Text Generation
Transformers
Safetensors
Chinese
English
qwen
conversational
custom_code
yuyijiong commited on
Commit
92e7a34
·
1 Parent(s): be18b24

Upload modeling_qwen_yarn.py

Browse files
Files changed (1) hide show
  1. modeling_qwen_yarn.py +1519 -0
modeling_qwen_yarn.py ADDED
@@ -0,0 +1,1519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import importlib
7
+ import math
8
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import torch.utils.checkpoint
13
+ from torch.cuda.amp import autocast
14
+
15
+ from torch.nn import CrossEntropyLoss
16
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
17
+ from transformers.generation.logits_process import LogitsProcessorList
18
+
19
+ if TYPE_CHECKING:
20
+ from transformers.generation.streamers import BaseStreamer
21
+ from transformers.generation.utils import GenerateOutput
22
+ from transformers.modeling_outputs import (
23
+ BaseModelOutputWithPast,
24
+ CausalLMOutputWithPast,
25
+ )
26
+ from transformers.modeling_utils import PreTrainedModel
27
+ from transformers.utils import logging
28
+
29
+ try:
30
+ from einops import rearrange
31
+ except ImportError:
32
+ rearrange = None
33
+ from torch import nn
34
+
35
+ try:
36
+ from kernels.cpp_kernels import cache_autogptq_cuda_256
37
+ except ImportError:
38
+ cache_autogptq_cuda_256 = None
39
+
40
+ SUPPORT_CUDA = torch.cuda.is_available()
41
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
42
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
43
+
44
+ from .configuration_qwen import QWenConfig
45
+ from .qwen_generation_utils import (
46
+ HistoryType,
47
+ make_context,
48
+ decode_tokens,
49
+ get_stop_words_ids,
50
+ StopWordsLogitsProcessor,
51
+ )
52
+ from flash_attn.bert_padding import unpad_input, pad_input
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+ _CHECKPOINT_FOR_DOC = "qwen"
57
+ _CONFIG_FOR_DOC = "QWenConfig"
58
+
59
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
60
+
61
+ _ERROR_BAD_CHAT_FORMAT = """\
62
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
63
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
64
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
65
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
66
+ """
67
+
68
+ _SENTINEL = object()
69
+ _ERROR_STREAM_IN_CHAT = """\
70
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
71
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
72
+ """
73
+
74
+ _ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
75
+ We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
76
+ 检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
77
+ """
78
+
79
+ apply_rotary_emb_func = None
80
+ rms_norm = None
81
+ flash_attn_unpadded_func = None
82
+
83
+ def _import_flash_attn():
84
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
85
+ try:
86
+ from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
87
+ apply_rotary_emb_func = __apply_rotary_emb_func
88
+ except ImportError:
89
+ logger.warn(
90
+ "Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
91
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
92
+ )
93
+
94
+ try:
95
+ from flash_attn.ops.rms_norm import rms_norm as __rms_norm
96
+ rms_norm = __rms_norm
97
+ except ImportError:
98
+ logger.warn(
99
+ "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
100
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
101
+ )
102
+
103
+ try:
104
+ import flash_attn
105
+ if not hasattr(flash_attn, '__version__'):
106
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
107
+ else:
108
+ if int(flash_attn.__version__.split(".")[0]) >= 2:
109
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
110
+ else:
111
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
112
+ flash_attn_unpadded_func = __flash_attn_unpadded_func
113
+ except ImportError:
114
+ logger.warn(
115
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
116
+ "https://github.com/Dao-AILab/flash-attention"
117
+ )
118
+
119
+ def quantize_cache_v(fdata, bits, qmax, qmin):
120
+ # b, s, head, h-dim->b, head, s, h-dim
121
+ qtype = torch.uint8
122
+ device = fdata.device
123
+ shape = fdata.shape
124
+
125
+ fdata_cal = torch.flatten(fdata, 2)
126
+ fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
127
+ fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
128
+ # Compute params
129
+ if qmax.device != fmax.device:
130
+ qmax = qmax.to(device)
131
+ qmin = qmin.to(device)
132
+ scale = (fmax - fmin) / (qmax - qmin)
133
+ zero = qmin - fmin / scale
134
+ scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
135
+ zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
136
+ # Quantize
137
+ res_data = fdata / scale + zero
138
+ qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
139
+ return qdata.contiguous(), scale, zero
140
+
141
+ def dequantize_cache_torch(qdata, scale, zero):
142
+ data = scale * (qdata - zero)
143
+ return data
144
+
145
+ class FlashSelfAttention(torch.nn.Module):
146
+ def __init__(
147
+ self,
148
+ causal=False,
149
+ softmax_scale=None,
150
+ attention_dropout=0.0,
151
+ ):
152
+ super().__init__()
153
+ assert flash_attn_unpadded_func is not None, (
154
+ "Please install FlashAttention first, " "e.g., with pip install flash-attn"
155
+ )
156
+ assert (
157
+ rearrange is not None
158
+ ), "Please install einops first, e.g., with pip install einops"
159
+ self.causal = causal
160
+ self.softmax_scale = softmax_scale
161
+ self.dropout_p = attention_dropout
162
+
163
+ def unpad_input(self, hidden_states, attention_mask):
164
+ valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
165
+ seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
166
+ indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
167
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
168
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
169
+ hidden_states = hidden_states[indices]
170
+ return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
171
+
172
+ def pad_input(self, hidden_states, indices, batch, seqlen):
173
+ #torch.cuda.empty_cache()
174
+ output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
175
+ dtype=hidden_states.dtype)
176
+ output[indices] = hidden_states
177
+ return rearrange(output, '(b s) ... -> b s ...', b=batch)
178
+
179
+ def forward(self, q, k, v, attention_mask=None):
180
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
181
+ assert all((i.is_cuda for i in (q, k, v)))
182
+ q_len_origin=q.shape[1]
183
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
184
+ seqlen_k = k.shape[1]
185
+
186
+ q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
187
+ cu_seqlens_q = torch.arange(
188
+ 0,
189
+ (batch_size + 1) * seqlen_q,
190
+ step=seqlen_q,
191
+ dtype=torch.int32,
192
+ device=q.device,
193
+ )
194
+
195
+ if attention_mask is not None:
196
+ k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
197
+ v = v[indices_k]
198
+ if self.training or q.size(0) == k.size(0):
199
+ q = q[indices_k]
200
+ cu_seqlens_q = cu_seqlens_k
201
+ seqlen_q = seqlen_k
202
+ else:
203
+ cu_seqlens_k = torch.arange(
204
+ 0,
205
+ (batch_size + 1) * seqlen_k,
206
+ step=seqlen_k,
207
+ dtype=torch.int32,
208
+ device=q.device,
209
+ )
210
+
211
+ if self.training:
212
+ assert seqlen_k == seqlen_q
213
+ is_causal = self.causal
214
+ dropout_p = self.dropout_p
215
+ else:
216
+ is_causal = seqlen_q == seqlen_k
217
+ dropout_p = 0
218
+
219
+ output = flash_attn_unpadded_func(
220
+ q,
221
+ k,
222
+ v,
223
+ cu_seqlens_q,
224
+ cu_seqlens_k,
225
+ seqlen_q,
226
+ seqlen_k,
227
+ dropout_p,
228
+ softmax_scale=self.softmax_scale,
229
+ causal=is_causal,
230
+ )
231
+ if attention_mask is not None and seqlen_q == seqlen_k:
232
+ output = self.pad_input(output, indices_k, batch_size, seqlen_q)
233
+
234
+
235
+ else:
236
+ new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
237
+ output = output.view(new_shape)
238
+ return output
239
+
240
+
241
+ class QWenAttention(nn.Module):
242
+ def __init__(self, config):
243
+ super().__init__()
244
+
245
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
246
+ self.seq_length = config.seq_length
247
+
248
+ self.hidden_size = config.hidden_size
249
+ self.split_size = config.hidden_size
250
+ self.num_heads = config.num_attention_heads
251
+ self.head_dim = self.hidden_size // self.num_heads
252
+
253
+ self.use_flash_attn = config.use_flash_attn
254
+ self.scale_attn_weights = True
255
+
256
+ self.projection_size = config.kv_channels * config.num_attention_heads
257
+
258
+ assert self.projection_size % config.num_attention_heads == 0
259
+ self.hidden_size_per_attention_head = (
260
+ self.projection_size // config.num_attention_heads
261
+ )
262
+
263
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
264
+
265
+ self.c_proj = nn.Linear(
266
+ config.hidden_size, self.projection_size, bias=not config.no_bias
267
+ )
268
+
269
+ self.is_fp32 = not (config.bf16 or config.fp16)
270
+ if (
271
+ self.use_flash_attn
272
+ and flash_attn_unpadded_func is not None
273
+ and not self.is_fp32
274
+ ):
275
+ self.core_attention_flash = FlashSelfAttention(
276
+ causal=True, attention_dropout=config.attn_dropout_prob
277
+ )
278
+ self.bf16 = config.bf16
279
+
280
+ self.use_dynamic_ntk = config.use_dynamic_ntk
281
+ self.use_logn_attn = config.use_logn_attn
282
+
283
+ logn_list = [
284
+ math.log(i, self.seq_length) if i > self.seq_length else 1
285
+ for i in range(1, 32768)
286
+ ]
287
+ logn_tensor = torch.tensor(logn_list)[None, :, None, None]
288
+ self.register_buffer("logn_tensor", logn_tensor, persistent=False)
289
+
290
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
291
+ self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
292
+ self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
293
+ cache_dtype = torch.float
294
+ if self.bf16:
295
+ cache_dtype=torch.bfloat16
296
+ elif config.fp16:
297
+ cache_dtype = torch.float16
298
+ self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
299
+ self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
300
+
301
+ def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
302
+ device = query.device
303
+ if self.use_cache_quantization:
304
+ qk, qk_scale, qk_zero = key
305
+ if self.use_cache_kernel and cache_autogptq_cuda_256 is not None:
306
+ shape = query.shape[:-1] + (qk.shape[-2],)
307
+ attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
308
+ cache_autogptq_cuda_256.vecquant8matmul_batched_faster_old(
309
+ query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
310
+ qk.transpose(-1, -2).contiguous(),
311
+ attn_weights,
312
+ qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
313
+ qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
314
+ # attn_weights = attn_weights.to(query.dtype).contiguous()
315
+ else:
316
+ key = dequantize_cache_torch(qk, qk_scale, qk_zero)
317
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
318
+ else:
319
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
320
+
321
+ if self.scale_attn_weights:
322
+ if self.use_cache_quantization:
323
+ size_temp = value[0].size(-1)
324
+ else:
325
+ size_temp = value.size(-1)
326
+ attn_weights = attn_weights / torch.full(
327
+ [],
328
+ size_temp ** 0.5,
329
+ dtype=attn_weights.dtype,
330
+ device=attn_weights.device,
331
+ )
332
+ if self.use_cache_quantization:
333
+ query_length, key_length = query.size(-2), key[0].size(-2)
334
+ else:
335
+ query_length, key_length = query.size(-2), key.size(-2)
336
+ causal_mask = registered_causal_mask[
337
+ :, :, key_length - query_length : key_length, :key_length
338
+ ]
339
+ mask_value = torch.finfo(attn_weights.dtype).min
340
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
341
+ attn_weights.device
342
+ )
343
+ attn_weights = torch.where(
344
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
345
+ )
346
+
347
+ if attention_mask is not None:
348
+ attn_weights = attn_weights + attention_mask
349
+
350
+ attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
351
+
352
+ attn_weights = attn_weights.type(query.dtype)
353
+ attn_weights = self.attn_dropout(attn_weights)
354
+
355
+ if head_mask is not None:
356
+ attn_weights = attn_weights * head_mask
357
+
358
+ if self.use_cache_quantization:
359
+ qv, qv_scale, qv_zero = value
360
+ if self.use_cache_kernel and cache_autogptq_cuda_256 is not None:
361
+ shape = attn_weights.shape[:-1] + (query.shape[-1],)
362
+ attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
363
+ cache_autogptq_cuda_256.vecquant8matmul_batched_column_compression_faster_old(
364
+ attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
365
+ qv.contiguous(), # dtype: int32
366
+ attn_output,
367
+ qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
368
+ qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
369
+ if attn_output.dtype != query.dtype:
370
+ attn_output = attn_output.to(query.dtype)
371
+ attn_weights = attn_weights.to(query.dtype)
372
+ else:
373
+ value = dequantize_cache_torch(qv, qv_scale, qv_zero)
374
+ attn_output = torch.matmul(attn_weights, value)
375
+ else:
376
+ attn_output = torch.matmul(attn_weights, value)
377
+
378
+ attn_output = attn_output.transpose(1, 2)
379
+
380
+ return attn_output, attn_weights
381
+
382
+ def _upcast_and_reordered_attn(
383
+ self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None
384
+ ):
385
+ bsz, num_heads, q_seq_len, dk = query.size()
386
+ _, _, k_seq_len, _ = key.size()
387
+
388
+ attn_weights = torch.empty(
389
+ bsz * num_heads,
390
+ q_seq_len,
391
+ k_seq_len,
392
+ dtype=torch.float32,
393
+ device=query.device,
394
+ )
395
+
396
+ scale_factor = 1.0
397
+ if self.scale_attn_weights:
398
+ scale_factor /= float(value.size(-1)) ** 0.5
399
+
400
+ with autocast(enabled=False):
401
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
402
+ -1, dk, k_seq_len
403
+ )
404
+ attn_weights = torch.baddbmm(
405
+ attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
406
+ )
407
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
408
+
409
+ query_length, key_length = query.size(-2), key.size(-2)
410
+ causal_mask = registered_causal_mask[
411
+ :, :, key_length - query_length : key_length, :key_length
412
+ ] #registered_causal_mask是shape为(1, 1, max_positions, max_positions)的二值张量,其中max_positions为8192
413
+ mask_value = torch.finfo(attn_weights.dtype).min
414
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
415
+ attn_weights.device
416
+ )
417
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value) #causal_mask中为1的位置,attn_weights中保留,否则用mask_value填充
418
+
419
+ if attention_mask is not None:
420
+ attn_weights = attn_weights + attention_mask
421
+
422
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
423
+
424
+ if attn_weights.dtype != torch.float32:
425
+ raise RuntimeError(
426
+ "Error with upcasting, attn_weights does not have dtype torch.float32"
427
+ )
428
+ attn_weights = attn_weights.type(value.dtype)
429
+ attn_weights = self.attn_dropout(attn_weights)
430
+
431
+ if head_mask is not None:
432
+ attn_weights = attn_weights * head_mask
433
+
434
+ attn_output = torch.matmul(attn_weights, value)
435
+
436
+ return attn_output, attn_weights
437
+
438
+ def _split_heads(self, tensor, num_heads, attn_head_size):
439
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
440
+ tensor = tensor.view(new_shape)
441
+ return tensor
442
+
443
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
444
+ tensor = tensor.contiguous()
445
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
446
+ return tensor.view(new_shape)
447
+
448
+ def forward(
449
+ self,
450
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
451
+ rotary_pos_emb_list: Optional[List[torch.Tensor]] = None,
452
+ registered_causal_mask: Optional[torch.Tensor] = None,
453
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
454
+ attention_mask: Optional[torch.FloatTensor] = None,
455
+ head_mask: Optional[torch.FloatTensor] = None,
456
+ encoder_hidden_states: Optional[torch.Tensor] = None,
457
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
458
+ output_attentions: Optional[bool] = False,
459
+ use_cache: Optional[bool] = False,
460
+ ):
461
+ mixed_x_layer = self.c_attn(hidden_states)
462
+
463
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
464
+
465
+ query = self._split_heads(query, self.num_heads, self.head_dim)
466
+ key = self._split_heads(key, self.num_heads, self.head_dim)
467
+ value = self._split_heads(value, self.num_heads, self.head_dim)
468
+
469
+ if rotary_pos_emb_list is not None:
470
+ cur_len = query.shape[1]
471
+ if len(rotary_pos_emb_list) == 1:
472
+ rotary_pos_emb = rotary_pos_emb_list[0]
473
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
474
+ rotary_pos_emb = (rotary_pos_emb,) * 2
475
+ q_pos_emb, k_pos_emb = rotary_pos_emb
476
+ # Slice the pos emb for current inference
477
+ query = apply_rotary_pos_emb(query, q_pos_emb)
478
+ key = apply_rotary_pos_emb(key, k_pos_emb)
479
+ else:
480
+ query_list = []
481
+ key_list = []
482
+ for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
483
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
484
+ rotary_pos_emb = (rotary_pos_emb,) * 2
485
+ q_pos_emb, k_pos_emb = rotary_pos_emb
486
+ # Slice the pos emb for current inference
487
+ query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
488
+ key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
489
+ query = torch.cat(query_list, dim=0)
490
+ key = torch.cat(key_list, dim=0)
491
+
492
+ if self.use_cache_quantization:
493
+ key = quantize_cache_v(key.permute(0, 2, 1, 3),
494
+ bits=8,
495
+ qmin=self.cache_qmin,
496
+ qmax=self.cache_qmax)
497
+ value = quantize_cache_v(value.permute(0, 2, 1, 3),
498
+ bits=8,
499
+ qmin=self.cache_qmin,
500
+ qmax=self.cache_qmax)
501
+
502
+
503
+ if layer_past is not None:
504
+ past_key, past_value = layer_past[0], layer_past[1]
505
+ if self.use_cache_quantization:
506
+ # use_cache_quantization:
507
+ # present=((q_key,key_scale,key_zero_point),
508
+ # (q_value,value_scale,value_zero_point))
509
+ key = (torch.cat((past_key[0], key[0]), dim=2),
510
+ torch.cat((past_key[1], key[1]), dim=2),
511
+ torch.cat((past_key[2], key[2]), dim=2))
512
+ value = (torch.cat((past_value[0], value[0]), dim=2),
513
+ torch.cat((past_value[1], value[1]), dim=2),
514
+ torch.cat((past_value[2], value[2]), dim=2))
515
+ else:
516
+ # not use_cache_quantization:
517
+ # present=(key,value)
518
+ key = torch.cat((past_key, key), dim=1)
519
+ value = torch.cat((past_value, value), dim=1)
520
+
521
+ if use_cache:
522
+ present = (key, value)
523
+ else:
524
+ present = None
525
+
526
+ if self.use_logn_attn and not self.training:
527
+ if self.use_cache_quantization:
528
+ seq_start = key[0].size(2) - query.size(1)
529
+ seq_end = key[0].size(2)
530
+ else:
531
+ seq_start = key.size(1) - query.size(1)
532
+ seq_end = key.size(1)
533
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
534
+ query = query * logn_tensor.expand_as(query) #使用logn_attn时,query乘以logn_tensor,避免长文本时注意力不稳定
535
+
536
+ if (
537
+ self.use_flash_attn
538
+ and flash_attn_unpadded_func is not None
539
+ and not self.is_fp32
540
+ and query.is_cuda
541
+ ):
542
+ q, k, v = query, key, value
543
+ context_layer = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
544
+
545
+ # b s h d -> b s (h d)
546
+ context_layer = context_layer.flatten(2,3).contiguous()
547
+
548
+ else:
549
+ query = query.permute(0, 2, 1, 3)
550
+ if not self.use_cache_quantization:
551
+ key = key.permute(0, 2, 1, 3)
552
+ value = value.permute(0, 2, 1, 3)
553
+ if (
554
+ registered_causal_mask is None
555
+ and self.use_flash_attn
556
+ and flash_attn_unpadded_func is not None
557
+ and not self.is_fp32
558
+ and not query.is_cuda
559
+ ):
560
+ raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
561
+ attn_output, attn_weight = self._attn(
562
+ query, key, value, registered_causal_mask, attention_mask, head_mask
563
+ ) #如果没有使用flash attention,才会使用registered_causal_mask
564
+ context_layer = self._merge_heads(
565
+ attn_output, self.num_heads, self.head_dim
566
+ )
567
+
568
+ attn_output = self.c_proj(context_layer)
569
+
570
+ outputs = (attn_output, present)
571
+ if output_attentions:
572
+ if (
573
+ self.use_flash_attn
574
+ and flash_attn_unpadded_func is not None
575
+ and not self.is_fp32
576
+ ):
577
+ raise ValueError("Cannot output attentions while using flash-attn")
578
+ else:
579
+ outputs += (attn_weight,)
580
+
581
+ return outputs
582
+
583
+
584
+ class QWenMLP(nn.Module):
585
+ def __init__(self, config):
586
+ super().__init__()
587
+ self.w1 = nn.Linear(
588
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
589
+ )
590
+ self.w2 = nn.Linear(
591
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
592
+ )
593
+ ff_dim_in = config.intermediate_size // 2
594
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
595
+
596
+ def forward(self, hidden_states):
597
+ a1 = self.w1(hidden_states)
598
+ a2 = self.w2(hidden_states)
599
+ intermediate_parallel = a1 * F.silu(a2)
600
+ output = self.c_proj(intermediate_parallel)
601
+ return output
602
+
603
+ class QWenBlock(nn.Module):
604
+ def __init__(self, config):
605
+ super().__init__()
606
+ hidden_size = config.hidden_size
607
+ self.bf16 = config.bf16
608
+
609
+ self.ln_1 = RMSNorm(
610
+ hidden_size,
611
+ eps=config.layer_norm_epsilon,
612
+ )
613
+ self.attn = QWenAttention(config)
614
+ self.ln_2 = RMSNorm(
615
+ hidden_size,
616
+ eps=config.layer_norm_epsilon,
617
+ )
618
+
619
+ self.mlp = QWenMLP(config)
620
+
621
+ def forward(
622
+ self,
623
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
624
+ rotary_pos_emb_list: Optional[List[torch.Tensor]] = None,
625
+ registered_causal_mask: Optional[torch.Tensor] = None,
626
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
627
+ attention_mask: Optional[torch.FloatTensor] = None,
628
+ head_mask: Optional[torch.FloatTensor] = None,
629
+ encoder_hidden_states: Optional[torch.Tensor] = None,
630
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
631
+ use_cache: Optional[bool] = False,
632
+ output_attentions: Optional[bool] = False,
633
+ ):
634
+ layernorm_output = self.ln_1(hidden_states)
635
+
636
+ attn_outputs = self.attn(
637
+ layernorm_output,
638
+ rotary_pos_emb_list,
639
+ registered_causal_mask=registered_causal_mask,
640
+ layer_past=layer_past,
641
+ attention_mask=attention_mask,
642
+ head_mask=head_mask,
643
+ use_cache=use_cache,
644
+ output_attentions=output_attentions,
645
+ )
646
+ attn_output = attn_outputs[0]
647
+
648
+ outputs = attn_outputs[1:]
649
+
650
+ residual = hidden_states
651
+ layernorm_input = attn_output + residual
652
+
653
+ layernorm_output = self.ln_2(layernorm_input)
654
+
655
+ residual = layernorm_input
656
+ mlp_output = self.mlp(layernorm_output)
657
+ hidden_states = residual + mlp_output
658
+
659
+ if use_cache:
660
+ outputs = (hidden_states,) + outputs
661
+ else:
662
+ outputs = (hidden_states,) + outputs[1:]
663
+
664
+ return outputs
665
+
666
+
667
+ class QWenPreTrainedModel(PreTrainedModel):
668
+ config_class = QWenConfig
669
+ base_model_prefix = "transformer"
670
+ is_parallelizable = False
671
+ supports_gradient_checkpointing = True
672
+ _no_split_modules = ["QWenBlock"]
673
+
674
+ def __init__(self, *inputs, **kwargs):
675
+ super().__init__(*inputs, **kwargs)
676
+
677
+ def _init_weights(self, module):
678
+ """Initialize the weights."""
679
+ if isinstance(module, nn.Linear):
680
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
681
+ if module.bias is not None:
682
+ module.bias.data.zero_()
683
+ elif isinstance(module, nn.Embedding):
684
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
685
+ if module.padding_idx is not None:
686
+ module.weight.data[module.padding_idx].zero_()
687
+ elif isinstance(module, RMSNorm):
688
+ module.weight.data.fill_(1.0)
689
+
690
+ for name, p in module.named_parameters():
691
+ if name == "c_proj.weight":
692
+ p.data.normal_(
693
+ mean=0.0,
694
+ std=(
695
+ self.config.initializer_range
696
+ / math.sqrt(2 * self.config.num_hidden_layers)
697
+ ),
698
+ )
699
+
700
+ def _set_gradient_checkpointing(self, module, value=False):
701
+ if isinstance(module, QWenModel):
702
+ module.gradient_checkpointing = value
703
+
704
+
705
+ class QWenModel(QWenPreTrainedModel):
706
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
707
+
708
+ def __init__(self, config):
709
+ super().__init__(config)
710
+ self.vocab_size = config.vocab_size
711
+ self.num_hidden_layers = config.num_hidden_layers
712
+ self.embed_dim = config.hidden_size
713
+ self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False
714
+
715
+ self.gradient_checkpointing = False
716
+ self.use_dynamic_ntk = config.use_dynamic_ntk
717
+ self.seq_length = config.seq_length
718
+
719
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
720
+
721
+ self.drop = nn.Dropout(config.emb_dropout_prob)
722
+
723
+ if config.rotary_pct == 1.0:
724
+ self.rotary_ndims = None
725
+ else:
726
+ assert config.rotary_pct < 1
727
+ self.rotary_ndims = int(
728
+ config.kv_channels * config.rotary_pct
729
+ )
730
+ dim = (
731
+ self.rotary_ndims
732
+ if self.rotary_ndims is not None
733
+ else config.kv_channels
734
+ )
735
+ self.rotary_emb = YaRNRotaryEmbedding(dim, base=config.rotary_emb_base,original_max_position_embeddings=config.seq_length)
736
+ #self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
737
+
738
+
739
+ self.use_flash_attn = config.use_flash_attn
740
+ self.is_fp32 = not (config.bf16 or config.fp16)
741
+ if (
742
+ self.use_flash_attn
743
+ and flash_attn_unpadded_func is not None
744
+ and not self.is_fp32
745
+ ):
746
+ self.registered_causal_mask = None
747
+ else:
748
+ max_positions = config.max_position_embeddings
749
+ self.register_buffer(
750
+ "registered_causal_mask",
751
+ torch.tril(
752
+ torch.ones((max_positions, max_positions), dtype=torch.bool)
753
+ ).view(1, 1, max_positions, max_positions),
754
+ persistent=False,
755
+ )
756
+
757
+ self.h = nn.ModuleList(
758
+ [
759
+ QWenBlock(
760
+ config
761
+ )
762
+ for i in range(config.num_hidden_layers)
763
+ ]
764
+ )
765
+ self.ln_f = RMSNorm(
766
+ self.embed_dim,
767
+ eps=config.layer_norm_epsilon,
768
+ )
769
+
770
+ self.post_init()
771
+
772
+ def get_input_embeddings(self):
773
+ return self.wte
774
+
775
+ def set_input_embeddings(self, new_embeddings):
776
+ self.wte = new_embeddings
777
+
778
+ def get_ntk_alpha(self, true_seq_len):
779
+ ntk_alpha = true_seq_len / self.seq_length + 512/self.seq_length
780
+ ntk_alpha = max(ntk_alpha, 1)
781
+ # context_value = math.log(true_seq_len / self.seq_length, 2) + 1
782
+ # ntk_alpha = 2 ** math.ceil(context_value) - 1
783
+ # ntk_alpha = max(ntk_alpha, 1)
784
+
785
+ #假设seq_length=2k,true_seq_len=8k,context_value=3,ntk_alpha=7,相当于扩展到14k长度
786
+ return ntk_alpha
787
+
788
+ def forward(
789
+ self,
790
+ input_ids: Optional[torch.LongTensor] = None,
791
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
792
+ attention_mask: Optional[torch.FloatTensor] = None,
793
+ token_type_ids: Optional[torch.LongTensor] = None,
794
+ position_ids: Optional[torch.LongTensor] = None,
795
+ head_mask: Optional[torch.FloatTensor] = None,
796
+ inputs_embeds: Optional[torch.FloatTensor] = None,
797
+ encoder_hidden_states: Optional[torch.Tensor] = None,
798
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
799
+ use_cache: Optional[bool] = None,
800
+ output_attentions: Optional[bool] = None,
801
+ output_hidden_states: Optional[bool] = None,
802
+ return_dict: Optional[bool] = None,
803
+ ):
804
+ output_attentions = (
805
+ output_attentions
806
+ if output_attentions is not None
807
+ else self.config.output_attentions
808
+ )
809
+ output_hidden_states = (
810
+ output_hidden_states
811
+ if output_hidden_states is not None
812
+ else self.config.output_hidden_states
813
+ )
814
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
815
+ return_dict = (
816
+ return_dict if return_dict is not None else self.config.use_return_dict
817
+ )
818
+
819
+ if input_ids is not None and inputs_embeds is not None:
820
+ raise ValueError(
821
+ "You cannot specify both input_ids and inputs_embeds at the same time"
822
+ )
823
+ elif input_ids is not None:
824
+ input_shape = input_ids.size()
825
+ input_ids = input_ids.view(-1, input_shape[-1])
826
+ batch_size = input_ids.shape[0]
827
+ elif inputs_embeds is not None:
828
+ input_shape = inputs_embeds.size()[:-1]
829
+ batch_size = inputs_embeds.shape[0]
830
+ else:
831
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
832
+
833
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
834
+
835
+ if token_type_ids is not None:
836
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
837
+ if position_ids is not None:
838
+ position_ids = position_ids.view(-1, input_shape[-1])
839
+
840
+ if past_key_values is None:
841
+ past_length = 0
842
+ past_key_values = tuple([None] * len(self.h))
843
+ else:
844
+ if self.use_cache_quantization:
845
+ past_length = past_key_values[0][0][0].size(2)
846
+ else:
847
+ past_length = past_key_values[0][0].size(-2)
848
+ if position_ids is None:
849
+ position_ids = torch.arange(
850
+ past_length,
851
+ input_shape[-1] + past_length,
852
+ dtype=torch.long,
853
+ device=device,
854
+ )
855
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
856
+
857
+ if attention_mask is not None:
858
+ if batch_size <= 0:
859
+ raise ValueError("batch_size has to be defined and > 0")
860
+ attention_mask = attention_mask.view(batch_size, -1)
861
+ attention_mask = attention_mask[:, None, None, :]
862
+ attention_mask = attention_mask.to(dtype=self.dtype)
863
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
864
+
865
+ encoder_attention_mask = None
866
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
867
+
868
+ if inputs_embeds is None:
869
+ inputs_embeds = self.wte(input_ids)
870
+ hidden_states = inputs_embeds
871
+
872
+ kv_seq_len = hidden_states.size()[1]
873
+ if past_key_values[0] is not None:
874
+ # past key values[0][0] shape: bs * seq_len * head_num * dim
875
+ if self.use_cache_quantization:
876
+ kv_seq_len += past_key_values[0][0][0].shape[2]
877
+ else:
878
+ kv_seq_len += past_key_values[0][0].shape[1]
879
+
880
+ #if self.training or not self.use_dynamic_ntk:
881
+ if not self.use_dynamic_ntk:
882
+ ntk_alpha_list = [1.0]
883
+ elif kv_seq_len != hidden_states.size()[1]:
884
+ ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
885
+ else:
886
+ ntk_alpha_list = []
887
+ if attention_mask is not None and kv_seq_len > self.seq_length:
888
+ true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
889
+ for i in range(hidden_states.size()[0]):
890
+ #给batch中的每个样本计算ntk_alpha,计算方法是 true_seq_len / self.seq_length。qwen-7b中,self.seq_length=8192,qwen-14b中,self.seq_length=2048
891
+ true_seq_len = true_seq_lens[i].item()
892
+ ntk_alpha = self.get_ntk_alpha(true_seq_len)
893
+ ntk_alpha_list.append(ntk_alpha)
894
+ else:
895
+ ntk_alpha = self.get_ntk_alpha(kv_seq_len)
896
+ ntk_alpha_list.append(ntk_alpha)
897
+ self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
898
+
899
+ rotary_pos_emb_list = []
900
+ for ntk_alpha in ntk_alpha_list:
901
+ rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) #训练时,ntk_alpha=1.0,rotary_emb根据kv_seq_len生成
902
+ rotary_pos_emb_list.append(rotary_pos_emb)
903
+
904
+ hidden_states = self.drop(hidden_states)
905
+ output_shape = input_shape + (hidden_states.size(-1),)
906
+
907
+ if self.gradient_checkpointing and self.training:
908
+ if use_cache:
909
+ logger.warning_once(
910
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
911
+ )
912
+ use_cache = False
913
+
914
+ presents = () if use_cache else None
915
+ all_self_attentions = () if output_attentions else None
916
+ all_hidden_states = () if output_hidden_states else None
917
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
918
+
919
+ if output_hidden_states:
920
+ all_hidden_states = all_hidden_states + (hidden_states,)
921
+
922
+ if self.gradient_checkpointing and self.training:
923
+
924
+ def create_custom_forward(module):
925
+ def custom_forward(*inputs):
926
+ # None for past_key_value
927
+ return module(*inputs, use_cache, output_attentions)
928
+
929
+ return custom_forward
930
+
931
+ outputs = torch.utils.checkpoint.checkpoint(
932
+ create_custom_forward(block),
933
+ hidden_states,
934
+ rotary_pos_emb_list,
935
+ self.registered_causal_mask,
936
+ None,
937
+ attention_mask,
938
+ head_mask[i],
939
+ encoder_hidden_states,
940
+ encoder_attention_mask,
941
+ )
942
+ else:
943
+ outputs = block(
944
+ hidden_states,
945
+ layer_past=layer_past,
946
+ rotary_pos_emb_list=rotary_pos_emb_list,
947
+ registered_causal_mask=self.registered_causal_mask,
948
+ attention_mask=attention_mask,
949
+ head_mask=head_mask[i],
950
+ encoder_hidden_states=encoder_hidden_states,
951
+ encoder_attention_mask=encoder_attention_mask,
952
+ use_cache=use_cache,
953
+ output_attentions=output_attentions,
954
+ )
955
+
956
+ hidden_states = outputs[0]
957
+ if use_cache is True:
958
+ presents = presents + (outputs[1],)
959
+
960
+ if output_attentions:
961
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
962
+
963
+ hidden_states = self.ln_f(hidden_states)
964
+ hidden_states = hidden_states.view(output_shape)
965
+ # Add last hidden state
966
+ if output_hidden_states:
967
+ all_hidden_states = all_hidden_states + (hidden_states,)
968
+
969
+ if not return_dict:
970
+ return tuple(
971
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
972
+ )
973
+
974
+ return BaseModelOutputWithPast(
975
+ last_hidden_state=hidden_states,
976
+ past_key_values=presents,
977
+ hidden_states=all_hidden_states,
978
+ attentions=all_self_attentions,
979
+ )
980
+
981
+
982
+ class QWenLMHeadModel(QWenPreTrainedModel):
983
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
984
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
985
+
986
+ def __init__(self, config):
987
+ super().__init__(config)
988
+ assert (
989
+ config.bf16 + config.fp16 + config.fp32 <= 1
990
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
991
+ logger.warn(
992
+ "Warning: please make sure that you are using the latest codes and checkpoints, "
993
+ "especially if you used Qwen-7B before 09.25.2023."
994
+ "请使用最新模型和代码,尤其如果你在9月25日前已经开始使用Qwen-7B,千万注意不要使用错误代码和模型。"
995
+ )
996
+
997
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
998
+
999
+ if autoset_precision:
1000
+ if SUPPORT_BF16:
1001
+ logger.warn(
1002
+ "The model is automatically converting to bf16 for faster inference. "
1003
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
1004
+ )
1005
+ config.bf16 = True
1006
+ elif SUPPORT_FP16:
1007
+ logger.warn(
1008
+ "The model is automatically converting to fp16 for faster inference. "
1009
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
1010
+ )
1011
+ config.fp16 = True
1012
+ else:
1013
+ config.fp32 = True
1014
+
1015
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
1016
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
1017
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
1018
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
1019
+ if config.fp32:
1020
+ if SUPPORT_BF16:
1021
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
1022
+ elif SUPPORT_FP16:
1023
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
1024
+
1025
+ if config.use_flash_attn == "auto":
1026
+ if config.bf16 or config.fp16:
1027
+ logger.warn("Try importing flash-attention for faster inference...")
1028
+ config.use_flash_attn = True
1029
+ else:
1030
+ config.use_flash_attn = False
1031
+ if config.use_flash_attn and config.fp32:
1032
+ logger.warn("Flash attention will be disabled because it does NOT support fp32.")
1033
+
1034
+ if config.use_flash_attn:
1035
+ _import_flash_attn()
1036
+
1037
+
1038
+ if hasattr(config, 'use_cache_quantization') and config.use_cache_quantization:
1039
+ config.use_flash_attn = False
1040
+ if hasattr(config, 'use_cache_kernel') and config.use_cache_kernel:
1041
+ try:
1042
+ from kernels.cpp_kernels import cache_autogptq_cuda_256
1043
+ except ImportError:
1044
+ cache_autogptq_cuda_256 = None
1045
+
1046
+ self.transformer = QWenModel(config)
1047
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1048
+
1049
+ if config.bf16:
1050
+ self.transformer.bfloat16()
1051
+ self.lm_head.bfloat16()
1052
+ if config.fp16:
1053
+ self.transformer.half()
1054
+ self.lm_head.half()
1055
+ self.post_init()
1056
+
1057
+
1058
+ def get_output_embeddings(self):
1059
+ return self.lm_head
1060
+
1061
+ def set_output_embeddings(self, new_embeddings):
1062
+ self.lm_head = new_embeddings
1063
+
1064
+ def prepare_inputs_for_generation(
1065
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
1066
+ ):
1067
+ token_type_ids = kwargs.get("token_type_ids", None)
1068
+ if past_key_values:
1069
+ input_ids = input_ids[:, -1].unsqueeze(-1)
1070
+ if token_type_ids is not None:
1071
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
1072
+
1073
+ attention_mask = kwargs.get("attention_mask", None)
1074
+ position_ids = kwargs.get("position_ids", None)
1075
+
1076
+ if attention_mask is not None and position_ids is None:
1077
+ position_ids = attention_mask.long().cumsum(-1) - 1
1078
+ position_ids.masked_fill_(attention_mask == 0, 1)
1079
+ if past_key_values:
1080
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1081
+ else:
1082
+ position_ids = None
1083
+
1084
+ if inputs_embeds is not None and past_key_values is None:
1085
+ model_inputs = {"inputs_embeds": inputs_embeds}
1086
+ else:
1087
+ model_inputs = {"input_ids": input_ids}
1088
+
1089
+ model_inputs.update(
1090
+ {
1091
+ "past_key_values": past_key_values,
1092
+ "use_cache": kwargs.get("use_cache"),
1093
+ "position_ids": position_ids,
1094
+ "attention_mask": attention_mask,
1095
+ "token_type_ids": token_type_ids,
1096
+ }
1097
+ )
1098
+ return model_inputs
1099
+
1100
+ def forward(
1101
+ self,
1102
+ input_ids: Optional[torch.LongTensor] = None,
1103
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1104
+ attention_mask: Optional[torch.FloatTensor] = None,
1105
+ token_type_ids: Optional[torch.LongTensor] = None,
1106
+ position_ids: Optional[torch.LongTensor] = None,
1107
+ head_mask: Optional[torch.FloatTensor] = None,
1108
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1109
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1110
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1111
+ labels: Optional[torch.LongTensor] = None,
1112
+ use_cache: Optional[bool] = None,
1113
+ output_attentions: Optional[bool] = None,
1114
+ output_hidden_states: Optional[bool] = None,
1115
+ return_dict: Optional[bool] = None,
1116
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1117
+
1118
+ return_dict = (
1119
+ return_dict if return_dict is not None else self.config.use_return_dict
1120
+ )
1121
+
1122
+ transformer_outputs = self.transformer(
1123
+ input_ids,
1124
+ past_key_values=past_key_values,
1125
+ attention_mask=attention_mask,
1126
+ token_type_ids=token_type_ids,
1127
+ position_ids=position_ids,
1128
+ head_mask=head_mask,
1129
+ inputs_embeds=inputs_embeds,
1130
+ encoder_hidden_states=encoder_hidden_states,
1131
+ encoder_attention_mask=encoder_attention_mask,
1132
+ use_cache=use_cache,
1133
+ output_attentions=output_attentions,
1134
+ output_hidden_states=output_hidden_states,
1135
+ return_dict=return_dict,
1136
+ )
1137
+ hidden_states = transformer_outputs[0]
1138
+
1139
+ lm_logits = self.lm_head(hidden_states)
1140
+
1141
+ loss = None
1142
+ if labels is not None:
1143
+ labels = labels.to(lm_logits.device)
1144
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1145
+ shift_labels = labels[..., 1:].contiguous()
1146
+ loss_fct = CrossEntropyLoss()
1147
+ loss = loss_fct(
1148
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
1149
+ )
1150
+
1151
+
1152
+ if not return_dict:
1153
+ output = (lm_logits,) + transformer_outputs[1:]
1154
+ return ((loss,) + output) if loss is not None else output
1155
+
1156
+ if self.training:
1157
+ lm_logits=None
1158
+ return CausalLMOutputWithPast(
1159
+ loss=loss,
1160
+ logits=lm_logits,
1161
+ past_key_values=transformer_outputs.past_key_values,
1162
+ hidden_states=transformer_outputs.hidden_states,
1163
+ attentions=transformer_outputs.attentions,
1164
+ )
1165
+
1166
+ @staticmethod
1167
+ def _reorder_cache(
1168
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1169
+ ) -> Tuple[Tuple[torch.Tensor]]:
1170
+
1171
+ return tuple(
1172
+ tuple(
1173
+ past_state.index_select(0, beam_idx.to(past_state.device))
1174
+ for past_state in layer_past
1175
+ )
1176
+ for layer_past in past_key_values
1177
+ )
1178
+
1179
+ def chat(
1180
+ self,
1181
+ tokenizer: PreTrainedTokenizer,
1182
+ query: str,
1183
+ history: Optional[HistoryType],
1184
+ system: str = "You are a helpful assistant.",
1185
+ append_history: bool = True,
1186
+ stream: Optional[bool] = _SENTINEL,
1187
+ stop_words_ids: Optional[List[List[int]]] = None,
1188
+ generation_config: Optional[GenerationConfig] = None,
1189
+ **kwargs,
1190
+ ) -> Tuple[str, HistoryType]:
1191
+ generation_config = generation_config if generation_config is not None else self.generation_config
1192
+
1193
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
1194
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1195
+ if history is None:
1196
+ history = []
1197
+ if stop_words_ids is None:
1198
+ stop_words_ids = []
1199
+
1200
+ max_window_size = kwargs.get('max_window_size', None)
1201
+ if max_window_size is None:
1202
+ max_window_size = generation_config.max_window_size
1203
+ raw_text, context_tokens = make_context(
1204
+ tokenizer,
1205
+ query,
1206
+ history=history,
1207
+ system=system,
1208
+ max_window_size=max_window_size,
1209
+ chat_format=generation_config.chat_format,
1210
+ )
1211
+
1212
+ stop_words_ids.extend(get_stop_words_ids(
1213
+ generation_config.chat_format, tokenizer
1214
+ ))
1215
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1216
+ outputs = self.generate(
1217
+ input_ids,
1218
+ stop_words_ids=stop_words_ids,
1219
+ return_dict_in_generate=False,
1220
+ generation_config=generation_config,
1221
+ **kwargs,
1222
+ )
1223
+
1224
+ response = decode_tokens(
1225
+ outputs[0],
1226
+ tokenizer,
1227
+ raw_text_len=len(raw_text),
1228
+ context_length=len(context_tokens),
1229
+ chat_format=generation_config.chat_format,
1230
+ verbose=False,
1231
+ errors='replace'
1232
+ )
1233
+
1234
+ if append_history:
1235
+ history.append((query, response))
1236
+
1237
+ return response, history
1238
+
1239
+ def chat_stream(
1240
+ self,
1241
+ tokenizer: PreTrainedTokenizer,
1242
+ query: str,
1243
+ history: Optional[HistoryType],
1244
+ system: str = "You are a helpful assistant.",
1245
+ stop_words_ids: Optional[List[List[int]]] = None,
1246
+ logits_processor: Optional[LogitsProcessorList] = None,
1247
+ generation_config: Optional[GenerationConfig] = None,
1248
+ **kwargs,
1249
+ ) -> Generator[str, Any, None]:
1250
+ generation_config = generation_config if generation_config is not None else self.generation_config
1251
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1252
+ if history is None:
1253
+ history = []
1254
+ if stop_words_ids is None:
1255
+ stop_words_ids = []
1256
+
1257
+ max_window_size = kwargs.get('max_window_size', None)
1258
+ if max_window_size is None:
1259
+ max_window_size = generation_config.max_window_size
1260
+ raw_text, context_tokens = make_context(
1261
+ tokenizer,
1262
+ query,
1263
+ history=history,
1264
+ system=system,
1265
+ max_window_size=max_window_size,
1266
+ chat_format=generation_config.chat_format,
1267
+ )
1268
+
1269
+ stop_words_ids.extend(get_stop_words_ids(
1270
+ generation_config.chat_format, tokenizer
1271
+ ))
1272
+ if stop_words_ids is not None:
1273
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1274
+ stop_words_ids=stop_words_ids,
1275
+ eos_token_id=generation_config.eos_token_id,
1276
+ )
1277
+ if logits_processor is None:
1278
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1279
+ else:
1280
+ logits_processor.append(stop_words_logits_processor)
1281
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1282
+
1283
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
1284
+ self.__class__.generate_stream = NewGenerationMixin.generate
1285
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
1286
+ stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
1287
+
1288
+ def stream_generator():
1289
+ outputs = []
1290
+ for token in self.generate_stream(
1291
+ input_ids,
1292
+ return_dict_in_generate=False,
1293
+ generation_config=stream_config,
1294
+ logits_processor=logits_processor,
1295
+ seed=-1,
1296
+ **kwargs):
1297
+ outputs.append(token.item())
1298
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
1299
+
1300
+ return stream_generator()
1301
+
1302
+ def generate(
1303
+ self,
1304
+ inputs: Optional[torch.Tensor] = None,
1305
+ generation_config: Optional[GenerationConfig] = None,
1306
+ logits_processor: Optional[LogitsProcessorList] = None,
1307
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1308
+ prefix_allowed_tokens_fn: Optional[
1309
+ Callable[[int, torch.Tensor], List[int]]
1310
+ ] = None,
1311
+ synced_gpus: Optional[bool] = None,
1312
+ assistant_model: Optional["PreTrainedModel"] = None,
1313
+ streamer: Optional["BaseStreamer"] = None,
1314
+ **kwargs,
1315
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1316
+ generation_config = generation_config if generation_config is not None else self.generation_config
1317
+
1318
+ # Process stop_words_ids.
1319
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1320
+ if stop_words_ids is None and generation_config is not None:
1321
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1322
+ if stop_words_ids is None:
1323
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1324
+
1325
+ if stop_words_ids is not None:
1326
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1327
+ stop_words_ids=stop_words_ids,
1328
+ eos_token_id=generation_config.eos_token_id,
1329
+ )
1330
+ if logits_processor is None:
1331
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1332
+ else:
1333
+ logits_processor.append(stop_words_logits_processor)
1334
+
1335
+ return super().generate(
1336
+ inputs,
1337
+ generation_config=generation_config,
1338
+ logits_processor=logits_processor,
1339
+ stopping_criteria=stopping_criteria,
1340
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1341
+ synced_gpus=synced_gpus,
1342
+ assistant_model=assistant_model,
1343
+ streamer=streamer,
1344
+ **kwargs,
1345
+ )
1346
+
1347
+
1348
+ class RotaryEmbedding(torch.nn.Module):
1349
+ def __init__(self, dim, base=10000):
1350
+ super().__init__()
1351
+ self.dim = dim
1352
+ self.base = base
1353
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1354
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1355
+ if importlib.util.find_spec("einops") is None:
1356
+ raise RuntimeError("einops is required for Rotary Embedding")
1357
+
1358
+ self._rotary_pos_emb_cache = None
1359
+ self._seq_len_cached = 0
1360
+ self._ntk_alpha_cached = 1.0
1361
+ self._ntk_alpha_cached_list = [1.0]
1362
+
1363
+ def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1364
+ seqlen = max_seq_len + offset
1365
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1366
+ #计算新的base。ntk_alpha=1时,base不变;ntk_alpha>1时,base变大
1367
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1368
+ #波长=2*pi*base^(2d/D),即频率的倒数。此处算出了每个维度对应的频率。由于每两个维度对应一个频率,所以频率的个数为dim/2
1369
+ self.inv_freq = 1.0 / (
1370
+ base
1371
+ ** (
1372
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1373
+ / self.dim
1374
+ )
1375
+ )
1376
+ self._seq_len_cached = max(seqlen+512, 16)
1377
+ self._ntk_alpha_cached = ntk_alpha
1378
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1379
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq) #做外积,获得seq_len*(dim/2)的矩阵
1380
+
1381
+ emb = torch.cat((freqs, freqs), dim=-1) #获得(seq_len*2)*dim的矩阵
1382
+ from einops import rearrange
1383
+
1384
+ emb = rearrange(emb, "n d -> 1 n 1 d") #获得1*(seq_len*2)*1*dim的矩阵
1385
+
1386
+ cos, sin = emb.cos(), emb.sin()
1387
+ self._rotary_pos_emb_cache = [cos, sin]
1388
+
1389
+ def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
1390
+ self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
1391
+ cos, sin = self._rotary_pos_emb_cache
1392
+ return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
1393
+
1394
+
1395
+ class YaRNRotaryEmbedding(RotaryEmbedding):
1396
+ def __init__(self, dim, base=10000,interleaved=False,extrapolation_factor=1,
1397
+ attn_factor=1, beta_fast=32, beta_slow=1,original_max_position_embeddings=2048):
1398
+ """
1399
+ interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
1400
+ of 1st half and 2nd half (GPT-NeoX style).
1401
+ pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
1402
+ otherwise they might be in lower precision.
1403
+ This option was added because previously (before 2023-07-02), when we construct
1404
+ the position indices, we use the dtype of self.inv_freq. In most cases this would
1405
+ be fp32, but if the model is trained in pure bf16 (not mixed precision), then
1406
+ self.inv_freq would be bf16, and the position indices are also in bf16.
1407
+ Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
1408
+ embeddings for some positions will coincide.
1409
+ To maintain compatibility with models previously trained in pure bf16,
1410
+ we add this option.
1411
+ scaling_factor: RotaryEmbedding extended with YaRN scaling.
1412
+ """
1413
+ super().__init__(dim, base)
1414
+ self.interleaved = interleaved
1415
+ self.extrapolation_factor = extrapolation_factor
1416
+ self.attn_factor = attn_factor
1417
+ self.beta_fast = beta_fast
1418
+ self.beta_slow = beta_slow
1419
+ self.original_max_position_embeddings = original_max_position_embeddings
1420
+
1421
+ def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1422
+ seqlen = max_seq_len + offset
1423
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1424
+ #波长=2*pi*base^(2d/D),即频率的倒数。此处算出了每个维度对应的频率。由于每两个维度对应一个频率,所以频率的个数为dim/2
1425
+ self._compute_inv_freq(ntk_alpha, device=self.inv_freq.device)
1426
+ self.mscale = float(_yarn_get_mscale(ntk_alpha) * self.attn_factor)
1427
+
1428
+ self._seq_len_cached = max(seqlen+512, 16)
1429
+ self._ntk_alpha_cached = ntk_alpha
1430
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1431
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq) #seq和逆频率做外积,获得seq_len*(dim/2)的矩阵
1432
+
1433
+ emb = torch.cat((freqs, freqs), dim=-1) #获得(seq_len*2)*dim的矩阵
1434
+ from einops import rearrange
1435
+
1436
+ emb = rearrange(emb, "n d -> 1 n 1 d") #获得1*(seq_len*2)*1*dim的矩阵
1437
+
1438
+ cos, sin = emb.cos() * self.mscale, emb.sin() * self.mscale
1439
+ self._rotary_pos_emb_cache = [cos, sin]
1440
+
1441
+ def _compute_inv_freq(self, scaling_factor, device=None):
1442
+ pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
1443
+ inv_freq_extrapolation = 1.0 / pos_freqs
1444
+ inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs)
1445
+
1446
+ low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
1447
+ inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
1448
+ inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
1449
+ inv_freq=inv_freq.float()
1450
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1451
+
1452
+ # Inverse dim formula to find dim based on number of rotations
1453
+ def _yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
1454
+ return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base))
1455
+
1456
+ # Find dim range bounds based on rotations
1457
+ def _yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
1458
+ low = math.floor(_yarn_find_correction_dim(
1459
+ low_rot, dim, base, max_position_embeddings))
1460
+ high = math.ceil(_yarn_find_correction_dim(
1461
+ high_rot, dim, base, max_position_embeddings))
1462
+ return max(low, 0), min(high, dim-1) # Clamp values just in case
1463
+
1464
+ def _yarn_linear_ramp_mask(min, max, dim):
1465
+ if min == max:
1466
+ max += 0.001 # Prevent singularity
1467
+
1468
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
1469
+ ramp_func = torch.clamp(linear_func, 0, 1)
1470
+ return ramp_func
1471
+
1472
+ def _yarn_get_mscale(scale=1):
1473
+ if scale <= 1:
1474
+ return 1.0
1475
+ return 0.1 * math.log(scale) + 1.0
1476
+
1477
+
1478
+
1479
+ def _rotate_half(x):
1480
+ from einops import rearrange
1481
+
1482
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1483
+ x1, x2 = x.unbind(dim=-2)
1484
+ return torch.cat((-x2, x1), dim=-1)
1485
+
1486
+
1487
+ def apply_rotary_pos_emb(t, freqs):
1488
+ cos, sin = freqs
1489
+ if apply_rotary_emb_func is not None and t.is_cuda:
1490
+ t_ = t.float()
1491
+ cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
1492
+ sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
1493
+ output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
1494
+ return output
1495
+ else:
1496
+ rot_dim = freqs[0].shape[-1]
1497
+ cos, sin = freqs
1498
+ t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
1499
+ t_ = t_.float()
1500
+ t_pass_ = t_pass_.float()
1501
+ t_ = (t_ * cos) + (_rotate_half(t_) * sin)
1502
+ return torch.cat((t_, t_pass_), dim=-1).type_as(t)
1503
+
1504
+
1505
+ class RMSNorm(torch.nn.Module):
1506
+ def __init__(self, dim: int, eps: float = 1e-6):
1507
+ super().__init__()
1508
+ self.eps = eps
1509
+ self.weight = nn.Parameter(torch.ones(dim))
1510
+
1511
+ def _norm(self, x):
1512
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1513
+
1514
+ def forward(self, x):
1515
+ if rms_norm is not None and x.is_cuda:
1516
+ return rms_norm(x, self.weight, self.eps)
1517
+ else:
1518
+ output = self._norm(x.float()).type_as(x)
1519
+ return output * self.weight