--- base_model: SpanBERT/spanbert-large-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: sapect_complaint_spanbert results: [] --- # sapect_complaint_spanbert This model is a fine-tuned version of [SpanBERT/spanbert-large-cased](https://huggingface.co/SpanBERT/spanbert-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1905 - F1: 0.7365 - Roc Auc: 0.8250 - Accuracy: 0.5052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.284 | 1.0 | 582 | 0.2261 | 0.6543 | 0.7733 | 0.3720 | | 0.2063 | 2.0 | 1164 | 0.1965 | 0.7113 | 0.8003 | 0.4338 | | 0.1822 | 3.0 | 1746 | 0.1935 | 0.7197 | 0.8062 | 0.4416 | | 0.1632 | 4.0 | 2328 | 0.1918 | 0.7325 | 0.8210 | 0.4897 | | 0.1408 | 5.0 | 2910 | 0.1905 | 0.7365 | 0.8250 | 0.5052 | ### Framework versions - Transformers 4.41.1 - Pytorch 1.13.1+cu117 - Datasets 2.19.1 - Tokenizers 0.19.1