zhang19991111
commited on
Commit
•
46bd564
1
Parent(s):
a6d6b8a
Upload 9 files
Browse files- README.md +215 -0
- added_tokens.json +4 -0
- config.json +102 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +76 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: cc-by-sa-4.0
|
4 |
+
library_name: span-marker
|
5 |
+
tags:
|
6 |
+
- span-marker
|
7 |
+
- token-classification
|
8 |
+
- ner
|
9 |
+
- named-entity-recognition
|
10 |
+
- generated_from_span_marker_trainer
|
11 |
+
metrics:
|
12 |
+
- precision
|
13 |
+
- recall
|
14 |
+
- f1
|
15 |
+
widget:
|
16 |
+
- text: Inductively Coupled Plasma - Mass Spectrometry ( ICP - MS ) analysis of Longcliffe
|
17 |
+
SP52 limestone was undertaken to identify other impurities present , and the effect
|
18 |
+
of sorbent mass and SO2 concentration on elemental partitioning in the carbonator
|
19 |
+
between solid sorbent and gaseous phase was investigated , using a bubbler sampling
|
20 |
+
system .
|
21 |
+
- text: We extensively evaluate our work against benchmark and competitive protocols
|
22 |
+
across a range of metrics over three real connectivity and GPS traces such as
|
23 |
+
Sassy [ 44 ] , San Francisco Cabs [ 45 ] and Infocom 2006 [ 33 ] .
|
24 |
+
- text: In this research , we developed a robust two - layer classifier that can accurately
|
25 |
+
classify normal hearing ( NH ) from hearing impaired ( HI ) infants with congenital
|
26 |
+
sensori - neural hearing loss ( SNHL ) based on their Magnetic Resonance ( MR
|
27 |
+
) images .
|
28 |
+
- text: In situ Peak Force Tapping AFM was employed for determining morphology and
|
29 |
+
nano - mechanical properties of the surface layer .
|
30 |
+
- text: By means of a criterion of Gilmer for polynomially dense subsets of the ring
|
31 |
+
of integers of a number field , we show that , if h∈K[X ] maps every element of
|
32 |
+
OK of degree n to an algebraic integer , then h(X ) is integral - valued over
|
33 |
+
OK , that is , h(OK)⊂OK .
|
34 |
+
pipeline_tag: token-classification
|
35 |
+
base_model: allenai/scibert_scivocab_uncased
|
36 |
+
model-index:
|
37 |
+
- name: SpanMarker with allenai/scibert_scivocab_uncased on my-data
|
38 |
+
results:
|
39 |
+
- task:
|
40 |
+
type: token-classification
|
41 |
+
name: Named Entity Recognition
|
42 |
+
dataset:
|
43 |
+
name: my-data
|
44 |
+
type: unknown
|
45 |
+
split: test
|
46 |
+
metrics:
|
47 |
+
- type: f1
|
48 |
+
value: 0.685430463576159
|
49 |
+
name: F1
|
50 |
+
- type: precision
|
51 |
+
value: 0.6981450252951096
|
52 |
+
name: Precision
|
53 |
+
- type: recall
|
54 |
+
value: 0.6731707317073171
|
55 |
+
name: Recall
|
56 |
+
---
|
57 |
+
|
58 |
+
# SpanMarker with allenai/scibert_scivocab_uncased on my-data
|
59 |
+
|
60 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. This SpanMarker model uses [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) as the underlying encoder.
|
61 |
+
|
62 |
+
## Model Details
|
63 |
+
|
64 |
+
### Model Description
|
65 |
+
- **Model Type:** SpanMarker
|
66 |
+
- **Encoder:** [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased)
|
67 |
+
- **Maximum Sequence Length:** 256 tokens
|
68 |
+
- **Maximum Entity Length:** 8 words
|
69 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
70 |
+
- **Language:** en
|
71 |
+
- **License:** cc-by-sa-4.0
|
72 |
+
|
73 |
+
### Model Sources
|
74 |
+
|
75 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
76 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
77 |
+
|
78 |
+
### Model Labels
|
79 |
+
| Label | Examples |
|
80 |
+
|:---------|:--------------------------------------------------------------------------------------------------------|
|
81 |
+
| Data | "an overall mitochondrial", "defect", "Depth time - series" |
|
82 |
+
| Material | "cross - shore measurement locations", "the subject 's fibroblasts", "COXI , COXII and COXIII subunits" |
|
83 |
+
| Method | "EFSA", "an approximation", "in vitro" |
|
84 |
+
| Process | "translation", "intake", "a significant reduction of synthesis" |
|
85 |
+
|
86 |
+
## Evaluation
|
87 |
+
|
88 |
+
### Metrics
|
89 |
+
| Label | Precision | Recall | F1 |
|
90 |
+
|:---------|:----------|:-------|:-------|
|
91 |
+
| **all** | 0.6981 | 0.6732 | 0.6854 |
|
92 |
+
| Data | 0.6269 | 0.6402 | 0.6335 |
|
93 |
+
| Material | 0.8085 | 0.7562 | 0.7815 |
|
94 |
+
| Method | 0.4211 | 0.4 | 0.4103 |
|
95 |
+
| Process | 0.6891 | 0.6488 | 0.6683 |
|
96 |
+
|
97 |
+
## Uses
|
98 |
+
|
99 |
+
### Direct Use for Inference
|
100 |
+
|
101 |
+
```python
|
102 |
+
from span_marker import SpanMarkerModel
|
103 |
+
|
104 |
+
# Download from the 🤗 Hub
|
105 |
+
model = SpanMarkerModel.from_pretrained("span-marker-allenai/scibert_scivocab_uncased-me")
|
106 |
+
# Run inference
|
107 |
+
entities = model.predict("In situ Peak Force Tapping AFM was employed for determining morphology and nano - mechanical properties of the surface layer .")
|
108 |
+
```
|
109 |
+
|
110 |
+
### Downstream Use
|
111 |
+
You can finetune this model on your own dataset.
|
112 |
+
|
113 |
+
<details><summary>Click to expand</summary>
|
114 |
+
|
115 |
+
```python
|
116 |
+
from span_marker import SpanMarkerModel, Trainer
|
117 |
+
|
118 |
+
# Download from the 🤗 Hub
|
119 |
+
model = SpanMarkerModel.from_pretrained("span-marker-allenai/scibert_scivocab_uncased-me")
|
120 |
+
|
121 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
122 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
123 |
+
|
124 |
+
# Initialize a Trainer using the pretrained model & dataset
|
125 |
+
trainer = Trainer(
|
126 |
+
model=model,
|
127 |
+
train_dataset=dataset["train"],
|
128 |
+
eval_dataset=dataset["validation"],
|
129 |
+
)
|
130 |
+
trainer.train()
|
131 |
+
trainer.save_model("span-marker-allenai/scibert_scivocab_uncased-me-finetuned")
|
132 |
+
```
|
133 |
+
</details>
|
134 |
+
|
135 |
+
<!--
|
136 |
+
### Out-of-Scope Use
|
137 |
+
|
138 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
139 |
+
-->
|
140 |
+
|
141 |
+
<!--
|
142 |
+
## Bias, Risks and Limitations
|
143 |
+
|
144 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
145 |
+
-->
|
146 |
+
|
147 |
+
<!--
|
148 |
+
### Recommendations
|
149 |
+
|
150 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
151 |
+
-->
|
152 |
+
|
153 |
+
## Training Details
|
154 |
+
|
155 |
+
### Training Set Metrics
|
156 |
+
| Training set | Min | Median | Max |
|
157 |
+
|:----------------------|:----|:--------|:----|
|
158 |
+
| Sentence length | 3 | 25.6049 | 106 |
|
159 |
+
| Entities per sentence | 0 | 5.2439 | 22 |
|
160 |
+
|
161 |
+
### Training Hyperparameters
|
162 |
+
- learning_rate: 5e-05
|
163 |
+
- train_batch_size: 8
|
164 |
+
- eval_batch_size: 8
|
165 |
+
- seed: 42
|
166 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
167 |
+
- lr_scheduler_type: linear
|
168 |
+
- lr_scheduler_warmup_ratio: 0.1
|
169 |
+
- num_epochs: 10
|
170 |
+
|
171 |
+
### Training Results
|
172 |
+
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|
173 |
+
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
|
174 |
+
| 2.0134 | 300 | 0.0476 | 0.7297 | 0.5821 | 0.6476 | 0.7880 |
|
175 |
+
| 4.0268 | 600 | 0.0532 | 0.7537 | 0.6775 | 0.7136 | 0.8281 |
|
176 |
+
| 6.0403 | 900 | 0.0655 | 0.7162 | 0.7080 | 0.7121 | 0.8357 |
|
177 |
+
| 8.0537 | 1200 | 0.0761 | 0.7143 | 0.7061 | 0.7102 | 0.8251 |
|
178 |
+
|
179 |
+
### Framework Versions
|
180 |
+
- Python: 3.10.12
|
181 |
+
- SpanMarker: 1.5.0
|
182 |
+
- Transformers: 4.36.2
|
183 |
+
- PyTorch: 2.0.1+cu118
|
184 |
+
- Datasets: 2.16.1
|
185 |
+
- Tokenizers: 0.15.0
|
186 |
+
|
187 |
+
## Citation
|
188 |
+
|
189 |
+
### BibTeX
|
190 |
+
```
|
191 |
+
@software{Aarsen_SpanMarker,
|
192 |
+
author = {Aarsen, Tom},
|
193 |
+
license = {Apache-2.0},
|
194 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
195 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
196 |
+
}
|
197 |
+
```
|
198 |
+
|
199 |
+
<!--
|
200 |
+
## Glossary
|
201 |
+
|
202 |
+
*Clearly define terms in order to be accessible across audiences.*
|
203 |
+
-->
|
204 |
+
|
205 |
+
<!--
|
206 |
+
## Model Card Authors
|
207 |
+
|
208 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
209 |
+
-->
|
210 |
+
|
211 |
+
<!--
|
212 |
+
## Model Card Contact
|
213 |
+
|
214 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
215 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<end>": 31091,
|
3 |
+
"<start>": 31090
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SpanMarkerModel"
|
4 |
+
],
|
5 |
+
"encoder": {
|
6 |
+
"_name_or_path": "allenai/scibert_scivocab_uncased",
|
7 |
+
"add_cross_attention": false,
|
8 |
+
"architectures": null,
|
9 |
+
"attention_probs_dropout_prob": 0.1,
|
10 |
+
"bad_words_ids": null,
|
11 |
+
"begin_suppress_tokens": null,
|
12 |
+
"bos_token_id": null,
|
13 |
+
"chunk_size_feed_forward": 0,
|
14 |
+
"classifier_dropout": null,
|
15 |
+
"cross_attention_hidden_size": null,
|
16 |
+
"decoder_start_token_id": null,
|
17 |
+
"diversity_penalty": 0.0,
|
18 |
+
"do_sample": false,
|
19 |
+
"early_stopping": false,
|
20 |
+
"encoder_no_repeat_ngram_size": 0,
|
21 |
+
"eos_token_id": null,
|
22 |
+
"exponential_decay_length_penalty": null,
|
23 |
+
"finetuning_task": null,
|
24 |
+
"forced_bos_token_id": null,
|
25 |
+
"forced_eos_token_id": null,
|
26 |
+
"hidden_act": "gelu",
|
27 |
+
"hidden_dropout_prob": 0.1,
|
28 |
+
"hidden_size": 768,
|
29 |
+
"id2label": {
|
30 |
+
"0": "O",
|
31 |
+
"1": "Data",
|
32 |
+
"2": "Material",
|
33 |
+
"3": "Method",
|
34 |
+
"4": "Process"
|
35 |
+
},
|
36 |
+
"initializer_range": 0.02,
|
37 |
+
"intermediate_size": 3072,
|
38 |
+
"is_decoder": false,
|
39 |
+
"is_encoder_decoder": false,
|
40 |
+
"label2id": {
|
41 |
+
"Data": 1,
|
42 |
+
"Material": 2,
|
43 |
+
"Method": 3,
|
44 |
+
"O": 0,
|
45 |
+
"Process": 4
|
46 |
+
},
|
47 |
+
"layer_norm_eps": 1e-12,
|
48 |
+
"length_penalty": 1.0,
|
49 |
+
"max_length": 20,
|
50 |
+
"max_position_embeddings": 512,
|
51 |
+
"min_length": 0,
|
52 |
+
"model_type": "bert",
|
53 |
+
"no_repeat_ngram_size": 0,
|
54 |
+
"num_attention_heads": 12,
|
55 |
+
"num_beam_groups": 1,
|
56 |
+
"num_beams": 1,
|
57 |
+
"num_hidden_layers": 12,
|
58 |
+
"num_return_sequences": 1,
|
59 |
+
"output_attentions": false,
|
60 |
+
"output_hidden_states": false,
|
61 |
+
"output_scores": false,
|
62 |
+
"pad_token_id": 0,
|
63 |
+
"position_embedding_type": "absolute",
|
64 |
+
"prefix": null,
|
65 |
+
"problem_type": null,
|
66 |
+
"pruned_heads": {},
|
67 |
+
"remove_invalid_values": false,
|
68 |
+
"repetition_penalty": 1.0,
|
69 |
+
"return_dict": true,
|
70 |
+
"return_dict_in_generate": false,
|
71 |
+
"sep_token_id": null,
|
72 |
+
"suppress_tokens": null,
|
73 |
+
"task_specific_params": null,
|
74 |
+
"temperature": 1.0,
|
75 |
+
"tf_legacy_loss": false,
|
76 |
+
"tie_encoder_decoder": false,
|
77 |
+
"tie_word_embeddings": true,
|
78 |
+
"tokenizer_class": null,
|
79 |
+
"top_k": 50,
|
80 |
+
"top_p": 1.0,
|
81 |
+
"torch_dtype": null,
|
82 |
+
"torchscript": false,
|
83 |
+
"transformers_version": "4.36.2",
|
84 |
+
"type_vocab_size": 2,
|
85 |
+
"typical_p": 1.0,
|
86 |
+
"use_bfloat16": false,
|
87 |
+
"use_cache": true,
|
88 |
+
"vocab_size": 31096
|
89 |
+
},
|
90 |
+
"entity_max_length": 8,
|
91 |
+
"marker_max_length": 128,
|
92 |
+
"max_next_context": null,
|
93 |
+
"max_prev_context": null,
|
94 |
+
"model_max_length": 256,
|
95 |
+
"model_max_length_default": 512,
|
96 |
+
"model_type": "span-marker",
|
97 |
+
"span_marker_version": "1.5.0",
|
98 |
+
"torch_dtype": "float32",
|
99 |
+
"trained_with_document_context": false,
|
100 |
+
"transformers_version": "4.36.2",
|
101 |
+
"vocab_size": 31096
|
102 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfb4610c7fa6ed2042e86d894a4fabebea7ccee2a529cd824260c210a26526b9
|
3 |
+
size 439747140
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "[PAD]",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"101": {
|
13 |
+
"content": "[UNK]",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"102": {
|
21 |
+
"content": "[CLS]",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"103": {
|
29 |
+
"content": "[SEP]",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"104": {
|
37 |
+
"content": "[MASK]",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"31090": {
|
45 |
+
"content": "<start>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"31091": {
|
53 |
+
"content": "<end>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"clean_up_tokenization_spaces": true,
|
62 |
+
"cls_token": "[CLS]",
|
63 |
+
"do_basic_tokenize": true,
|
64 |
+
"do_lower_case": true,
|
65 |
+
"entity_max_length": 8,
|
66 |
+
"marker_max_length": 128,
|
67 |
+
"mask_token": "[MASK]",
|
68 |
+
"model_max_length": 256,
|
69 |
+
"never_split": null,
|
70 |
+
"pad_token": "[PAD]",
|
71 |
+
"sep_token": "[SEP]",
|
72 |
+
"strip_accents": null,
|
73 |
+
"tokenize_chinese_chars": true,
|
74 |
+
"tokenizer_class": "BertTokenizer",
|
75 |
+
"unk_token": "[UNK]"
|
76 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0ed9a530e1e4f89d5671a57e508ae7ade16401ea64699bffa3f631220bcfc87
|
3 |
+
size 4283
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|