File size: 3,533 Bytes
d888923 c12296c d888923 c12296c d888923 c12296c d888923 c12296c d888923 c12296c d888923 c12296c d888923 c12296c d888923 c12296c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: gemma
library_name: peft
tags:
- generated_from_trainer
base_model: google/gemma-1.1-2b-it
metrics:
- accuracy
model-index:
- name: emotions_google_gemma
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotions_google_gemma
This model is a fine-tuned version of [google/gemma-1.1-2b-it](https://huggingface.co/google/gemma-1.1-2b-it) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4792
- F1 Micro: 0.6970
- F1 Macro: 0.6089
- Accuracy: 0.2104
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:--------:|
| 0.7081 | 0.2067 | 20 | 0.6048 | 0.6244 | 0.5113 | 0.1528 |
| 0.5228 | 0.4134 | 40 | 0.5096 | 0.6713 | 0.5815 | 0.1883 |
| 0.5048 | 0.6202 | 60 | 0.4928 | 0.7002 | 0.5865 | 0.2155 |
| 0.5129 | 0.8269 | 80 | 0.4792 | 0.6970 | 0.6089 | 0.2104 |
| 0.4842 | 1.0336 | 100 | 0.4801 | 0.6972 | 0.6023 | 0.2369 |
| 0.3372 | 1.2403 | 120 | 0.5545 | 0.6687 | 0.5877 | 0.1761 |
| 0.3302 | 1.4470 | 140 | 0.5374 | 0.6895 | 0.6020 | 0.2019 |
| 0.3342 | 1.6537 | 160 | 0.5330 | 0.6860 | 0.5993 | 0.2117 |
| 0.3392 | 1.8605 | 180 | 0.5190 | 0.6894 | 0.5913 | 0.2006 |
| 0.2844 | 2.0672 | 200 | 0.5853 | 0.6891 | 0.5819 | 0.2369 |
| 0.1458 | 2.2739 | 220 | 0.7038 | 0.6743 | 0.5749 | 0.2097 |
| 0.1508 | 2.4806 | 240 | 0.6808 | 0.6802 | 0.5834 | 0.1994 |
| 0.1481 | 2.6873 | 260 | 0.7026 | 0.6773 | 0.5721 | 0.2 |
| 0.1378 | 2.8941 | 280 | 0.7336 | 0.6790 | 0.5768 | 0.2162 |
| 0.0961 | 3.1008 | 300 | 0.8397 | 0.6709 | 0.5465 | 0.2272 |
| 0.0552 | 3.3075 | 320 | 0.8260 | 0.6743 | 0.5654 | 0.2168 |
| 0.0509 | 3.5142 | 340 | 0.8692 | 0.6777 | 0.5666 | 0.2233 |
| 0.0489 | 3.7209 | 360 | 0.8505 | 0.6874 | 0.5722 | 0.2388 |
| 0.0526 | 3.9276 | 380 | 0.8269 | 0.6842 | 0.5778 | 0.2233 |
| 0.0278 | 4.1344 | 400 | 0.9280 | 0.6813 | 0.5557 | 0.2414 |
| 0.0187 | 4.3411 | 420 | 0.9390 | 0.6829 | 0.5588 | 0.2382 |
| 0.0169 | 4.5478 | 440 | 0.9510 | 0.6834 | 0.5612 | 0.2485 |
| 0.0158 | 4.7545 | 460 | 0.9325 | 0.6819 | 0.5612 | 0.2427 |
| 0.0161 | 4.9612 | 480 | 0.9311 | 0.6822 | 0.5634 | 0.2440 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |