--- base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: rubert-finetuned-ner results: [] --- # rubert-finetuned-ner This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1536 - Precision: 0.8904 - Recall: 0.9077 - F1: 0.8990 - Accuracy: 0.9585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0828 | 0.5 | 625 | 0.2171 | 0.8117 | 0.8616 | 0.8359 | 0.9391 | | 0.1195 | 1.0 | 1250 | 0.1753 | 0.8540 | 0.8842 | 0.8689 | 0.9488 | | 0.1255 | 1.5 | 1875 | 0.1754 | 0.8860 | 0.9027 | 0.8943 | 0.9577 | | 0.0546 | 2.0 | 2500 | 0.1536 | 0.8904 | 0.9077 | 0.8990 | 0.9585 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1