Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,385 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- sparse sparsity quantized onnx embeddings int8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
license: mit
|
5 |
language:
|
6 |
- en
|
@@ -48,5 +427,4 @@ For further details regarding DeepSparse & Sentence Transformers integration, re
|
|
48 |
|
49 |
For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).
|
50 |
|
51 |
-
![;)](https://media.giphy.com/media/bYg33GbNbNIVzSrr84/giphy-downsized-large.gif)
|
52 |
-
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- sparse sparsity quantized onnx embeddings int8
|
4 |
+
- mteb
|
5 |
+
model-index:
|
6 |
+
- name: gte-large-sparse
|
7 |
+
results:
|
8 |
+
- task:
|
9 |
+
type: STS
|
10 |
+
dataset:
|
11 |
+
type: mteb/biosses-sts
|
12 |
+
name: MTEB BIOSSES
|
13 |
+
config: default
|
14 |
+
split: test
|
15 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
16 |
+
metrics:
|
17 |
+
- type: cos_sim_pearson
|
18 |
+
value: 88.64253410928214
|
19 |
+
- type: cos_sim_spearman
|
20 |
+
value: 85.83388349410652
|
21 |
+
- type: euclidean_pearson
|
22 |
+
value: 86.86126159318735
|
23 |
+
- type: euclidean_spearman
|
24 |
+
value: 85.61580623591163
|
25 |
+
- type: manhattan_pearson
|
26 |
+
value: 86.6901132883383
|
27 |
+
- type: manhattan_spearman
|
28 |
+
value: 85.60255292187769
|
29 |
+
- task:
|
30 |
+
type: STS
|
31 |
+
dataset:
|
32 |
+
type: mteb/sickr-sts
|
33 |
+
name: MTEB SICK-R
|
34 |
+
config: default
|
35 |
+
split: test
|
36 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
37 |
+
metrics:
|
38 |
+
- type: cos_sim_pearson
|
39 |
+
value: 85.23314640591607
|
40 |
+
- type: cos_sim_spearman
|
41 |
+
value: 79.00078545104338
|
42 |
+
- type: euclidean_pearson
|
43 |
+
value: 83.48009254500714
|
44 |
+
- type: euclidean_spearman
|
45 |
+
value: 78.95413001389939
|
46 |
+
- type: manhattan_pearson
|
47 |
+
value: 83.46945566025941
|
48 |
+
- type: manhattan_spearman
|
49 |
+
value: 78.9241707208135
|
50 |
+
- task:
|
51 |
+
type: STS
|
52 |
+
dataset:
|
53 |
+
type: mteb/sts12-sts
|
54 |
+
name: MTEB STS12
|
55 |
+
config: default
|
56 |
+
split: test
|
57 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
58 |
+
metrics:
|
59 |
+
- type: cos_sim_pearson
|
60 |
+
value: 81.77526666043804
|
61 |
+
- type: cos_sim_spearman
|
62 |
+
value: 73.4849063285867
|
63 |
+
- type: euclidean_pearson
|
64 |
+
value: 78.04477932740524
|
65 |
+
- type: euclidean_spearman
|
66 |
+
value: 73.01394205771743
|
67 |
+
- type: manhattan_pearson
|
68 |
+
value: 78.08836684503294
|
69 |
+
- type: manhattan_spearman
|
70 |
+
value: 73.05074711098149
|
71 |
+
- task:
|
72 |
+
type: STS
|
73 |
+
dataset:
|
74 |
+
type: mteb/sts13-sts
|
75 |
+
name: MTEB STS13
|
76 |
+
config: default
|
77 |
+
split: test
|
78 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
79 |
+
metrics:
|
80 |
+
- type: cos_sim_pearson
|
81 |
+
value: 84.57839215661352
|
82 |
+
- type: cos_sim_spearman
|
83 |
+
value: 86.13854767345153
|
84 |
+
- type: euclidean_pearson
|
85 |
+
value: 85.12712609946449
|
86 |
+
- type: euclidean_spearman
|
87 |
+
value: 85.52497994789026
|
88 |
+
- type: manhattan_pearson
|
89 |
+
value: 85.06833141611173
|
90 |
+
- type: manhattan_spearman
|
91 |
+
value: 85.45003068636466
|
92 |
+
- task:
|
93 |
+
type: STS
|
94 |
+
dataset:
|
95 |
+
type: mteb/sts14-sts
|
96 |
+
name: MTEB STS14
|
97 |
+
config: default
|
98 |
+
split: test
|
99 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
100 |
+
metrics:
|
101 |
+
- type: cos_sim_pearson
|
102 |
+
value: 83.30485126978374
|
103 |
+
- type: cos_sim_spearman
|
104 |
+
value: 80.36497172462357
|
105 |
+
- type: euclidean_pearson
|
106 |
+
value: 82.91977909424605
|
107 |
+
- type: euclidean_spearman
|
108 |
+
value: 80.16995106297438
|
109 |
+
- type: manhattan_pearson
|
110 |
+
value: 82.88200991402184
|
111 |
+
- type: manhattan_spearman
|
112 |
+
value: 80.14259757215227
|
113 |
+
- task:
|
114 |
+
type: STS
|
115 |
+
dataset:
|
116 |
+
type: mteb/sts15-sts
|
117 |
+
name: MTEB STS15
|
118 |
+
config: default
|
119 |
+
split: test
|
120 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
121 |
+
metrics:
|
122 |
+
- type: cos_sim_pearson
|
123 |
+
value: 86.99883111314007
|
124 |
+
- type: cos_sim_spearman
|
125 |
+
value: 88.531352572377
|
126 |
+
- type: euclidean_pearson
|
127 |
+
value: 87.96834578059067
|
128 |
+
- type: euclidean_spearman
|
129 |
+
value: 88.44800718542935
|
130 |
+
- type: manhattan_pearson
|
131 |
+
value: 87.94889391725033
|
132 |
+
- type: manhattan_spearman
|
133 |
+
value: 88.45467695837115
|
134 |
+
- task:
|
135 |
+
type: STS
|
136 |
+
dataset:
|
137 |
+
type: mteb/sts16-sts
|
138 |
+
name: MTEB STS16
|
139 |
+
config: default
|
140 |
+
split: test
|
141 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
142 |
+
metrics:
|
143 |
+
- type: cos_sim_pearson
|
144 |
+
value: 82.4636984892402
|
145 |
+
- type: cos_sim_spearman
|
146 |
+
value: 84.0808920789148
|
147 |
+
- type: euclidean_pearson
|
148 |
+
value: 83.70613486028309
|
149 |
+
- type: euclidean_spearman
|
150 |
+
value: 84.35941626905009
|
151 |
+
- type: manhattan_pearson
|
152 |
+
value: 83.70259457073782
|
153 |
+
- type: manhattan_spearman
|
154 |
+
value: 84.35496521501604
|
155 |
+
- task:
|
156 |
+
type: STS
|
157 |
+
dataset:
|
158 |
+
type: mteb/sts17-crosslingual-sts
|
159 |
+
name: MTEB STS17 (en-en)
|
160 |
+
config: en-en
|
161 |
+
split: test
|
162 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
163 |
+
metrics:
|
164 |
+
- type: cos_sim_pearson
|
165 |
+
value: 88.76172944971023
|
166 |
+
- type: cos_sim_spearman
|
167 |
+
value: 89.4190945039165
|
168 |
+
- type: euclidean_pearson
|
169 |
+
value: 89.47263005347381
|
170 |
+
- type: euclidean_spearman
|
171 |
+
value: 89.49228360724095
|
172 |
+
- type: manhattan_pearson
|
173 |
+
value: 89.49959868816694
|
174 |
+
- type: manhattan_spearman
|
175 |
+
value: 89.5314536157954
|
176 |
+
- task:
|
177 |
+
type: STS
|
178 |
+
dataset:
|
179 |
+
type: mteb/sts22-crosslingual-sts
|
180 |
+
name: MTEB STS22 (en)
|
181 |
+
config: en
|
182 |
+
split: test
|
183 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
184 |
+
metrics:
|
185 |
+
- type: cos_sim_pearson
|
186 |
+
value: 64.57158223787549
|
187 |
+
- type: cos_sim_spearman
|
188 |
+
value: 66.75053533168037
|
189 |
+
- type: euclidean_pearson
|
190 |
+
value: 66.45526604831747
|
191 |
+
- type: euclidean_spearman
|
192 |
+
value: 66.14567667353113
|
193 |
+
- type: manhattan_pearson
|
194 |
+
value: 66.47352000151176
|
195 |
+
- type: manhattan_spearman
|
196 |
+
value: 66.21099856852885
|
197 |
+
- task:
|
198 |
+
type: STS
|
199 |
+
dataset:
|
200 |
+
type: mteb/stsbenchmark-sts
|
201 |
+
name: MTEB STSBenchmark
|
202 |
+
config: default
|
203 |
+
split: test
|
204 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
205 |
+
metrics:
|
206 |
+
- type: cos_sim_pearson
|
207 |
+
value: 85.055653571006
|
208 |
+
- type: cos_sim_spearman
|
209 |
+
value: 85.45387832634702
|
210 |
+
- type: euclidean_pearson
|
211 |
+
value: 86.31667154906651
|
212 |
+
- type: euclidean_spearman
|
213 |
+
value: 85.66079590537946
|
214 |
+
- type: manhattan_pearson
|
215 |
+
value: 86.2806853257308
|
216 |
+
- type: manhattan_spearman
|
217 |
+
value: 85.63700636713952
|
218 |
+
- task:
|
219 |
+
type: PairClassification
|
220 |
+
dataset:
|
221 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
222 |
+
name: MTEB SprintDuplicateQuestions
|
223 |
+
config: default
|
224 |
+
split: test
|
225 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
226 |
+
metrics:
|
227 |
+
- type: cos_sim_accuracy
|
228 |
+
value: 99.78811881188119
|
229 |
+
- type: cos_sim_ap
|
230 |
+
value: 94.67027715905307
|
231 |
+
- type: cos_sim_f1
|
232 |
+
value: 89.33074684772066
|
233 |
+
- type: cos_sim_precision
|
234 |
+
value: 86.7231638418079
|
235 |
+
- type: cos_sim_recall
|
236 |
+
value: 92.10000000000001
|
237 |
+
- type: dot_accuracy
|
238 |
+
value: 99.47128712871287
|
239 |
+
- type: dot_ap
|
240 |
+
value: 78.41478815918727
|
241 |
+
- type: dot_f1
|
242 |
+
value: 73.30049261083744
|
243 |
+
- type: dot_precision
|
244 |
+
value: 72.23300970873787
|
245 |
+
- type: dot_recall
|
246 |
+
value: 74.4
|
247 |
+
- type: euclidean_accuracy
|
248 |
+
value: 99.78415841584159
|
249 |
+
- type: euclidean_ap
|
250 |
+
value: 94.60075930867181
|
251 |
+
- type: euclidean_f1
|
252 |
+
value: 89.12175648702593
|
253 |
+
- type: euclidean_precision
|
254 |
+
value: 88.94422310756973
|
255 |
+
- type: euclidean_recall
|
256 |
+
value: 89.3
|
257 |
+
- type: manhattan_accuracy
|
258 |
+
value: 99.78415841584159
|
259 |
+
- type: manhattan_ap
|
260 |
+
value: 94.62867439278095
|
261 |
+
- type: manhattan_f1
|
262 |
+
value: 89.2337536372454
|
263 |
+
- type: manhattan_precision
|
264 |
+
value: 86.62900188323917
|
265 |
+
- type: manhattan_recall
|
266 |
+
value: 92.0
|
267 |
+
- type: max_accuracy
|
268 |
+
value: 99.78811881188119
|
269 |
+
- type: max_ap
|
270 |
+
value: 94.67027715905307
|
271 |
+
- type: max_f1
|
272 |
+
value: 89.33074684772066
|
273 |
+
- task:
|
274 |
+
type: PairClassification
|
275 |
+
dataset:
|
276 |
+
type: mteb/twittersemeval2015-pairclassification
|
277 |
+
name: MTEB TwitterSemEval2015
|
278 |
+
config: default
|
279 |
+
split: test
|
280 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
281 |
+
metrics:
|
282 |
+
- type: cos_sim_accuracy
|
283 |
+
value: 85.09864695714371
|
284 |
+
- type: cos_sim_ap
|
285 |
+
value: 70.33704198164713
|
286 |
+
- type: cos_sim_f1
|
287 |
+
value: 66.22893954410307
|
288 |
+
- type: cos_sim_precision
|
289 |
+
value: 62.42410088743577
|
290 |
+
- type: cos_sim_recall
|
291 |
+
value: 70.52770448548813
|
292 |
+
- type: dot_accuracy
|
293 |
+
value: 79.11426357513263
|
294 |
+
- type: dot_ap
|
295 |
+
value: 49.15484584572233
|
296 |
+
- type: dot_f1
|
297 |
+
value: 51.12580243364951
|
298 |
+
- type: dot_precision
|
299 |
+
value: 40.13840830449827
|
300 |
+
- type: dot_recall
|
301 |
+
value: 70.3957783641161
|
302 |
+
- type: euclidean_accuracy
|
303 |
+
value: 85.15825236931514
|
304 |
+
- type: euclidean_ap
|
305 |
+
value: 70.51017350854076
|
306 |
+
- type: euclidean_f1
|
307 |
+
value: 66.45416294785159
|
308 |
+
- type: euclidean_precision
|
309 |
+
value: 64.29805082654823
|
310 |
+
- type: euclidean_recall
|
311 |
+
value: 68.7598944591029
|
312 |
+
- type: manhattan_accuracy
|
313 |
+
value: 85.1403707456637
|
314 |
+
- type: manhattan_ap
|
315 |
+
value: 70.47587863399994
|
316 |
+
- type: manhattan_f1
|
317 |
+
value: 66.4576802507837
|
318 |
+
- type: manhattan_precision
|
319 |
+
value: 63.32138590203107
|
320 |
+
- type: manhattan_recall
|
321 |
+
value: 69.92084432717678
|
322 |
+
- type: max_accuracy
|
323 |
+
value: 85.15825236931514
|
324 |
+
- type: max_ap
|
325 |
+
value: 70.51017350854076
|
326 |
+
- type: max_f1
|
327 |
+
value: 66.4576802507837
|
328 |
+
- task:
|
329 |
+
type: PairClassification
|
330 |
+
dataset:
|
331 |
+
type: mteb/twitterurlcorpus-pairclassification
|
332 |
+
name: MTEB TwitterURLCorpus
|
333 |
+
config: default
|
334 |
+
split: test
|
335 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
336 |
+
metrics:
|
337 |
+
- type: cos_sim_accuracy
|
338 |
+
value: 88.8539604921023
|
339 |
+
- type: cos_sim_ap
|
340 |
+
value: 85.71869912577101
|
341 |
+
- type: cos_sim_f1
|
342 |
+
value: 78.00535626720983
|
343 |
+
- type: cos_sim_precision
|
344 |
+
value: 76.46232344893885
|
345 |
+
- type: cos_sim_recall
|
346 |
+
value: 79.61194949183862
|
347 |
+
- type: dot_accuracy
|
348 |
+
value: 84.57717235223348
|
349 |
+
- type: dot_ap
|
350 |
+
value: 74.89496650237145
|
351 |
+
- type: dot_f1
|
352 |
+
value: 69.05327823892932
|
353 |
+
- type: dot_precision
|
354 |
+
value: 65.75666829166377
|
355 |
+
- type: dot_recall
|
356 |
+
value: 72.69787496150293
|
357 |
+
- type: euclidean_accuracy
|
358 |
+
value: 88.89471028835332
|
359 |
+
- type: euclidean_ap
|
360 |
+
value: 85.75169460500409
|
361 |
+
- type: euclidean_f1
|
362 |
+
value: 78.17055393586006
|
363 |
+
- type: euclidean_precision
|
364 |
+
value: 74.21118184334348
|
365 |
+
- type: euclidean_recall
|
366 |
+
value: 82.57622420696026
|
367 |
+
- type: manhattan_accuracy
|
368 |
+
value: 88.92187681918733
|
369 |
+
- type: manhattan_ap
|
370 |
+
value: 85.7496679471825
|
371 |
+
- type: manhattan_f1
|
372 |
+
value: 78.11088295687884
|
373 |
+
- type: manhattan_precision
|
374 |
+
value: 75.82083061535117
|
375 |
+
- type: manhattan_recall
|
376 |
+
value: 80.5435786880197
|
377 |
+
- type: max_accuracy
|
378 |
+
value: 88.92187681918733
|
379 |
+
- type: max_ap
|
380 |
+
value: 85.75169460500409
|
381 |
+
- type: max_f1
|
382 |
+
value: 78.17055393586006
|
383 |
license: mit
|
384 |
language:
|
385 |
- en
|
|
|
427 |
|
428 |
For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).
|
429 |
|
430 |
+
![;)](https://media.giphy.com/media/bYg33GbNbNIVzSrr84/giphy-downsized-large.gif)
|
|