
 
 
 
 
 
 
 
 
 
 
 
0eaeba0
 
 
 
d888923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c12296c
 
d888923
 
c12296c
d888923
 
 
 
 
 
 
 
0eaeba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d888923
 
 
 
c12296c
d888923
 
 
c12296c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: gemma
library_name: peft
tags:
- generated_from_trainer
base_model: google/gemma-1.1-2b-it
metrics:
- accuracy
model-index:
- name: emotions_google_gemma
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# emotions_google_gemma

This model is a fine-tuned version of [google/gemma-1.1-2b-it](https://huggingface.co/google/gemma-1.1-2b-it) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4858
- F1 Micro: 0.6961
- F1 Macro: 0.6067
- Accuracy: 0.2369

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:--------:|
| 0.7307        | 0.2067 | 20   | 0.6081          | 0.6151   | 0.4711   | 0.1709   |
| 0.5276        | 0.4134 | 40   | 0.5106          | 0.6760   | 0.5729   | 0.1676   |
| 0.5081        | 0.6202 | 60   | 0.4978          | 0.6922   | 0.5857   | 0.2006   |
| 0.5091        | 0.8269 | 80   | 0.4853          | 0.6908   | 0.6038   | 0.2052   |
| 0.4823        | 1.0336 | 100  | 0.4858          | 0.6961   | 0.6067   | 0.2369   |
| 0.3346        | 1.2403 | 120  | 0.5500          | 0.6663   | 0.5728   | 0.1702   |
| 0.3245        | 1.4470 | 140  | 0.5440          | 0.6816   | 0.5819   | 0.2052   |
| 0.3375        | 1.6537 | 160  | 0.5541          | 0.6808   | 0.5853   | 0.1987   |
| 0.3407        | 1.8605 | 180  | 0.5275          | 0.6875   | 0.5872   | 0.1916   |
| 0.2745        | 2.0672 | 200  | 0.6019          | 0.6928   | 0.5784   | 0.2311   |
| 0.1312        | 2.2739 | 220  | 0.7540          | 0.6750   | 0.5614   | 0.2097   |
| 0.1363        | 2.4806 | 240  | 0.7292          | 0.6805   | 0.5712   | 0.2078   |
| 0.1302        | 2.6873 | 260  | 0.7316          | 0.6846   | 0.5795   | 0.2045   |
| 0.125         | 2.8941 | 280  | 0.7491          | 0.6819   | 0.5711   | 0.2104   |
| 0.0877        | 3.1008 | 300  | 0.8069          | 0.6805   | 0.5651   | 0.2330   |
| 0.0457        | 3.3075 | 320  | 0.8849          | 0.6867   | 0.5592   | 0.2356   |
| 0.0453        | 3.5142 | 340  | 0.8583          | 0.6774   | 0.5626   | 0.2246   |
| 0.0429        | 3.7209 | 360  | 0.8338          | 0.6812   | 0.5675   | 0.2227   |
| 0.0463        | 3.9276 | 380  | 0.8497          | 0.6823   | 0.5735   | 0.2272   |
| 0.0256        | 4.1344 | 400  | 0.9236          | 0.6759   | 0.5607   | 0.2278   |
| 0.0155        | 4.3411 | 420  | 0.9380          | 0.6871   | 0.5651   | 0.2421   |
| 0.0127        | 4.5478 | 440  | 0.9505          | 0.6852   | 0.5646   | 0.2414   |
| 0.0129        | 4.7545 | 460  | 0.9438          | 0.6837   | 0.5658   | 0.2382   |
| 0.0123        | 4.9612 | 480  | 0.9431          | 0.6843   | 0.5666   | 0.2401   |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1